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The generalized Radon-Fourier transform (GRFT) has been proposed to detect radar weak maneuvering targets by realizing
coherent integration via jointly searching in motion parameter space. Two main drawbacks of GRFT are the heavy computational
burden and the blind speed side lobes (BSSL) which will cause serious false alarms. The BSSL learning-based particle swarm
optimization (BPSO) has been proposed before to reduce the computational burden of GRFT and solve the BSSL problem
simultaneously. However, the BPSO suffers from an apparent loss in detection performance compared with GRFT. In this paper,
a fast implementation algorithm of GRFT using the BSSL learning-based modified wind-driven optimization (BMWDO) is
proposed. In the BMWDO, the BSSL learning procedure is also used to deal with the BSSL phenomenon. Besides, the MWDO
adjusts the coefficients in WDO with Levy distribution and uniform distribution, and it outperforms PSO in a noisy environment.
Compared with BPSO, the proposed method can achieve better detection performance with a similar computational cost. Several
numerical experiments are also provided to demonstrate the effectiveness of the proposed method.

1. Introduction

With the development of aircraft stealth technology, there is a
growing need for radar to detect weakmaneuvering targets in
a noisy background. It is a known fact that pulse integration
especially coherent integration can improve the signal-to-
noise ratio (SNR) and ultimately improve the detection
performance [1].

Concentrating on coherent integration, a lot of work
has been carried out. The most commonly used method is
moving target detection (MTD) [2], which achieves integra-
tion by using Doppler filter bank. However, MTD method
can only deal with the target with uniform velocity and
will become invalid if the range migration (RM) exceeds
one range bin during the integration time [3]. It is of vital
importance to eliminate RM since the high-speed target can
easily exceed several range units even in a short time. To
deal with RM, keystone transform (KT) [4, 5] was performed
by rescaling the time axis for each frequency and is often
performed before MTD. In actual detecting environment,
for example, the velocity, acceleration, and jerk will result

in first-order RM, second-order RM, and third-order RM,
respectively. Unfortunately, conventional KT can only correct
the first-order RM. Thus [6–8] studied second-order KT to
correct the second-order RM and Kong et al. [9] proposed
a coherent integration method via generalized KT and
generalized dechirp process (GKTGDP) for maneuvering
targets with arbitrary high-order RM. It is worth paying
attention to that KT could be invalid without ambiguity
correction if Doppler ambiguity happens. Algorithms for
Doppler ambiguity correction are hardly independent of
Doppler ambiguous integers searching; thus, the computa-
tional burden will greatly increase.

In recent years, a new method called Radon-Fourier
transform (RFT) [10–12] has been proposed to realize long-
time coherent integration via jointly searching along range
and velocity directions. The detection performance of the
high-speed and weak targets with constant velocity can
be significantly improved by RFT if one of the searching
pairs matches well with actual values. In consideration
of maneuvering targets, generalized RFT (GRFT) [10, 13]
was also defined for targets with arbitrary parameterized
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motion. Based on the idea of GRFT, a lot of work has
been done recently [14–17]. Actually, the GRFT suffers from
heavy computational burden and is impractical without fast
implementations because of the multidimensional ergodic
search. Fortunately, the realization of GRFT can be converted
into an optimization problem in parameter space.Thus, intel-
ligent optimization algorithms can be utilized to eliminate
a large number of unnecessary searching paths. Another
drawback of GRFT is the BSSL problem [10, 11] derived from
discrete pulse sampling, finite range resolution, and limited
integration time, which will lead to intelligent optimization
algorithms converging to local optimum easily. Following
consideration of the above issues, Qian et al. [18] have
proposed BSSL learning-based particle swarm optimization
(BPSO) to fast implement GRFT. By using the relation of
BSSL and themain lobe, the local convergence can be avoided
and the convergence speed can be accelerated simultaneously.

Although BPSO-based GRFT is efficient, it suffers from
apparent detection performance loss compared with GRFT.
To improve the detection performance, this paper proposes
the BSSL learning-based modified wind-driven optimization
(BMWDO). The wind-driven optimization (WDO) [19, 20]
is a stochastic nature inspired, population based iterative
heuristic global optimization method based on atmospheric
motion. Compared with the traditional PSO, WDO employs
additional terms in the velocity update equation, providing
robustness and extra degrees of freedom for fine-tuning.
However, it could be difficult in choosing optimum WDO
coefficients for GRFT because the location of the opti-
mum point depends on the motion parameters which have
large dynamic ranges. In order to deal with the difficulty
in choosing coefficients and further improve the global
optimization ability of WDO in a noisy environment, we
propose a modified WDO method which adjusts the control
coefficients in WDO with random distributions, namely,
MWDO. Detailed numerical experiments demonstrate that
the proposed BMWDO method can improve the detection
performance with a similar running time compared with
BPSO.

2. Signal Model and GRFT

2.1. Signal Model. Suppose that radar transmits linear fre-
quency modulated (LFM) signal, that is,

𝑠𝑡 (̂𝑡) = rect( �̂�𝑇𝑝) exp (𝑗𝜋𝛾�̂�2) exp (𝑗2𝜋𝑓𝑐𝑡) , (1)

where

rect( �̂�𝑇𝑝) =
{{{{{{{{{

1, 
�̂�𝑇𝑝
 ≤

12
0, 

�̂�𝑇𝑝
 >
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(2)

𝑇𝑝 is the pulse width, 𝛾 is the frequency modulated rate, and𝑓𝑐 is the carrier frequency. Let 𝑡𝑚 = 𝑚𝑇𝑟 (𝑚 = 0, 2, . . . ,𝑀−1)
denote the slow time, where 𝑇𝑟 denotes the pulse repetition
time, 𝑀 is the number of pulses, and �̂� = 𝑡 − 𝑚𝑇𝑟 is the fast
time.

The received radar echo after carrier frequency demodu-
lation can be denoted as

𝑠𝑟 (𝑡𝑚, �̂�) = 𝐴0rect(�̂� − 2𝑅 (𝑡𝑚) /𝑐𝑇𝑝 )

⋅ exp[−𝑗4𝜋𝑓𝑐𝑅 (𝑡𝑚)𝑐 ]

⋅ exp[𝑗𝜋𝛾(�̂� − 2𝑅 (𝑡𝑚)𝑐 )2] ,

(3)

where 𝑅(𝑡𝑚) is the distance between radar and target at the
radar line-of-sight and 𝐴0 is the amplitude of the echo. The
time delay of the echo is 𝜏(𝑡𝑚) = 2𝑅(𝑡𝑚)/𝑐, where 𝑐 is the
speed of light. After pulse compression via using the baseband
transmitted signal as the reference signal, that is,

𝐻 (̂𝑡) = rect( �̂�𝑇𝑝) exp (𝑗𝜋𝛾�̂�2) , (4)

the received signal in the time domain can be expressed as

𝑆𝑃𝐶 (𝑡𝑚, �̂�)
= 𝐴1sinc (𝜋𝐵 (̂𝑡 − 𝜏 (𝑡𝑚))) exp [−𝑗2𝜋𝑓𝑐𝜏 (𝑡𝑚)] . (5)

In the above equation, 𝐴1 is the amplitude after pulse
compression and 𝐵 denotes the system bandwidth.The range
between radar and target in radial direction varies with the
slow time 𝑡𝑚 and can usually be expressed as a polynomial
function of 𝑡𝑚, which can be expanded into Taylor series [16],
that is,

𝑅 (𝑡𝑚) = 𝑃−1∑
𝑝=0

1𝑝!𝛼𝑝𝑡𝑝𝑚, 𝑡𝑚 ∈ [−𝑇𝑛2 , 𝑇𝑛2 ] , (6)

where𝑃−1 is themotion order,𝑇𝑛 is the coherent integration
time, and 𝛼𝑃 = [𝛼0, 𝛼1, . . . , 𝛼𝑃−1] is the motion parameter
vector. It is obvious that the peak location of the sinc
function varies with 𝑡𝑚 and the changes will exceed the range
resolution 𝜌𝑟 = 𝑐/2𝐵 easily if the integration time is long or
the motion parameters are not very small, which means that
the across range unit (ARU) effect will happen. The Doppler
frequency can be calculated as

𝑓𝑑 = 2𝜆
𝑑𝑅 (𝑡𝑚)𝑑𝑡𝑚 = 𝑓0 + 2𝜆

𝑃−1∑
𝑝=2

1(𝑝 − 1)!𝛼𝑝𝑡𝑝−1𝑚 , (7)

where 𝜆 = 𝑐/𝑓𝑐 is the wavelength, 𝑓0 = 2𝛼1/𝜆 is the central
frequency of Doppler, and the parameter 𝛼1 is the target’s
velocity. If the target has acceleration or higher motion
parameters, the Doppler frequency will be time-varying. If
the changes of 𝑓𝑑 exceed the Doppler resolution 𝜌𝑑 = 1/𝑇𝑛,
the Doppler frequencymigration (DFM) will come across. In
order to coherently accumulate the target’s energy, we need to
correct both the ARU and the DFM.
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2.2. Definition and Analysis of GRFT. GRFT is a coherent
integration algorithm via jointly searching in multidimen-
sional parameter space. By using GRFT, the trace of the target
can be extracted and the DFM can be compensated at the
same time.The definition of GRFT in [10] is given as follows.

Definition 1. Suppose a 2D complex function 𝑓(𝑡𝑚, �̂�) ∈ 𝐶
is defined in the (𝑡𝑚, �̂�) plane and a parameterized 𝑃-
dimensional function �̂� = 𝜂(𝑡𝑚; �̂�𝑃) is used for searching
a certain time-varied curve in the plane, where �̂�𝑃 = [�̂�0,�̂�1, . . . , �̂�𝑃−1]. Then GRFT can be defined as

𝐺(�̂�𝑃)
= ∫∞
−∞

𝑓 (𝑡𝑚, 𝜂 (𝑡𝑚; �̂�𝑃)) exp (𝑗2𝜋𝜀𝜂 (𝑡𝑚; �̂�𝑃)) 𝑑𝑡𝑚, (8)

where 𝜀 is a known constant with respect to 𝜂(𝑡𝑚; �̂�𝑃).
Let 𝑓(𝑡𝑚, �̂�) = 𝑆𝑃𝐶(𝑡𝑚, �̂�); then (8) can be rewritten as

𝐺(�̂�𝑃) = ∫∞
−∞

𝑆𝑃𝐶 (𝑡𝑚, �̂� (𝑡𝑚)) exp (𝑗2𝜋𝑓𝑐�̂� (𝑡𝑚)) 𝑑𝑡𝑚, (9)

where �̂�(𝑡𝑚) = (2/𝑐)∑𝑃−1𝑝=0(1/𝑝!)�̂�𝑝𝑡𝑝𝑚. Suppose that 𝑃 = 2;
thenGRFT degenerates into RFTwhich deals with the case of
uniform velocity. From (9), we can easily know that when the
searching values of motion parameters [�̂�0, �̂�1, . . . , �̂�𝑃−1] are
exactly the target’s real motion values [𝛼0, 𝛼1, . . . , 𝛼𝑃−1], the
coherent integration could be achieved and the peak would
be formed in the parameter space, that is,

𝐺(𝛼𝑃) = 𝑀𝐴1. (10)

Then the target can be detected and the motion parameters
can be easily obtained by the location of the peak in the
parameter space. However, because of limited integration
time, discrete pulse sampling, and finite range resolution,
the BSSL [10, 11] will also be formed in parameter space,
which influences target detection performance.The causes of
BSSL and the relations between BSSL and the main lobe are
discussed as follows.

Equation (9) can be rewritten as

𝐺(�̂�𝑃) = 𝑀−1∑
𝑚=0

𝐴1 sinc (𝜋𝐵 (�̂� (𝑡𝑚) − 𝜏 (𝑡𝑚)))
⋅ exp (𝑗2𝜋𝑓𝑐 (�̂� (𝑡𝑚) − 𝜏 (𝑡𝑚)))
= 𝑀−1∑
𝑚=0

𝐴1sinc (𝜋𝐵 (�̂� (𝑡𝑚) − 𝜏 (𝑡𝑚)))
⋅ exp (𝑗4𝜋𝑓𝑐 (�̂�0 − 𝛼0)) exp (Δ𝜙 (𝑡𝑚)) ,

(11)

where

Δ𝜙 (𝑡𝑚)
= 𝑗4𝜋𝑓𝑐𝑐 [(�̂�1 − 𝛼1) 𝑡𝑚 + ∑𝑃−1𝑝=2 (1/𝑝!) (�̂�𝑝 − 𝛼𝑝) 𝑡𝑝𝑚] .

(12)

When �̂�𝑝 = 𝛼𝑝 (𝑝 = 2, . . . , 𝑃 − 1) and �̂�1 − 𝛼1 = 𝑞V𝑏, where
V𝑏 = 𝑐/2𝑓𝑐𝑇𝑟 is the blind speed and 𝑞 is the blind speed
integer, we have exp(Δ𝜙(𝑡𝑚)) = 1 in (11). It is obvious that the
phase can be compensated even though 𝑞 ̸= 0, which results
in the BSSL phenomenon. Slice of BSSL can be denoted as

𝐺 (�̂�𝑃) = 𝐴1𝑀−1∑
𝑚=0

sinc(𝜋�̂�0 − 𝛼0 + V𝑏𝑞𝑡𝑚𝜌𝑟 ) . (13)

The blind speed integer 𝑞 ∈ [(�̂�1min −𝛼1)/V𝑏, (�̂�1max −𝛼1)/V𝑏],
where [�̂�1min, �̂�1max] is the searching range of velocity.

By analyzing (11), (12), and (13), we can see that the
properties of BSSL are irrelevant to �̂�𝑝 (𝑝 = 2, . . . , 𝑃 − 1).
Thus, the case of constant velocity is taken as an example
to analyze the relations between BSSL and the main lobe.
The sketch map of BSSL is illustrated in Figure 1. Suppose
that the target’s velocity is V1, the initial range is 𝑅0, and the
one-time blind speed is V2 = V1 + V𝑏. The shadow region
is formed so that the searching lines with one-time blind
speed intersect the range-walk line in the integration time[−𝑇𝑛/2, 𝑇𝑛/2]. The searching range of the shadow region is[𝑅0 − V𝑏𝑇𝑛/2, 𝑅0 + V𝑏𝑇𝑛/2]; thus the length of the supporting
area is

𝐿 (1) = V𝑏𝑇𝑛 = 𝑐2𝑓𝑐𝑇𝑟 ⋅ 𝑀𝑇𝑟 = 𝜆𝑀2 . (14)

Because of the finite range resolution, the overlapped pulse
number in the intersection of the range-walk line and the
searching line is

𝑛 = 𝜌𝑟
V𝑏𝑇𝑟 =

2𝜌𝑟𝜆 . (15)

The 𝑛 pulses are also coherently integrated.Thus, the primary
lobe to side lobe ratio (PSLR) can be denoted as

PSLR (1) = 𝑀𝑛 = 𝜆𝑀2𝜌𝑟 . (16)

In general, in the case that the blind speed integer 𝑞 ̸= 1,
𝐿 (𝑞) = 𝜆𝑀 𝑞2 ,

PSLR (𝑞) = 𝜆𝑀 𝑞2𝜌𝑟 .
(17)

With the increase of |𝑞|, the supporting area of BSSL becomes
longer and the amplitude of the side lobe decreases.

3. Fast Implementation of GRFT via BMWDO

3.1. Modified Wind-Driven Optimization. The wind-driven
optimization (WDO) algorithm [19, 20] is inspired from
the Earth’s atmosphere where wind blows in an attempt to
equalize imbalances in air pressure. The model of WDO is
based on the definition of trajectories of small air parcels
within the Earth atmosphere according to Newton’s second
law of motion.
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Figure 1: Sketch map of the BSSL phenomenon.

WDO is very similar to PSO [21] in that these air parcels
are also described by positions and velocities which refer to
candidate solutions and the amount of position displacement,
respectively. Particles in WDO refer to small air parcels that
are assumed dimensionless and weightless for simplification.
InWDO, a population of air parcels is distributed throughout𝑁-dimensional problem space, and the velocity of air parcel
is updated in each iteration process based on the equation
which is derived from Newton’s second law of motion and
the ideal gas laws. It is given by

Unew = (1 − 𝛼)Ucur − 𝑔Xcur

+ [𝑅𝑇  1𝑖 − 1 (Xopt − Xcur)]
+ (𝐶Uother dim

cur𝑖 ) ,
(18)

where 𝑖 represents the rankings of the air parcels since all the
parcels are ranked according to their pressure.The “pressure”
represents the value of the objective function in different
problems. If we attempted to find the maximum (minimum)
value of the objective function, parcels should be ranked in
descending (ascending) order. Equation (18) demonstrates
that the updated velocityUnew for the next iteration process is
associated with the current velocityUcur, the current position
Xcur, the optimal position Xopt with the highest pressure
value that has been found until the current iteration, and the
current velocity Uother dim

cur which is randomly chosen from
other dimensions. Coefficients 𝛼, 𝑔, 𝑅, 𝑇, and 𝐶 are related
to the friction coefficient, gravity, universal gas constant,
temperature, and the influence of the Coriolis force in the
physical model. The position of air parcel can be updated by

Xnew = Xcur + (UnewΔ𝑡) , (19)
where Δ𝑡 = 1 is assumed for simplicity.

Before performing WDO, the four coefficients 𝛼, 𝑔, 𝑅𝑇,
and 𝐶 should be chosen firstly. As illustrated in [19], the

optimum performance of WDO can be achieved by selecting
proper values for the four coefficients, but the optimum
values of the WDO coefficients may vary from problem
to problem. In GRFT, the optimum location of parcels is
related to the target’s motion state. In each detection process,
the motion states of targets are difficult to predict and the
motion parameters may have large dynamic ranges, so it is
scarcely possible to find a single set of coefficients that will
work efficiently in each case. Considering the problem, we
propose the modified WDO (MWDO) to tune 𝛼, 𝑔, 𝑅𝑇,
and 𝐶 in each iteration by random distributions. By applying
MWDO, we can avoid a large number of trials to select
the optimum coefficients. When choosing the appropriate
random distribution, the global optimization ability ofWDO
in a noisy environment is primarily considered.The values of
coefficients are given by

𝛼 = 0.1 ∗ rand 𝐿, (20)

𝑅𝑇 = 0.1 ∗ rand 𝐿, (21)

𝑔 = 0.1 ∗ rand 𝐿, (22)

𝐶 = 2.5 ∗ rand 𝑈, (23)

where the random number rand 𝑈 is uniformly distributed
between 0 and 1 and the random number rand 𝐿 is subject
to Levy distribution. The Levy distribution [22, 23] is a con-
tinuous probability distribution for a nonnegative random
variable and its probability density function over the domain𝑥 ≥ 𝜇 is

𝑓 (𝑥; 𝜇, 𝛾) = √ 𝛾2𝜋 𝑒−𝛾/2(𝑥−𝜇)
(𝑥 − 𝜇)3/2 , (24)

where𝜇 is the location parameter and 𝛾 is the scale parameter.
In (20), (21), and (22), 𝜇 = 0 and 𝛾 = 0.001 are selected.

Through analyzing the characteristics of Levy distribu-
tion, we can find that the random number rand 𝐿 has a great
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probability to be very small values and will occasionally be
big values. It means that, in most cases, other parcels move
slowly to the current optimal parcel. In other words, the
position updating step length is small but occasionally big.
We know that the current optimal position is usually the
noise peak position especially when the SNR is very low, so
if other parcels move towards the current optimal one with a
large step length, the global optimal solution will be missed
with a great probability and the diversity of parcels will lose
rapidly.The small step length of parcels helps to maintain the
population diversity and reduce the probability of flying past
the optimal solution. The occasional large step length avoids
the parcels converging too slowly and helps parcels jump to
other searching areas without being trapped in a small local
area, which is useful in improving the global searching ability.
Therefore, the Levy distribution is appropriate to tune the
coefficients of WDO. By applying MWDO, the optimization
ability ofWDO in a noisy environment can be enhanced and,
at the same time, the difficulty in choosing proper coefficients
in WDO can be overcome.

3.2. BSSL Learning-Based MWDO in GRFT. When applying
MWDO in GRFT, a great number of unnecessary searching
paths can be eliminated, which means the GRFT can be
calculated efficiently. However, big values of BSSL in GRFT
may cause local convergence to side lobes. To settle this
matter, we propose a BSSL learning-basedMWDO to find the
main lobe by using the relations between side lobes and the
main lobe. The detailed description of the proposed method
is given as follows and the whole target detection procedure
based on BMWDO is shown in Figure 2.

Step 1 (initialization).

Step 1.1. Specify the basic conditions inMWDO, including the
population size 𝑆, the maximum number of iterations 𝑘max,
the dimension of the searching space 𝑃 which is related to
the motion order, the searching range of each parameter, and
the restrictions on velocities of air parcels. The location and
velocity of each parcel can be denoted as X = [𝑥1, 𝑥2, . . . , 𝑥𝑃]
and U = [𝑢1, 𝑢2, . . . , 𝑢𝑃], where 𝑥1, 𝑥2, . . . , 𝑥𝑃 represents the
searching motion parameter �̂�0, �̂�1, . . . , �̂�𝑃−1, respectively.
Step 1.2. Initialize air parcels’ locations by randomly distribut-
ing them in the searching space and initialize air parcels’
velocities to 0.

Step 1.3. Sort these parcels based on their pressure values. In
GRFT, pressure value of parcel refers to the absolute value of
GRFT: |𝐺(X)|.The first parcel is the one which has the biggest
pressure value and its location can be denoted as Xopt(0).
Step 2. Generate the values of coefficients ofMWDOvia (20),
(21), (22), and (23). Then update the velocities and locations
of air parcels based on (18) and (19), respectively. Sort these
updated air parcels based on their pressure values and find
the current optimal air parcel Xopt(𝑘).

Specify basic parameters in MWDO

Initialize air particles 

Sort particles based on their pressure values

Update positions and velocities

Tell whether there is a target

End

Raw data

Pulse compression

Sort particles based on their pressure values

Generate the values of the four coefficients 

Begin

Conditions met?

Yes

No

Further update the location of the optimal parcel 
based on the relation between BSSL and the main lobe

Figure 2: Flow chart of the target detection method via BMWDO.

Step 3. Further updateXopt(𝑘) by the relations between BSSL
and the main lobe to avoid local convergence to BSSL:

Xopt (𝑘) = argmax
Xopt

𝐺 (Xopt (𝑘; 𝑞)) , (25)

whereXopt(𝑘; 𝑞) = (�̂�0, �̂�1 +𝑞V𝑏, �̂�2, . . . , �̂�𝑃−1). As analyzed in
Section 2, the amplitude of BSSL is always smaller than that
of the target’s main lobe; thus (25) is reasonable.

Step 4. Repeat Step 2 to Step 3 until one of the following two
conditions is met:

(1) |𝐺(Xopt(𝑘))| > 𝛾 and 𝑘 ≤ 𝑘max.

(2) |𝐺(Xopt(𝑘))| ≤ 𝛾 and 𝑘 > 𝑘max.

The parameter 𝛾 is the detection threshold calculated from
the preset false alarm probability.

It should be pointed out that when condition (1) is met,
the target is detected and when condition (2) is met, it means
that there is no target.
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Figure 3: Range and velocity slice of GRFT.

4. Numerical Results

In this section, several numerical experiments are provided
to demonstrate the effectiveness of the proposed fast imple-
mentation method of GRFT.The BSSL phenomenon is firstly
verified and then BMWDO and BPSO are compared in
convergence performance.The detection performances of the
two fast implementation methods as well as the traditional
GRFT, RFT, and moving target detection (MTD) are com-
pared. The running time of the traditional GRFT, the BPSO-
basedGRFT, and the BMWDO-basedGRFT is also provided.

4.1. BSSL Phenomenon. In this part, we suppose that the
radar pulse repetition interval𝑇𝑟 = 0.01 s, the bandwidth 𝐵 =15MHz, the carrier frequency𝑓𝑐 = 150MHz, and the sample
frequency 𝑓𝑠 = 2𝐵. The blind speed V𝑏 can be calculated as
100m/s. Suppose that the actual velocity is 300m/s and the
searching range of velocity is [1m/s, 680m/s]. The range and
velocity slice of GRFT is shown in Figure 3.

From Figure 3 we can intuitively see that, with the
increase of |𝑞|, the supporting area of BSSL becomes longer
and the amplitude of the side lobe decreases, which cor-
responds to the conclusion drawn from (17). Because the
amplitude of BSSL is always lower than that of the main lobe,
it is reasonable to employ (25) to help parcels jumpout of local
convergence to BSSL.

4.2. Convergence Performance. In the following simulations,
the radar parameters listed in Table 1 are adopted. The popu-
lation size 𝑆 = 150 and the maximum number of itera-
tions 𝑘max = 3000 are specified for BPSO and BMWDO. Sup-
pose that the motion parameter vector is 𝛼 = [62.5 km,160m/s, 5m/s2, 2m/s3], and the searching ranges of the
radial range, velocity, acceleration, and jerk can be given
as [60 km, 63 km], [0m/s, 300m/s], [−30m/s2, 30m/s2], and[−20m/s3, 20m/s3], respectively. Basic coefficients of PSO
are chosen according to [24]. Figure 4 shows themean results

Table 1: Simulation parameters of radar.

Carrier frequency 1GHz
Bandwidth 15MHz
Sample frequency 60MHz
Pulse duration 25 𝜇s
Pulse repetition frequency 100Hz
Pulse number 100

of 20 runs of BPSO and BMWDO.The SNR of the raw data is
set to be −10 dB and −28 dB, and convergence graphs under
the two cases are shown in Figures 4(a) and 4(b), respectively.

Figure 4(a) demonstrates that when SNR is relatively
high, both BPSO and BMWDO can converge to the optimal
value, whichmeans that the BSSL learning-basedmethod can
avoid local convergence to side lobes effectively. We can also
discover that BPSO converges faster than BMWDO. From
Figure 4(b), it can be seen that, under low SNR, neither
BMWDO nor BPSO can converge to the optimal value for
each run. This is because when SNR becomes too low, the
target is nearly undetectable even after coherent integration
and the intelligent optimization algorithms will converge to
noise peaks easily. It is worth paying attention to that the
mean pressure values of 20 runs of BMWDO are closer
to the optimal value in Figure 4(b). This result indicates
that BMWDO has greater chance to jump out of the local
convergence to noise peaks compared with BPSO; in other
words, BMWDO has better antinoise performance although
it has slower convergence speed.

4.3. Detection Performance. The detection performances
of traditional GRFT, BPSO-based GRFT, BMWDO-based
GRFT, RFT, andMTD are investigated viaMonte Carlo trials.
The false alarm probability is set as 𝑃fa = 10−6. Figure 5
shows the detection probabilities of the five detectors with
different motion orders. It should be noted that when the
motion order equals one, the traditional GRFT degenerates
to RFT. It should be pointed out that 𝑃 is the dimension of
searching space while 𝑃 − 1 is the motion order.

Figure 5 demonstrates that the detection performances of
the BMWDO-based GRFT are always better than that of the
BPSO-based GRFT under different SNR values or different
motion orders. Especially when the motion order equals 1,
the detection performance of BMWDO-based GRFT nearly
reaches the ideal performance of GRFT.Making comparisons
between Figures 5(a), 5(b), and 5(c), we can notice that, with
the increase of motion orders, the detection performance of
BMWDO-based GRFT decreases. The reason is that when
motion order increases, the dimension of the searching
space also increases, and the difficulty in finding the optimal
solution increases too.

It is not difficult to discover that the decline of the detec-
tion probability is not obvious when motion order changes
from 2 to 3.This is because the high-ordermotion parameters
havemuch lower influence onARU andDFM compared with
low-order parameters. When applying BMWDO or BPSO,
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Figure 4: Average convergence graphs of BPSO and BMWDO with 20 runs under different SNR (before pulse compression). (a) SNR =−10 dB. (b) SNR = −28 dB.

the low-order motion parameters are dominant in deciding
the movement trend of air parcels. Thus, based on the radar
parameters adopted in this paper, it is possible to neglect
the higher motion parameters and set 𝑃 = 4 for BMWDO
in the case that the motion order is greater than or equal
to 3. Suppose that the target might have higher motion
parameters, such as 𝛼4 = 20m/s4, 𝛼5 = 20m/s5, and𝛼6 = 20m/s6. With 𝑃 = 4 preset in BMWDO, the detection
probabilities of BMWDO-based GRFT with motion orders
no less than 3 under different SNR are shown in Figure 6. Due
to the randomness of BMWDO and the statistical error, the
detection probabilities fluctuate with motion orders, but we
can conclude that there is no apparent detection performance
loss when choosing𝑃 = 4 for BMWDO in the case that𝑃 > 4.
4.4. Computational Cost. In this simulation, the computa-
tional costs of the traditional GRFT, the BPSO-based GRFT,
and the BMWDO-based GRFT are investigated. The search-
ing ranges of parameters in the traditional GRFT are the
same as that in BMWDO and the searching interval of each
parameter can be determined according to [14]. Denote the
number of range cells, pulse numbers, andmotion parameter𝛼𝑝 (𝑝 = 1, 2, 3, . . . , 𝑃 − 1) by 𝑁0, 𝑀, and 𝑁𝑝, respectively.
Then the computational complexity is 𝑂(∏𝑃−1𝑝=1𝑁0𝑀𝑁𝑝) for
the traditional GRFT. In this subsection, BPSO andBMWDO
are terminatedwhen the number of iterations reaches 𝑘max. In
fact, when condition (1) in Step 4 is met, the two algorithms
can be terminated earlier. The running time of BPSO-based
GRFT and BMWDO-based GRFT can be experimented
accurately. But, for the traditional ergodic-search GRFT, it is
difficult to experiment its running time accurately because

it is too time consuming. By analyzing, we found that the
computational complexity of the traditional GRFT mainly
comes from the nested loop; thus, we can calculate the
running time of the traditional GRFT by multiplying the
loop times with the time required for a loop. The running
time of the three algorithms is shown in Figure 7. It is worth
noting that whenGRFT is applied in engineering, the parallel
computing will be used, and the running time of traditional
GRFTwill not be so horrible but still will bemuch longer than
that of the parallel computed fast implementation methods.

Figure 7 shows that the computational complexity of
BPSO-based GRFT and BMWDO-based GRFT is far less
than that of the ergodic-search GRFT. The running time
of BMWDO is slightly longer than that of BPSO, which is
acceptable. With the increase of motion order, the running
time of the traditional GRFT grows nearly exponentially
while the running time of BPSO and BMWDO stays stable.
Therefore, efficiency and physical realizability of the pro-
posed BMWDO-based GRFT can be validated.

5. Conclusions

In this paper, we propose a fast implementation method
for GRFT to reduce the computational burden, namely,
BMWDO. By applying BMWDO, a large number of unnec-
essary searching paths can be eliminated and the local
convergence to BSSL can be avoided. Several numerical
experiments are provided to analyze the performance of
BMWDO in detail, including the convergence performance,
the detection performance, and the computational burden.
Compared with the traditional ergodic-search GRFT, the
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Figure 5: Detection performances of five different detectors with different motion orders. (a) Motion order is 1 (𝑃 = 2). (b) Motion order is
2 (𝑃 = 3). (c) Motion order is 3 (𝑃 = 4).

proposed method can realize the weak maneuvering target
detection in a much more efficient way. Compared with
BPSO, the BMWDOhas better antinoise performance, which
indicates that BMWDO has greater chance to converge to
the target’s main lobe in a relatively low SNR.The simulation
results show that BMWDO has better detection performance
and slightly longer running time compared with BPSO,
which verify the effectiveness of the proposed method. At
last, we should notice that although the BMWDO obviously
improves the detection performance compared with BPSO, it
still suffers from detection performance loss compared with

the traditional GRFT. The reason is that the BMWDO is a
stochastic optimizationmethod and it cannot jump out of the
convergence to noise peaks each time. Thus, our future work
may further study the WDO method and combine it with
other algorithms to obtain stronger antinoise performance.
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