409 research outputs found

    Multi Sensor Multi Target Perception and Tracking for Informed Decisions in Public Road Scenarios

    Get PDF
    Multi-target tracking in public traffic calls for a tracking system with automated track initiation and termination facilities in a randomly evolving driving environment. Besides, the key problem of data association needs to be handled effectively considering the limitations in the computational resources on-board an autonomous car. The challenge of the tracking problem is further evident in the use of high-resolution automotive sensors which return multiple detections per object. Furthermore, it is customary to use multiple sensors that cover different and/or over-lapping Field of View and fuse sensor detections to provide robust and reliable tracking. As a consequence, in high-resolution multi-sensor settings, the data association uncertainty, and the corresponding tracking complexity increases pointing to a systematic approach to handle and process sensor detections. In this work, we present a multi-target tracking system that addresses target birth/initiation and death/termination processes with automatic track management features. These tracking functionalities can help facilitate perception during common events in public traffic as participants (suddenly) change lanes, navigate intersections, overtake and/or brake in emergencies, etc. Various tracking approaches including the ones based on joint integrated probability data association (JIPDA) filter, Linear Multi-target Integrated Probabilistic Data Association (LMIPDA) Filter, and their multi-detection variants are adapted to specifically include algorithms that handle track initiation and termination, clutter density estimation and track management. The utility of the filtering module is further elaborated by integrating it into a trajectory tracking problem based on model predictive control. To cope with tracking complexity in the case of multiple high-resolution sensors, we propose a hybrid scheme that combines the approaches of data clustering at the local sensor and multiple detections tracking schemes at the fusion layer. We implement a track-to-track fusion scheme that de-correlates local (sensor) tracks to avoid double counting and apply a measurement partitioning scheme to re-purpose the LMIPDA tracking algorithm to multi-detection cases. In addition to the measurement partitioning approach, a joint extent and kinematic state estimation scheme are integrated into the LMIPDA approach to facilitate perception and tracking of an individual as well as group targets as applied to multi-lane public traffic. We formulate the tracking problem as a two hierarchical layer. This arrangement enhances the multi-target tracking performance in situations including but not limited to target initialization(birth process), target occlusion, missed detections, unresolved measurement, target maneuver, etc. Also, target groups expose complex individual target interactions to help in situation assessment which is challenging to capture otherwise. The simulation studies are complemented by experimental studies performed on single and multiple (group) targets. Target detections are collected from a high-resolution radar at a frequency of 20Hz; whereas RTK-GPS data is made available as ground truth for one of the target vehicle\u27s trajectory

    Air-to-Air Missile Vector Scoring

    Get PDF
    An air-to-air missile vector scoring system is proposed for test and evaluation applications. Three different linear missile dynamics models are considered: a six-state constant velocity model and nine-state constant acceleration and three-dimensional coordinated turn models. Frequency modulated continuous wave radar sensors, carefully located to provide spherical coverage around the target, provide updates of missile kinematic information relative to a drone aircraft. Data from the radar sensors is fused with predictions from one of the three missile models using either an extended Kalman filter, an unscented Kalman filter or a particle filter algorithm. The performance of all nine model/filter combinations are evaluated through high-fidelity, six-degree of freedom simulations yielding sub-meter end-game accuracy in a variety of scenarios. Simulations demonstrate the superior performance of the unscented Kalman filter incorporating the continuous velocity dynamics model. The scoring system is experimentally demonstrated through flight testing using commercial off the shelf radar sensors with a Beechcraft C-12 as a surrogate missile

    A Fast Algorithm of Generalized Radon-Fourier Transform for Weak Maneuvering Target Detection

    Get PDF
    The generalized Radon-Fourier transform (GRFT) has been proposed to detect radar weak maneuvering targets by realizing coherent integration via jointly searching in motion parameter space. Two main drawbacks of GRFT are the heavy computational burden and the blind speed side lobes (BSSL) which will cause serious false alarms. The BSSL learning-based particle swarm optimization (BPSO) has been proposed before to reduce the computational burden of GRFT and solve the BSSL problem simultaneously. However, the BPSO suffers from an apparent loss in detection performance compared with GRFT. In this paper, a fast implementation algorithm of GRFT using the BSSL learning-based modified wind-driven optimization (BMWDO) is proposed. In the BMWDO, the BSSL learning procedure is also used to deal with the BSSL phenomenon. Besides, the MWDO adjusts the coefficients in WDO with Levy distribution and uniform distribution, and it outperforms PSO in a noisy environment. Compared with BPSO, the proposed method can achieve better detection performance with a similar computational cost. Several numerical experiments are also provided to demonstrate the effectiveness of the proposed method

    Implementation of tracking algorithms for multistatic systems

    Get PDF
    Due to the increased prevalence of ubiquitous communication technologies and the reduced cost of electronic components, there is an increasing interest in developing networked radar systems. Such networked radar systems offer potential benefits in robustness as well as improvements in performance for detection, tracking and classification. As a branch of applied computer sciences sensor data fusion addresses the ability to process this vast quantity of information, generated by multiple sources, in an effective way. The purpose of this thesis is to validate the tracking algorithms implemented, to determine whether they are capable of identifying and tracking two closely spaced targets, to determine the capability of the system to track a target that moves with fast maneuvers as well as the ability to handle a potential simultaneous attack from both the air and the sea. We present a method for multiple target tracking using multiple sensors both for passive and active sensors. Firstly, regarding active radar, we describe an algorithm for combining range-Doppler data from multiple sensors to perform multi-target tracking. In particular we considered the problem of very poor azimuth resolution. In this case more than two sensors are needed to triangulate target tracks and techniques like multilateration are needed to overcome the problem. Then two tracking algorithms for bistatic DVB-T passive radar based on the Extended Kalman Filter (for single target tracking) and on the Kalman filter (for multiple target tracking), exploiting measurement of bistatic range and bistatic velocity of a target are described. Also the direction of arrival of the target is estimated through beamforming and then used in the tracking model. The algorithms have been tested and validated by using real data

    Acoustical Ranging Techniques in Embedded Wireless Sensor Networked Devices

    Get PDF
    Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environments; where, typically, there is a need for higher degree of accuracy. In this article, we focus on robust range estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in delivering high ranging accuracy, we present the design, implementation and evaluation of acoustic (both ultrasound and audible) ranging systems.We distill the limitations of acoustic ranging; and present efficient signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution, tolerance to Doppler’s effect, and audible intensity. We evaluate our proposed techniques experimentally on TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate an operational range of 20 m (outdoor) and an average accuracy 2 cm in the ultrasound domain. Finally, we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve better performance
    • …
    corecore