21 research outputs found

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Application of Quantum Cryptography to Cybersecurity and Critical Infrastructures in Space Communications

    Get PDF
    As society becomes more dependent on technology and the internet, critical infrastructure, which provides the fundamental services that millions of people depend on, becomes more vulnerable to cyber threats. This paper presents the importance of cybersecurity in critical infrastructure addressing the communications sector which is prevailed by space systems. It gives an overview of laser communications via satellite, and it argues the utility that quantum cryptography can provide to secure the data transmitted between communication satellites and ground stations from cyber attacks. Common encryption algorithms are briefly introduced as well as a review on quantum computing. Quantum cryptography is still a primitive concept, but as technology advances more and more researchers are focusing their attention into this visionary cryptography system

    Quantum Computing and Communications

    Get PDF
    This book explains the concepts and basic mathematics of quantum computing and communication. Chapters cover such topics as quantum algorithms, photonic implementations of discrete-time quantum walks, how to build a quantum computer, and quantum key distribution and teleportation, among others

    Quantum for 6G communication: a perspective

    Get PDF
    In the technologically changing world, the demand for ultra-reliable, faster, low power, and secure communication has significantly risen in recent years. Researchers have shown immense interest in emerging quantum computing (QC) due to its potentials of solving the computing complexity in the robust and efficient manner. It is envisioned that QC can act as critical enablers and strong catalysts to considerably reduce the computing complexities and boost the future of sixth generation (6G) and beyond communication systems in terms of their security. In this study, the fundamentals of QC, the evolution of quantum communication that encompasses a wide spectrum of technologies and applications and quantum key distribution, which is one of the most promising applications of quantum security, have been presented. Furthermore, various parameters and important techniques are also investigated to optimise the performance of 6G communication in terms of their security, computing, and communication efficiency. Towards the end, potential challenges that QC and quantum communication may face in 6G have been highlighted along with future directions

    FENDI: High-Fidelity Entanglement Distribution in the Quantum Internet

    Full text link
    A quantum network distributes quantum entanglements between remote nodes, which is key to many quantum applications. However, unavoidable noise in quantum operations could lead to both low throughput and low quality of entanglement distribution. This paper aims to address the simultaneous exponential degradation in throughput and quality in a buffered multi-hop quantum network. Based on an end-to-end fidelity model with worst-case (isotropic) noise, we formulate the high-fidelity remote entanglement distribution problem for a single source-destination pair, and prove its NP-hardness. To address the problem, we develop a fully polynomial-time approximation scheme for the control plane of the quantum network, and a distributed data plane protocol that achieves the desired long-term throughput and worst-case fidelity based on control plane outputs. To evaluate our algorithm and protocol, we develop a discrete-time quantum network simulator. Simulation results show the superior performance of our approach compared to existing fidelity-agnostic and fidelity-aware solutions

    Satellite Communications

    Get PDF
    This study is motivated by the need to give the reader a broad view of the developments, key concepts, and technologies related to information society evolution, with a focus on the wireless communications and geoinformation technologies and their role in the environment. Giving perspective, it aims at assisting people active in the industry, the public sector, and Earth science fields as well, by providing a base for their continued work and thinking

    Quantum Communication Systems: Vision, Protocols, Applications, and Challenges

    Full text link
    The growth of modern technological sectors have risen to such a spectacular level that the blessings of technology have spread to every corner of the world, even to remote corners. At present, technological development finds its basis in the theoretical foundation of classical physics in every field of scientific research, such as wireless communication, visible light communication, machine learning, and computing. The performance of the conventional communication systems is becoming almost saturated due to the usage of bits. The usage of quantum bits in communication technology has already surpassed the limits of existing technologies and revealed to us a new path in developing technological sectors. Implementation of quantum technology over existing system infrastructure not only provides better performance but also keeps the system secure and reliable. This technology is very promising for future communication systems. This review article describes the fundamentals of quantum communication, vision, design goals, information processing, and protocols. Besides, quantum communication architecture is also proposed here. This research included and explained the prospective applications of quantum technology over existing technological systems, along with the potential challenges of obtaining the goal.Comment: 23 pages, 11 Figure

    Quantum key distribution: A networking perspective

    Get PDF
    The convergence of quantum cryptography with applications used in everyday life is a topic drawing attention from the industrial and academic worlds. The development of quantum electronics has led to the practical achievement of quantum devices that are already available on the market and waiting for their first application on a broader scale. A major aspect of quantum cryptography is the methodology of Quantum Key Distribution (QKD), which is used to generate and distribute symmetric cryptographic keys between two geographically separate users using the principles of quantum physics. In previous years, several successful QKD networks have been created to test the implementation and interoperability of different practical solutions. This article surveys previously applied methods, showing techniques for deploying QKD networks and current challenges of QKD networking. Unlike studies focusing on optical channels and optical equipment, this survey focuses on the network aspect by considering network organization, routing and signaling protocols, simulation techniques, and a software-defined QKD networking approach.Web of Science535art. no. 9
    corecore