3,032 research outputs found

    The auxiliary region method: A hybrid method for coupling PDE- and Brownian-based dynamics for reaction-diffusion systems

    Get PDF
    Reaction-diffusion systems are used to represent many biological and physical phenomena. They model the random motion of particles (diffusion) and interactions between them (reactions). Such systems can be modelled at multiple scales with varying degrees of accuracy and computational efficiency. When representing genuinely multiscale phenomena, fine-scale models can be prohibitively expensive, whereas coarser models, although cheaper, often lack sufficient detail to accurately represent the phenomenon at hand. Spatial hybrid methods couple two or more of these representations in order to improve efficiency without compromising accuracy. In this paper, we present a novel spatial hybrid method, which we call the auxiliary region method (ARM), which couples PDE and Brownian-based representations of reaction-diffusion systems. Numerical PDE solutions on one side of an interface are coupled to Brownian-based dynamics on the other side using compartment-based "auxiliary regions". We demonstrate that the hybrid method is able to simulate reaction-diffusion dynamics for a number of different test problems with high accuracy. Further, we undertake error analysis on the ARM which demonstrates that it is robust to changes in the free parameters in the model, where previous coupling algorithms are not. In particular, we envisage that the method will be applicable for a wide range of spatial multi-scales problems including, filopodial dynamics, intracellular signalling, embryogenesis and travelling wave phenomena.Comment: 29 pages, 14 figures, 2 table

    High pressure viscosity measurement with falling body type viscometers

    Get PDF
    With the increasing number of applications of high pressure chemical and process technologies across a range of engineering fields, there is a corresponding growing interest in the need to measure accurately and reliably important rheological parameters. Of these, the measurement of good and reliable viscosity data is critical in engineering design. The ability to measure viscosity at high pressure, however, presents a number of engineering challenges and a number of innovative viscometers have consequently been devised and operated. This review considers those devices which are based on the falling body principle and considers falling ball, cylinder and needle in open and closed systems. Viscosity is determined from the rate of fall and the usual challenge is to detect its position during descent. While reliable data can be obtained from these viscometers, there is a discrepancy between theoretical values and actual values. This is the result of end effects in the form of vortices, wake oscillations and hedding. Calibration is therefore necessary in all cases. Improvements to analytical models have been attempted and computation fluid dynamics is also used to examine in more detail the flow fields around bodies to understand and appreciate better the performance of these viscometers

    Innovation in manufacturing through digital technologies and applications: Thoughts and Reflections on Industry 4.0

    Get PDF
    The rapid pace of developments in digital technologies offers many opportunities to increase the efficiency, flexibility and sophistication of manufacturing processes; including the potential for easier customisation, lower volumes and rapid changeover of products within the same manufacturing cell or line. A number of initiatives on this theme have been proposed around the world to support national industries under names such as Industry 4.0 (Industrie 4.0 in Germany, Made-in-China in China and Made Smarter in the UK). This book presents an overview of the state of art and upcoming developments in digital technologies pertaining to manufacturing. The starting point is an introduction on Industry 4.0 and its potential for enhancing the manufacturing process. Later on moving to the design of smart (that is digitally driven) business processes which are going to rely on sensing of all relevant parameters, gathering, storing and processing the data from these sensors, using computing power and intelligence at the most appropriate points in the digital workflow including application of edge computing and parallel processing. A key component of this workflow is the application of Artificial Intelligence and particularly techniques in Machine Learning to derive actionable information from this data; be it real-time automated responses such as actuating transducers or informing human operators to follow specified standard operating procedures or providing management data for operational and strategic planning. Further consideration also needs to be given to the properties and behaviours of particular machines that are controlled and materials that are transformed during the manufacturing process and this is sometimes referred to as Operational Technology (OT) as opposed to IT. The digital capture of these properties and behaviours can then be used to define so-called Cyber Physical Systems. Given the power of these digital technologies it is of paramount importance that they operate safely and are not vulnerable to malicious interference. Industry 4.0 brings unprecedented cybersecurity challenges to manufacturing and the overall industrial sector and the case is made here that new codes of practice are needed for the combined Information Technology and Operational Technology worlds, but with a framework that should be native to Industry 4.0. Current computing technologies are also able to go in other directions than supporting the digital ‘sense to action’ process described above. One of these is to use digital technologies to enhance the ability of the human operators who are still essential within the manufacturing process. One such technology, that has recently become accessible for widespread adoption, is Augmented Reality, providing operators with real-time additional information in situ with the machines that they interact with in their workspace in a hands-free mode. Finally, two linked chapters discuss the specific application of digital technologies to High Pressure Die Casting (HDPC) of Magnesium components. Optimizing the HPDC process is a key task for increasing productivity and reducing defective parts and the first chapter provides an overview of the HPDC process with attention to the most common defects and their sources. It does this by first looking at real-time process control mechanisms, understanding the various process variables and assessing their impact on the end product quality. This understanding drives the choice of sensing methods and the associated smart digital workflow to allow real-time control and mitigation of variation in the identified variables. Also, data from this workflow can be captured and used for the design of optimised dies and associated processes

    An association rule dynamics and classification approach to event detection and tracking in Twitter.

    Get PDF
    Twitter is a microblogging application used for sending and retrieving instant on-line messages of not more than 140 characters. There has been a surge in Twitter activities since its launch in 2006 as well as steady increase in event detection research on Twitter data (tweets) in recent years. With 284 million monthly active users Twitter has continued to grow both in size and activity. The network is rapidly changing the way global audience source for information and influence the process of journalism [Newman, 2009]. Twitter is now perceived as an information network in addition to being a social network. This explains why traditional news media follow activities on Twitter to enhance their news reports and news updates. Knowing the significance of the network as an information dissemination platform, news media subscribe to Twitter accounts where they post their news headlines and include the link to their on-line news where the full story may be found. Twitter users in some cases, post breaking news on the network before such news are published by traditional news media. This can be ascribed to Twitter subscribers' nearness to location of events. The use of Twitter as a network for information dissemination as well as for opinion expression by different entities is now common. This has also brought with it the issue of computational challenges of extracting newsworthy contents from Twitter noisy data. Considering the enormous volume of data Twitter generates, users append the hashtag (#) symbol as prefix to keywords in tweets. Hashtag labels describe the content of tweets. The use of hashtags also makes it easy to search for and read tweets of interest. The volume of Twitter streaming data makes it imperative to derive Topic Detection and Tracking methods to extract newsworthy topics from tweets. Since hashtags describe and enhance the readability of tweets, this research is developed to show how the appropriate use of hashtags keywords in tweets can demonstrate temporal evolvements of related topic in real-life and consequently enhance Topic Detection and Tracking on Twitter network. We chose to apply our method on Twitter network because of the restricted number of characters per message and for being a network that allows sharing data publicly. More importantly, our choice was based on the fact that hashtags are an inherent component of Twitter. To this end, the aim of this research is to develop, implement and validate a new approach that extracts newsworthy topics from tweets' hashtags of real-life topics over a specified period using Association Rule Mining. We termed our novel methodology Transaction-based Rule Change Mining (TRCM). TRCM is a system built on top of the Apriori method of Association Rule Mining to extract patterns of Association Rules changes in tweets hashtag keywords at different periods of time and to map the extracted keywords to related real-life topic or scenario. To the best of our knowledge, the adoption of dynamics of Association Rules of hashtag co-occurrences has not been explored as a Topic Detection and Tracking method on Twitter. The application of Apriori to hashtags present in tweets at two consecutive period t and t + 1 produces two association rulesets, which represents rules evolvement in the context of this research. A change in rules is discovered by matching every rule in ruleset at time t with those in ruleset at time t + 1. The changes are grouped under four identified rules namely 'New' rules, 'Unexpected Consequent' and 'Unexpected Conditional' rules, 'Emerging' rules and 'Dead' rules. The four rules represent different levels of topic real-life evolvements. For example, the emerging rule represents very important occurrence such as breaking news, while unexpected rules represents unexpected twist of event in an on-going topic. The new rule represents dissimilarity in rules in rulesets at time t and t+1. Finally, the dead rule represents topic that is no longer present on the Twitter network. TRCM revealed the dynamics of Association Rules present in tweets and demonstrates the linkage between the different types of rule dynamics to targeted real-life topics/events. In this research, we conducted experimental studies on tweets from different domains such as sports and politics to test the performance effectiveness of our method. We validated our method, TRCM with carefully chosen ground truth. The outcome of our research experiments include: Identification of 4 rule dynamics in tweets' hashtags namely: New rules, Emerging rules, Unexpected rules and 'Dead' rules using Association Rule Mining. These rules signify how news and events evolved in real-life scenario. Identification of rule evolvements on Twitter network using Rule Trend Analysis and Rule Trace. Detection and tracking of topic evolvements on Twitter using Transaction-based Rule Change Mining TRCM. Identification of how the peculiar features of each TRCM rules affect their performance effectiveness on real datasets

    Translational pipelines for closed-loop neuromodulation

    Get PDF
    Closed-loop neuromodulation systems have shown significant potential for addressing unmet needs in the treatment of disorders of the central nervous system, yet progress towards clinical adoption has been slow. Advanced technological developments often stall in the preclinical stage by failing to account for the constraints of implantable medical devices, and due to the lack of research platforms with a translational focus. This thesis presents the development of three clinically relevant research systems focusing on refinements of deep brain stimulation therapies. First, we introduce a system for synchronising implanted and external stimulation devices, allowing for research into multi-site stimulation paradigms, cross-region neural plasticity, and questions of phase coupling. The proposed design aims to sidestep the limited communication capabilities of existing commercial implant systems in providing a stimulation state readout without reliance on telemetry, creating a cross-platform research tool. Next, we present work on the Picostim-DyNeuMo adaptive neuromodulation platform, focusing on expanding device capabilities from activity and circadian adaptation to bioelectric marker--based responsive stimulation. Here, we introduce a computationally optimised implementation of a popular band power--estimation algorithm suitable for deployment in the DyNeuMo system. The new algorithmic capability was externally validated to establish neural state classification performance in two widely-researched use cases: Parkinsonian beta bursts and seizures. For in vivo validation, a pilot experiment is presented demonstrating responsive neurostimulation to cortical alpha-band activity in a non-human primate model for the modulation of attention state. Finally, we turn our focus to the validation of a recently developed method to provide computationally efficient real-time phase estimation. Following theoretical analysis, the method is integrated into the commonly used Intan electrophysiological recording platform, creating a novel closed-loop optogenetics research platform. The performance of the research system is characterised through a pilot experiment, targeting the modulation of cortical theta-band activity in a transgenic mouse model

    Support polygon in the hybrid legged-wheeled CENTAURO robot: modelling and control

    Get PDF
    Search for the robot capable to perform well in the real-world has sparked an interest in the hybrid locomotion systems. The hybrid legged-wheeled robots combine the advantages of the standard legged and wheeled platforms by switching between the quick and efficient wheeled motion on the flat grounds and the more versatile legged mobility on the unstructured terrains. With the locomotion flexibility offered by the hybrid mobility and appropriate control tools, these systems have high potential to excel in practical applications adapting effectively to real-world during locomanipuation operations. In contrary to their standard well-studied counterparts, kinematics of this newer type of robotic platforms has not been fully understood yet. This gap may lead to unexpected results when the standard locomotion methods are applied to hybrid legged-wheeled robots. To better understand mobility of the hybrid legged-wheeled robots, the model that describes the support polygon of a general hybrid legged-wheeled robot as a function of the wheel angular velocities without assumptions on the robot kinematics or wheel camber angle is proposed and analysed in this thesis. Based on the analysis of the developed support polygon model, a robust omnidirectional driving scheme has been designed. A continuous wheel motion is resolved through the Inverse Kinematics (IK) scheme, which generates robot motion compliant with the Non-Sliding Pure-Rolling (NSPR) condition. A higher-level scheme resolving a steering motion to comply with the non-holonomic constraint and to tackle the structural singularity is proposed. To improve the robot performance in presence to the unpredicted circumstances, the IK scheme has been enhanced with the introduction of a new reactive support polygon adaptation task. To this end, a novel quadratic programming task has been designed to push the system Support Polygon Vertices (SPVs) away from the robot Centre of Mass (CoM), while respecting the leg workspace limits. The proposed task has been expressed through the developed SPV model to account for the hardware limits. The omnidirectional driving and reactive control schemes have been verified in the simulation and hardware experiments. To that end, the simulator for the CENTAURO robot that models the actuation dynamics and the software framework for the locomotion research have been developed

    SpiNNaker - A Spiking Neural Network Architecture

    Get PDF
    20 years in conception and 15 in construction, the SpiNNaker project has delivered the world’s largest neuromorphic computing platform incorporating over a million ARM mobile phone processors and capable of modelling spiking neural networks of the scale of a mouse brain in biological real time. This machine, hosted at the University of Manchester in the UK, is freely available under the auspices of the EU Flagship Human Brain Project. This book tells the story of the origins of the machine, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over. It also presents exemplar applications from ‘Talk’, a SpiNNaker-controlled robotic exhibit at the Manchester Art Gallery as part of ‘The Imitation Game’, a set of works commissioned in 2016 in honour of Alan Turing, through to a way to solve hard computing problems using stochastic neural networks. The book concludes with a look to the future, and the SpiNNaker-2 machine which is yet to come
    • 

    corecore