
UNIVERSITY OF GENOVA

PHD PROGRAM IN BIOENGINEERING AND ROBOTICS

Support polygon in the hybrid legged-wheeled
CENTAURO robot: modelling and control

by

Małgorzata Katarzyna KAMEDUŁA

Thesis submitted for the degree of Doctor of Philosophy (32◦ cycle)

December 2019

Nikos G. Tsagarakis Supervisor
Giorgio Cannata Head of the PhD program

Thesis Jury:
Marilena Vendittelli, Sapienza Università di Roma External examiner
Amir Jafari, University of Texas External examiner

Department of Informatics, Bioengineering, Robotics and Systems Engineering

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Małgorzata Katarzyna Kameduła
January 2020

Acknowledgements

I would like to thank everyone involved with the Humanoids and Human Centered Macha-
tronics lab, the IIT’s Advanced Robotics department and the CENTAURO project. This
thesis would not be possible without all of the support and knowledge shared with me during
the past four years.

I would like to specifically thank professor Nikos Tsagarakis for his continuous support,
guidance and stimulating discussions as well as professors Darwin Caldwell and Sven Behnke
for their advice and genuine interest in this work outcome.

Furthermore, I would like to thank the technicians Paolo Guria, Lorenzo Baccelliere and
Diego Vedelago for their timely and indispensable support with hardware. Without their
work none of the experiments presented in this work would be possible. I would like to also
thank Riccardo Sepe for his support in times of the computer and software malfunctions.

Special thanks belongs to Vishnu Dev Amara and Brian Delhaisse for their friendly
support, broad knowledge and time whenever asked for. I would like to also thank Giuseppe
Rigano for his support with the lower-level framework and experiments.

Finally, I would like to thank Navvab Kashiri for his advice and work on writing publica-
tions and Rajesh Subburaman, Xinyuan Zhao, Domingo Esteban and Yangwei You for their
interest in my work and friendly, helpful discussions. Last but not least, I would like to thank
Edwin Avila and Octavio Magana for their tranquil presence and advice.

This work has been funded from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 644839 (CENTAURO).

Abstract

Search for the robot capable to preform well in the real-world has sparked an interest in
the hybrid locomotion systems. The Hybrid Legged-Wheeled (HLW) robots combine the
advantages of the standard legged and wheeled platforms by switching between the quick
and efficient wheeled motion on the flat grounds and the more versatile legged mobility on
the unstructured terrains. With the locomotion flexibility offered by the hybrid mobility and
appropriate control tools, these systems have high potential to excel in practical applications
adapting effectively to real world during locomanipuation operations.

In contrary to their standard well-studied counterparts, kinematics of this newer type of
robotic platforms has not been fully understood yet. This gap may lead to unexpected results
when the standard locomotion methods are applied to HLW robots. To better understand
mobility of the HLW robots, the model that describes the support polygon of a general
HLW robot as a function of the wheel angular velocities without assumptions on the robot
kinematics or wheel camber angle is proposed and analysed in this thesis.

Based on the analysis of the developed support polygon model, a robust omnidirectional
driving scheme has been designed. A continuous wheel motion is resolved through the
Inverse Kinematics (IK) scheme, which generates robot motion compliant with the Non-
Sliding Pure-Rolling (NSPR) condition. A higher-level scheme resolving a steering motion to
comply with the non-holonomic constraint and to tackle the structural singularity is proposed.

To improve the robot performance in presence to the unpredicted circumstances, the
IK scheme has been enhanced with the introduction of a new reactive support polygon
adaptation task. To this end, a novel quadratic programming task has been designed to push
the system Support Polygon Vertices (SPVs) away from the robot Centre of Mass (CoM),
while respecting the leg workspace limits. The proposed task has been expressed through the
developed SPV model to account for the hardware limits.

The omnidirectional driving and reactive control schemes have been verified in the
simulation and in the hardware experiments. To that end, the simulator for the CENTAURO
robot that models the actuation dynamics and the software framework for the locomotion
research have been developed.

Table of contents

List of figures xi

List of tables xv

List of acronyms xix

1 Introduction 3

2 Literature Review 7
2.1 Dynamic Simulation of a Robotic System 7
2.2 Software Arichtecture . 8
2.3 Control of the Hybrid Legged-Wheeled Robots 9
2.4 Reactive Control . 10
2.5 Summary . 11

3 Background 13
3.1 Non-holonomic robotic system . 13
3.2 Modelling . 13

3.2.1 Point on the Rigid-Body . 14
3.2.2 Wheeled Robots . 14
3.2.3 Standard Wheeled Mobile Robot 17
3.2.4 Non-holonomic constraint in the SWMR. 19
3.2.5 Hybrid legged-wheeled robots . 19
3.2.6 Legged Robots . 21
3.2.7 Series Elastic Actuators . 24

3.3 Motion Control . 24
3.3.1 Gravity Compensation for Compliant Joint Legged Robots 25
3.3.2 Impedance Control . 26

viii Table of contents

3.3.3 Inverse Kinematics Control . 26
3.3.4 Second-order Inverse Kinematics 30

3.4 Twist-Swing Decomposition . 30
3.5 CENTAURO robot . 31

3.5.1 Kinematics Analysis of CENTAURO Robot 32
3.6 Conclusion . 33

4 Simulation of the CENTAURO robot 35
4.1 Simulator Design . 36

4.1.1 URDF Model . 37
4.1.2 Control Plugin . 41

4.2 Results . 47
4.2.1 Comparison with Matlab . 47
4.2.2 Whole-body Simulation . 49

4.3 Conclusion . 50

5 Simplifying Operations in Locomotion - Framework for Efficient Research 55
5.1 Core components . 56

5.1.1 Robot Structure . 56
5.1.2 Dynamic Model . 57
5.1.3 Robot Points . 58
5.1.4 Handler . 59

5.2 Plugins . 62
5.2.1 Configuration File . 62
5.2.2 Examples . 67
5.2.3 Shared plugin . 69

5.3 Summary . 72

6 Model of a Support Polygon Vertex in the Hybrid Legged-Wheeled Robots 75
6.1 Wheel-ground contact model . 76
6.2 Derivative of the SPV . 78

6.2.1 Non-sliding Pure Rolling Constraint 78
6.2.2 Constraint SPV . 82

6.3 Result Analysis . 82
6.3.1 Non-holonomy of legged-wheeled and all-steerable mobile robots . 85
6.3.2 Support polygon analysis for standard wheeled mobile robots . . . 89

Table of contents ix

6.4 Acceleration of the Support Polygon Vertex 90
6.4.1 Properties of the SPV acceleration 91

6.5 Conclusion . 91

7 Robust Omnidirectional Driving Scheme 93
7.1 SPV Velocity Shaping . 94
7.2 Inverse Kinematics Whole-Body Control 95

7.2.1 Inverse Kinematics Scheme . 96
7.2.2 World Posture Task . 96
7.2.3 Support Polygon Regulation . 97
7.2.4 Tasks Arrangement . 99
7.2.5 Wheeled-Legged Motion Control 100

7.3 Steering Strategy . 101
7.3.1 Position Reference . 102
7.3.2 Velocity Reference . 103
7.3.3 Steering in all-steerable platforms 104
7.3.4 Combined Methods . 105
7.3.5 Structural Singularity of the Non-Holonomic Constraint 107
7.3.6 Evolution of the steering scheme 108

7.4 Results . 108
7.4.1 Steering strategy robustness . 109
7.4.2 Variable contact polygon type . 116
7.4.3 Experiment with a non-zero camber angle 121
7.4.4 Evaluation of the combined steering approach 125

7.5 Conclusion . 126

8 Reactive Support Polygon Adaptation 129
8.1 Support polygon adaptation task . 130

8.1.1 Support Polygon Stability Margin 130
8.1.2 Workspace Boundaries . 132
8.1.3 Support Polygon Adaptation Task in the Cartesian-Space 132

8.2 Joint-space model . 134
8.3 Support Polygon Adaptation in the Joint-Space 136

8.3.1 Integration with the Lower-Level Inverse Kinematics 138
8.4 Experimental Results . 139

8.4.1 Experiment with Controlled Base Motion 140

x Table of contents

8.4.2 Experiment with COM modulation using the Upper-Body 141
8.4.3 Experiment with Unknown Push Disturbance 141
8.4.4 Centre of Pressure Experiment . 142
8.4.5 Results and Discussion . 143

8.5 Conclusion . 147

9 Conclusion 151

References 159

Appendix A State Estimation 167
A.1 Odometry . 167

A.1.1 Twist and Position Estimation . 168
A.1.2 Kinematics . 169

A.2 Ground Reaction Forces . 171
A.3 Summary . 171

Appendix B SOL-FER - code listings 173

List of figures

3.1 Camber and caster angles in the robotic wheel assembly. 15
3.2 General structure of the conventional wheel assembly. 17
3.3 Mechanical model of i−th series viscoelastic actuator. 24
3.4 The CENTAURO robot hybrid mobility manipulation platform. 32

4.1 URDF file structure for the CENTAURO robot. 38
4.2 The CENTAURO robot simulator rendered partial robot. 39
4.3 The CENTAURO robot simulator: visualisation and collision models. . . . 40
4.4 The CENTAURO robot simulator: end-effectors. 41
4.5 rqt_graph of a full simulation depicting system data flow. 43
4.6 Structure of SEA module model and its integration. 45
4.7 Screen-shot from the rrbot gazebo simulation. 46
4.8 Transmission displacement for a step reference: low and medium stiffness. . 47
4.9 Transmission displacement for a step reference: high stiffness. 47
4.10 ros_control SEA and the Matlab simulation: position, velocity, motor torques. 48
4.11 ros_control SEA and the Matlab simulation: transmission torques. 48
4.12 Evolution of CENTAURO robot posture. 49
4.13 The whole-body simulation results for the left arm. 51
4.14 Whole-body simulation results – left front leg: link positions and velocities. 52
4.15 Whole-body simulation results – left front leg: motor positions and velocities. 53
4.16 Whole-body simulation results – left front leg: motor and transmission torques. 54

5.1 The Plugin–Component structure, and a Plugin interaction with a middleware. 67
5.2 An example of the plugin communicating with the lower-level control. . . . 67
5.3 An example of the configuration for the online/offline plugin configuration. 68
5.4 An example of the shared control structure. 69
5.5 Full control scheme implemented with the SOL-FER. 70

xii List of figures

6.1 Schematics of the torus model. 76
6.2 CENTAURO robot: zero and non-zero camber angle postures. 77
6.3 The wheel-ground and steering frames in the legged-wheeled structure. . . 80
6.4 schematics of the conventional wheel assembly. 87

7.1 Block diagram of a designed motion control scheme. 100
7.2 Geometric interpretation of the desired steering angle. 101
7.3 Desired steering angle in the combined position/velocity mode. 105
7.4 Block Diagram of the overall steering scheme. 107
7.5 Photos from the CENTAURO robot – robustness of the motion control scheme.110
7.6 Robustness of the motion control scheme – support polygon trace. 112
7.7 Robustness of the motion control scheme – SPV tracking error. 113
7.8 Robustness of the motion control scheme – world posture tracking error. . . 114
7.9 Robustness experiment – results for the left front leg. 114
7.10 The CENTAURO robot during hybrid legged-wheeled motion with rotation. 115
7.11 The CENTAURO robot during hybrid legged-wheeled motion with translation.116
7.12 Hybrid legged-wheeled motion with base rotation – support polygon trace. . 117
7.13 Hybrid legged-wheeled motion with base translation – support polygon trace. 118
7.14 Hybrid legged-wheeled motion – base tracking error in the forward motion. 118
7.15 Hybrid legged-wheeled motion – base tracking error in the rotation motion. 119
7.16 Hybrid legged-wheeled motion – z-coordinate contact point tracking. . . . 119
7.17 Hybrid legged-wheeled motion – I trial: SPV tracking error. 120
7.18 Hybrid legged-wheeled motion – II trial: SPV tracking error. 120
7.19 Photos of the CENTAURO robot – the non-zero camber angle reference. . . 122
7.20 Non-zero camber angle experiment – desired/executed SPVs. 123
7.21 Non-zero camber angle experiment – contact point and camber angle tracking.124
7.22 Non-zero camber angle experiment – the world posture tracking error. . . . 124
7.23 Evaluation of the steering feedback – the contact point y-coordinate tracking. 126

8.1 Concept illustration of a reactive support polygon adaptation. 131
8.2 Concept illustration of the unfeasbile cartesian-space solution. 135
8.3 Block diagram of the reactive support polygon adaptation scheme. 138
8.4 Controlled base motion experiment: desired/executed base motion. 140
8.5 Snap-shots from the experiment with the controlled base motion. 140
8.6 Snap-shots from the experiment with the CoM modulation. 141
8.7 Snap-shots from the experiment with the unknown push disturbance. 142

List of figures xiii

8.8 Snap-shots from the experiment with the added weights. 143
8.9 CoP tracking experiment: difference between the CoM and CoP. 143
8.10 Experimental results for the controlled base motion. 144
8.11 Experimental results for the back-driven upper-body. 144
8.12 Experimental results for the unknown push disturbance. 145
8.13 Experimental results for the CoP tracking with incremental mass change. . 145
8.14 Experimental results for the CoP tracking with 10 kg mass. 146
8.15 The upper-body modulation experiment – kernel density estimate. 146
8.16 SPV x/y-coordinates – unknown push disturbance experiment. 148

List of tables

4.1 The simulator software requirements. 36

5.1 ROS pipes implemented for the auto-generation. 64
5.2 XBotCore pipes implemented for the auto-generation. 64

6.1 Support polygon evolution of the standard wheeled platforms. 88

7.1 The SPV tracking error statistical data for the robustness experiment. 111
7.2 SPV tracking error statistical data, hybrid motion experiments – I set. . . . 121
7.3 SPV tracking error statistical data, hybrid motion experiments – II set. . . . 122
7.4 SPV tracking error statistical data for the non-zero camber angle experiment. 125

8.1 Experimental parameters. 139

List of source codes

5.1 The Robot Points, Handler implementation of the IK. 60
5.2 The Robot Points/Handler implementation of the IK for aggregated tasks. 61
5.3 Example of the plugin configuration for the joint-space controller. 66
B.1 Example of the predefined Bidirectional Map from external URDF file. . . 173
B.2 Computation of the distances from the end-effectors to the reference point. . 174
B.3 The Robot Points Interface. 175
B.4 Example of the pipe configuration in the joint-space. 175
B.5 Example of the pipe configuration for the robot rigid-body. 176
B.6 Example of the middleware specific pipe configuration. 176
B.7 Example of the plugin configuration for the joint-space controller. 177
B.8 A predefined Robot configurations for the online and offline plugins. 177
B.9 Example of the predefined pipeline set-ups. 178
B.10 Example of the predefined pipeline set-ups. 178
B.11 An example secondary configuration file for the manipulation plugin. . . . 178
B.12 An example secondary configuration file for the odometry plugin. 179
B.13 Public interface of the module interface. 180
B.14 Plugin template specialization for the joint-space controller Component. . 181
B.15 A configuration of the shared plugin to load 5 Components/Plugins. . . . 182

List of acronyms

CoM Centre of Mass.
CoP Centre of Pressure.

DoF Degree of Freedom.

GUI Graphical User Interface.

HLW Hybrid Legged-Wheeled.

ICR Instantaneous Centre of Rotation.
ID Inverse Dynamics.
IK Inverse Kinematics.
IMU Inertial Measurement Unit.

MPC Model Predictive Control.

NSPR Non-Sliding Pure-Rolling.

SEA Series Elastic Actuator.

SOL-FER Simplifying Operations in Loco-
motion - Framework for Efficient Re-
search.

SPV Support Polygon Vertex.

SRDF Semantic Robot Description Format.

SWMR Standard Wheeled Mobile Robot.

URDF Unified Robot Description Format.

ZMP Zero Moment Point.

Notes on Notation

General Notation

Variable at ’t’ time step is indicated through (.)|t .

Vector Notation

A symbol AxxxB denotes a vector from point A to point B. If the frame in which the vector
is expressed affects the discussion/equation, a frame is given as a right side superscript in
the parenthesis; for a frame FC that reads Axxx(C)

B . Otherwise, the frame notation is dropped.
x, y, z coordinates of a vector AxxxB read AxB,

AyB,
AzB, respectively.

Vector decomposition

A decomposition of a 3D vector (xxx ∈ ℜ3) is noted as

xxx = xxx|D + xxx|PD,

where xxx|D ∈ ℜ3 and xxx|PD ∈ ℜ3 represent – in the original 3D space – the vector component
along the vector DDD and its complement, respectively. Furthermore, x|D ∈ ℜ1 and x|PD ∈ ℜ2

symbolise the vector component along the vector DDD and its complement in their respective
subspaces, that reads

xxx|D = DDDx|D,

xxx|PD = MMMDx|PD,

where MMMD ∈ ℜ3×2 denotes a projection matrix from the null-space of the vector DDD to the full
3D space.

2 List of acronyms

Combined Notation

If multiple supscripts are required, they are concatenated. For example, Axxx(C)
B|n|t represents a

component along the ground normal of a vector from a point A to a point B expressed in a
frame FC a time step t.

Rotation

If θ ∈ ℜ1 marks an orientation angle, then RRRa(θ) ∈ SO3 denotes a 3×3 rotation matrix that
describes a rotation around axis ’a’ by an angle θ , and rrra(θ) ∈ SO2 denotes a 2×2 rotation
matrix that describes a rotation around axis ’a’ by an angle θ in the null-space of the vector
’a’.

Assumptions

Without loss of generality, it is assumed the robot has p ∈ N legs, set F includes all legs in a
ground contact and |F|= f ≤ p. Furthermore, each leg is characterised by nleg ∈ N DoFs,
the vector of actuated joints qqqa is organized so that ith leg coordinates qqqi are grouped, i.e.
qqqa = [qqqT

1 qqqT
2 . . . qqqT

p]
T . The robot base link, refereed as ‘pelvis’ in this work, is chosen

in a way that the vector from an inertial frame to the leg contact point depends solely on the
floating base and ith leg coordinates.

Finally, it is assumed the standard rigid body model is known, and so is the kinematic
state of robot links. Therefore, no details on derivation of position/velocity vectors and
respective Jacobians for points rigidly attached to the robot links are given throughout the
work with exception of the short theoretical background on the velocity and acceleration of
the point on the rigid-body in the section Section 3.

Chapter 1

Introduction

In the past years, robots have been entering the industry outperforming humans in the
repeatable, high-precision manufacturing tasks. However, to take robots out of the factory
floor to the real-world, they need to be able to move around in the various environments
effectively and effortlessly. To that end, the legged robots design has been shifting towards
the implementation of hybrid locomotion systems including IIT’s CENTAURO [1], NASA’s
Robosimian [2], ETH’s wheeld Anymal [3], Boston Dynamics’ Handle, UBO’s Momaro
[4], AZIMUT [5], AirHopper [6], HyTRo-I [7], Quattroped [8] and Roller-Walker [9]. The
hybrid legged-wheeled design provides a solution for the limitation of the standard legged and
wheeled robots benefiting from the fast wheeled motion on the flat grounds while switching
to the legged motion, when the robot encounters a more challenging terrain.

With the locomotion flexibility offered by the hybrid mobility and appropriate control
tools, these systems have high potential to excel in practical applications adapting effectively
to real world during locomanipuation operations. Effective usage of the legged-wheeled
robots in the real-world scenarios requires a development of the controllers that will permit to
take advantage of the flexibility offered by the hybrid mobility to ensure more effective, safer
and robust locomanipuation operations. However, in contrary to their standard well-studied
counterparts, kinematics of this newer type of robotic platforms has not been fully understood
yet. This gap may lead to an unsatisfactory behaviour when the standard locomotion methods
are applied to hybrid legged-wheeled platforms.

In this work, the kinematics and control of the Hybrid Legged-Wheeled (HLW) robots
is studied, and framework for the locomotion control of the CENTAURO robot is pro-
posed. It includes the robust omnidirectional driving scheme, and a reactive support polygon
adaptation.

4 Introduction

To that end, the first and second-order kinematics of the HLW platforms has been studied
and analyzed. As a result, new kinematic model for the HLW robot has been developed to
better understand their hybrid mobility feature. The proposed model describes the Support
Polygon Vertex (SPV) of a general HLW platform as a function of the wheel angular velocities
without any assumptions on the robot kinematics or wheel camber angle.

Developed kinematic model forms the basis for the design of an omnidirectional driving
scheme. The first-order Inverse Kinematics (IK) control scheme to regulate the robot posture
and Support Polygon Vertices (SPVs) is proposed. To ensure the SPV convergence, a higher-
level steering adjustment scheme, which accounts for a non-holonomic constraint and its
structural singularity, is proposed.

To improve the robot performance in presence of the unpredicted disturbance, the om-
nidirectional driving scheme has been enhanced with the introduction of a new reactive
control scheme. The developed controller takes advantage of the CENTAURO robot six
Degrees of Freedom (DoFs) legged-wheeled structure that allows for the continuous support
polygon regulation in the entire 2-D space of the ground plane. To this end, a novel quadratic
programming task has been designed to push the system SPVs away from the robot Centre
of Mass (CoM), while respecting the leg workspace limits.

The omnidirectional driving and reactive control schemes have been verified in the
simulation and in the hardware experiments. To implement and test these controllers, a
simulator framework for the Series Elastic Actuator (SEA) actuated CENTAURO robot
that accounts for the actuators dynamics has been developed with the ROS middleware
software and Gazebo simulator. Furthermore, the Simplifying Operations in Locomotion -
Framework for Efficient Research (SOL-FER) software has been developed in this work to
provide a framework to quickly try out new controllers by maximizing the flexibility and
reconfigurability of the developed modules. Finally, for the experimental validation of the
proposed controllers, the state estimators for the robot world posture and ground reaction
forces have been developed.

This thesis is organized as follows: In Section 2 the literature review for the simulation,
modelling and control of the HLW robots is given, in Section 3 theoretical basis for the
work is laid out and the CENTAURO robot hardware is introduced. In Section 4 the Gazebo-
ROS simulation for the CENTAURO robot is presented, and details on the Simplifying
Operations in Locomotion - Framework for Efficient Research (SOL-FER) are given in
Section 5. Kinematic model for the HLW robots is proposed in Section 6, Section 7 introduces
the non-holonomic omnidirectional driving scheme for the HLW CENTAURO robot, and

5

Section 8 proposes the reactive support polygon adaptation algorithm. Finally, in Section 9
the conclusion is drawn and in Appendix A state estimation algorithms are described.

Chapter 2

Literature Review

In this chapter, the literature review is given for the robotics simulators in Section 2.1,
robotics middlewares in Section 2.2, control of the HLW robots in Section 2.3 and reactive
control for the HLW and standard legged quadrupeds in Section 2.4.

2.1 Dynamic Simulation of a Robotic System

Simulators are a necessary mean for the development of dynamical systems and permit
the risk-free evaluation and tuning of new control methods before implementation on real
systems. As a result, simulation tools can significantly accelerate the system control and
software development and reduce the maintenance time and cost of potential damages during
the early stage of testing. Hence, it is essential to exploit a comprehensive framework
comprising all individual elements of the real platform.

The increasing attention paid to robotics during the past four decades motivated the
development of a large number of simulation tools for this class of dynamic systems. Dy-
namic simulators are mainly classified in two categories: physics engines and simulating
environments. The former includes light and efficient libraries solving the system dynamic
equations, while the latter comprises computer programs typically possessing a Graphical
User Interface (GUI), visualisation, and model editor features, in addition to various robotics
toolboxes i.a. control, planning, navigation, vision.

An attempt to compare different physics engines in an objective manner was presented
in [10]. In this group, one can refer to Open Dynamic Engine (ODE) described in [11],
Open Robotics Automation Virtual Environment (OpenRAVE) reported by [12], Simbody
explained in [13], Multi-Joint dynamics with Contact (MuJoCo) introduced in [14], and
Bullet presented in [15].

8 Literature Review

As for the simulating environments for robotics one can mention Urban Search And Res-
cue simulation (USARSim) described in [16], Robot Control Simulator (ROCOS) explained
by [17], Gazebo detailed in [18], Webot described in [19], Verosim examined by [20] and
CoppeliaSim presented in [21]. Among this class of simulators the most commonly used is
Gazebo [22]; an open-source simulator developed by an Open Source Robotic Foundation.
Within its advantages one can mention a choice between multiple physics engines, an inten-
sive development and a strong community as well as a simplicity in creating a robot model
with the Semantic Robot Description Format (SRDF) and the Unified Robot Description
Format (URDF) files as well as an integrated GUI. A possibility to extend the simulation by
plugins is Gazebo another plus.

The software environments dedicated to mobile robots are highly-focused examples of
simulating environments. AMORsim [23] is dedicated to three-wheeled robots, Roborobo!
[24] proposes a lightweight solution created to work with multiple models simultaneously,
Autonomous Robots Go Swarming (ARGoS) [25] allows to assign different physics engines
to each part of the simulation. Finally, in [26] a simulator dedicated to mobile robots for
astronaut assistance was introduced.

The simulation and software framework used for legged robots are studied in several
works. To take humanoids simulators and platforms architectures as examples, we can report
[27] developed for iCub robot, [28] created for COMAN, [29] built for DarwinOP, [30]
implemented for NimbRo-Open Platform and [31] designed for ARMAR-III. Moreover, a
simulator of quadruped BIOSBOT is detailed in [32].

A few papers focuses on a certain aspect of study rather than a particular dynamical
structure, thus, [33] proposes general quadruped gait simulator, whereas [34] writes about
hydraulically actuated quadrupeds, and [35] uses decoupled tree-structure approach for
quadruped simulation.

2.2 Software Arichtecture

Communication of a higher-level architecture with a robot/simulator requires an operating
platform capable of incorporating different control architectures while interacting with
various devices. To this end, middleware software layers have been developed as an important
component of the robotic framework.

Amongst numerous middleware software, one may report Robotic Operating System
(ROS) discussed in [36], Yet Another Robot Platform (YARP) studied in [37], Player intro-
duced in [38], Universal Robotic Software Platform (Urbi) expounded in [39], Middleware

2.3 Control of the Hybrid Legged-Wheeled Robots 9

for Robotic Applications (MIRA) proposed by [40] and Open Robot Control Software (ORO-
COS) outlined in [41]. [42] provides a survey over exisiting middlewares, and [43] discusses
the importance of cross-system compatibility.

According to [22], ROS and YARP are the most commonly employed middleware
software solutions in humanoid robotics. ROS-based open-source simulators are currently
available for several robots such as the NAO [44] and NimbRO [30] robots. As for the
HUBO [45], a ROS interface with a real-time control system is exploited to illustrate the
ROS capabilities of providing a communication layer for the robot; meanwhile, the software
architecture of the iCub robot is developed in YARP [46]. In addition, the WALK-MAN
and COMAN robots are also utilising a YARP-based architecture as one of the operating
software [28]. Finally, note that NAO has been integrated with Urbi for a RoboCup simulation
competition [47].

2.3 Control of the Hybrid Legged-Wheeled Robots

With the development of HLW platforms, dedicated motion controller schemes have been
proposed for PAW robot [48, 49], Roller-Walker [50], KaMERo1 [51] and Shrimp[52]. While
these controllers relay on a given robot kinematics, for more general solution, [53] shows
that the generic decentralized control is not sufficient to stabilize legged-wheeled systems. A
centralized controller composed of a gravity compensation scheme and elasticity model [54]
can be implemented to improve the performance of the joint-space trajectory tracking. To
translate the higher-level control requirements to the joint-space, an operational-space control
[55] is often employed to deal with redundant systems, e.g. in case of standard quadrupeds
[56], [57] and legged-wheeled quadrupeds [3]. Furthermore, in [58] the Model Predictive
Control (MPC) based on the Zero Moment Point (ZMP) has been proposed for the trajectory
optimisation of the HLW robot with fixed wheel.

Most research on the stability of legged robots have been dedicated to bipeds, e.g. [59,
60, 61, 62], while quadrupeds, as statically stable systems, have attracted less attention.
Nevertheless, an extension of methods developed for humanoid robots to multi-legged
systems is not always straightforward due to the workspace limitations and discontinuities
in a support polygon [63, 64]. Finally, a sequential quadratic programming based on the
ZMP constraint for balancing of legged-wheeled structures is examined in 2D [65, 66] and a
preview controller and a zero-phase low-pass filter methods based on the ZMP constraint are
tested in 3D in [67].

10 Literature Review

Non-holonomic constraint

Platforms with only steerable wheels can perform omnidirectional driving if the wheel
orientation is controlled to comply with a set of non-holonomic constraints [68]. Most studies
in this subject have been done for standard mobile robots, and the proposed solutions are
based on the Instantaneous Centre of Rotation (ICR). In [69] the ICR is computed in spherical
coordinates, in [70] the steering reference is extracted without computing the ICR explicitly,
and in [71] the path discontinuities are considered. Furthermore, to handle a structural
singularity in computation of a steering reference, artificial potential fields are used in [72,
73]. To incorporate the wheel steering into the IK control, the mixed velocity/acceleration
schemes have been proposed for the standard mobile platforms with only steerable wheels in
[74, 75]; the steering singularity is then handled through the damped IK.

For a legged-wheeled robots, the approaches in [76, 77] propose to separate the ankle
yaw and body posture kinematics, and solve the former for a desired steering angle, while
the work in [78] employs the ICR. Furthermore, the control scheme in [79] is based on
a second order kinematics model described by mixed velocity/acceleration state. The leg
kinematics of the platforms considered in these papers allows for a relative wheel-body
motion in one direction only, and constrains wheels to zero camber angles. On the contrary,
the kinematics analysed in [80, 81, 82] allows for a wheel-base motion along the lateral
and longitudinal axes. In these works, operational space control framework [55] with a
second order kinematics model described by the mixed velocity/acceleration state is used
to develop motion schemes; a zero-camber angle assumption holds. As reported in [80],
a first-order kinematics scheme with steering reference based on the ICR alone causes the
support polygon of these systems to diverge.

2.4 Reactive Control

So far, literature on the reactive control of the legged-wheeled platforms has been sparse. In
[83] the balancing of the legged-wheeled systems has been discussed to avoid a system tip
over, and in [84] authors optimise the reaction forces for the obstacle crossing. However,
these works consider a disturbance aligned with the wheel orientation, and no wheel steering
control has been applied. To the best of the author knowledge, no reactive control scheme
has been proposed so far for the general legged-wheeled platforms that accounts for the
steerable wheels.

2.5 Summary 11

More studies can be found focusing on the disturbance rejection in quadrupeds. These
schemes are limited with the constant support polygon, or have to resolve to the step-
ping/sliding actions. The former relies on the robustness of the lower-level whole-body
control [85], and the latter typically consists in online MPC planning schemes [86, 87, 88].
Alternatively, in [89] adaptive fuzzy logic learning has been applied, while the Any-time-
Repairing A* algorithm has been implemented in [90], and the N-step capturability has been
used in [91]. Although, many of the solutions developed for standard quadrupeds can be
directly applied for the CENTAURO robot, they neglect its hybrid-mobility feature.

2.5 Summary

In this chapter, the literature review for the software, modelling and control of the HLW
robots has been presented.

Chapter 3

Background

In this chapter, theoretical background that forms a basis for the this thesis contribution is
presented. First, the mathematical definition of the non-holonomic systems is recalled in
Section 3.1, then the modelling of the robotic structures is discussed in Section 3.2, and
control methods in robotics are described in Section 3.3. Finally, a quaternion decomposition
is delineated in Section 3.4, the CENTAURO robot hardware is introduced in Section 3.5,
and a conclusion is given in Section 3.6.

3.1 Non-holonomic robotic system

The robotic system is holonomic if all the constraints are integrable, i.e., they can be written
in a form [92]

f (qqq, t) = 0, (3.1)

where qqq∈ ℜn describes the state of the system, t∈ ℜ1 represents time and n∈ N0 stands for
the number of system DoFs. If the genaralized velocity satisfies the condition that cannot be
writen as an equivalent condition of the generalised position (i.e., cannot be written in a form
(3.1)), a system is called non-holonomic for a given task [92].

3.2 Modelling

In this section, modelling methods for the robotic strucutres are laid out. First, the equations
for the velocity and acceleration of the point on the rigid-body are recalled in Section 3.2.1,
then the standard approaches to model the robotic wheel are discussed in Section 3.2.2
including the Non-Sliding Pure-Rolling (NSPR) constraint. Models for the standard wheeled

14 Background

mobile robots are delineated next in Section 3.2.3 and Section 3.2.4. Models for hybrid
legged-wheeled robots are discussed in Section 3.2.5 and for legged robots in Section 3.2.6.
Finally, model for the SEA is presented in Section 3.2.7.

3.2.1 Point on the Rigid-Body

Here, the first and second-order 3D point rigid-body kinematics is recalled, on an example
point ’a’ described in the wheel frame Fw. The rigid body transformation reads [93]

oxxxa =
oxxxw +wxxxa, (3.2)

where oxxxw∈ ℜ3 stands for the vector from the inertial frame origin to the wheel center,
wxxxa ∈ ℜ3 represents the vector from the wheels centre to the considered reference point ’a’,
and oxxxa ∈ ℜ3 denotes the vector from the origin of the intertial frame to the reference point
’a’. The velocity of the point ’a’ is described by

oẋxxa =
oẋxxw +wẋxxa =

oẋxxw +ωωωw ×wxxxa +
wẋxx

′
a, (3.3)

where ωωωw∈ ℜ3 symbolises the wheel angular velocity, and wẋxx
′
a ∈ ℜ3 represents the point

velocity with respect to the wheel frame origin. The acceleration of the point ’a’ reads [94]

oẍxxa =
oẍxxw +wẍxxa =

oẍxxw + ω̇ωωw ×wxxxa +ωωωw ×ωωωw ×wxxxa +2ωωωw ×wẋxx
′
a +

wẍxx
′
a. (3.4)

3.2.2 Wheeled Robots

This section presents standard methods to model the robotic wheel: from the definition
of the terms typically used to discus the wheeled robots through overview over the wheel
geometries to the Non-Sliding Pure-Rolling (NSPR) contact point assumption.

Wheel geometry

The wheel axis is placed at the wheel geometric centre and is oriented in a way that the
wheel geometry is invariant towards the rotation around the wheel axis.

The wheel plane divides the wheel in the two reflected halves and is orthogonal to the
wheel axis. Thus, the wheel plane describes the plane of rotation of the rotation around the
wheel axis.

3.2 Modelling 15

Figure 3.1 Camber and caster angles in the robotic wheel assembly.

To define the wheel orientation with respect to the ground, let us define the following
angles. The steering angle (β∈ ℜ1) describes the wheel orientation around the ground
normal, the camber angle (ϕ∈ ℜ1) measures the angle between the ground normal and
the wheel plane (see Fig. 3.1) that is a complementary acute angle to the angle from the
ground vector to the wheel axis. The rolling angle (ν∈ ℜ1) describes the rotation around the
axis orthogonal to the rotation axes of the steering and camber angles, and the caster angle
measures the angle in the wheel plane between the ground normal and the rotation axis of
the actuator directly attached to the wheel, see Fig. 3.1.

To model the Standard Wheeled Mobile Robot (SWMR) and HLW robots on the rigid
ground, a common simplification is to consider the wheel as a sphere or a cylinder what
provides a sufficient approximation for systems with fixed camber angle. Multiple models
with more complex geometries have been developed to tackle the flexible tires and compliant
environments [95].

The Non-Sliding Pure-Rolling Contact

For the wheeled robots, a Non-Sliding Pure-Rolling (NSPR) assumption is commonly
adopted [95]. It is a heuristic assumption that imposes the point of a wheel in the contact with
the ground to have no instantaneous velocity (oẋxxcp = 000). The NSPR assumption constraints
the point rigidly attached to the robot wheel (i.e., wẋxx

′
cp = 000); from (3.3) the contact point

assumption reads

oẋxxcp =
oẋxxw +wẋxxcp = 000 =⇒ oẋxxw = wxxxcp ×ωωωw, (3.5)

16 Background

where oxxxcp denotes the vector from the origin of the intertial frame to the contact point. To
compute the contact point acceleration in the rolling motion, note that at each time step a
different point of the wheel touches the ground. As a result in (3.5) the only constant point is
the wheel center; and thus (3.5) describes the condition for the wheel centre to maintain the
rolling motion. At any given time t, (3.5) gives

oẋxxw|t =
wxxxcp|t ×ωωωw|t . (3.6)

A difference between the wheel centre velocity at two time steps reads

oẋxxw|t+T − oẋxxw|t =
wxxxcp|t+T ×ωωωw|t+T −wxxxcp|t ×ωωωw|t , (3.7)

where T∈ ℜ1 marks the time step. And thus the wheel centre acceleration has to read

oẍxxw = lim
T→0

(oẋxxw|t+T − oẋxxw|t
)
=

d
dt

(wxxxSPV ×ωωωw) , (3.8)

where wxxxSPV∈ ℜ3 is a vector that describes a set of consecutive positions of a robot contact
in the ground with respect to the wheel centre. This function is referred to as SPV in this
work. Note, that, by definition, at each time step wxxxSPV |t ≜

wxxxcp|t . However, their derivatives
may differ wẋxxSPV |t ̸= wẋxxcp|t .

With r ∈ℜ+ representing the wheel readius, for the standard wheeled mobile robots in the

inertial frame wxxxSPV =

[
0 0 −r

]T

what is a constant value. Thus, the wheel acceleration

in the rolling motion reads
oẍxxw = wxxxSPV × ω̇ωωw. (3.9)

Since, the contact point constraint is applied to the point rigidly attached to the wheel
(i.e., wẋxx

′
cp = 000, wẍxx

′
cp = 000) (3.4) for a point in the ground contact reads

oẍxxcp =
oẍxxw + ω̇ωωw ×wxxxcp +ωωωw ×ωωωw ×wxxxcp,

taking into account (3.9) the constraint on the contact point acceleration for the standard
wheeled mobile robot to maintain the rolling motion reads

oẍxxcp = ωωωw ×ωωωw ×wxxxcp.

3.2 Modelling 17

Figure 3.2 General structure of the conventional wheel assembly.

3.2.3 Standard Wheeled Mobile Robot

In this section, modelling of the SWMR is discussed for the standard wheel assemblies, and
the mobility of the SWMR for the omnidirectional driving is outlined based on [95].

Mobility of the SWMR is defined by the type of the wheel assembly that includes the
fixed, caster and steerable wheels1. Fig. 3.2 shows the general wheel assembly, where L and
d represent constants lengths, νd and νL symbolise constant angles, qqq = [β ν] mark the
joint-space variables, and θ|n stands for the robot base rotation around the ground normal.
The position of the robot reference point (oxxxb ∈ ℜ3) remains to fully describe a robot state.
Finally, frame ’Fb’ is rigidly attached to the robot base.

A different wheel assemblies are generated by defining some parameters in Fig. 3.2 to
zero. In particular, in a fixed wheel β = d = 0, in a steerable wheel νd = d = 0, and in a
caster wheel νd = 0. The contact point velocity for the general wheel assembly reads

ẋcp

ẏcp

żcp

=

d sin(νd)+Lsin(β +νd)

d cos(νd)+Lcos(β +νd)

0

ω |n +

d sin(νd)

d cos(νd)

0

 β̇ +

−r

0

0

 ν̇+

cos(νL +β +νd) sin(νL +β +νd) 0

−sin(νL +β +νd) cos(νL +β +νd) 0

0 0 1

cos(θ|n) sin(θ|n) 0

−sin(θ|n) cos(θ|n) 0

0 0 1

oẋxx(b)b .

(3.10)

1Unless directly state otherwise, SWMR section is based on [95] and [68]

18 Background

With the NSPR assumption (3.5), (3.10) reads that the robot base motion is confined
on the ground plane, i.e. only the planar elements of the robot base (oxxxb|Pn, ω |n) are not
constraint.

For the caster wheel assembly (νd = 0), (3.10) reads

AAAC(β)rrrn(−θ|n)ẋ
(b)
b|Pn +BBBC(β)ω |n =

 0 r

−d 0

β̇

ν̇

 , (3.11)

where AAAC and BBBC are transformation matrices dependent on the wheel steering angle (β). It
shows that for the caster wheel assembly, any robot base planar motion can be adopted at any
time. Thus the caster wheel assembly does not restrict the robot base motion, and the system
with only caster wheels permits holonomic omnidirectional driving.

On the other hand, for the fixed wheel under the rolling assumption. i.e. β = 0, β̇ = 0,
(3.10) reads

AAAFrrrn(−θ|n)ẋ
(b)
b|Pn +BBBFω |n =

r

0

 ν̇ , (3.12)

where AAAF and BBBF are constant transformation matrices. (3.12) shows that the NSPR as-
sumption in the fixed wheel constraints one direction of the robot base velocity, and thus the
omnidirectional driving satisfying the NSPR assumption is not possible in the vehicle with a
fixed wheel.

Finally, for the steerable wheel assembly (i.e νd = d = 0), (3.10) reads

AAAS(β)rrrn(−θ|n)ẋ
(b)
b|Pn +BBBS(β)ω |n =

r

0

 ν̇ . (3.13)

where AAAS and BBBS are transformation matrices dependent on the wheel steering angle (β).
Similarly, to the fixed wheel assembly, the steerable wheel constraints one direction of
the robot base planar velocity. However, if one extends the state qqq = [β ν] to consider
an integral over the wheel steering angle (β), what reads qqq = [β ν

∫
β (t)dt], one can

control the allowed direction of motion. As a result the omnidirectional driving may be
achieved. However, the (3.13) does not satisfy (3.1), and thus the mobile robot with the
steerable wheel is restricted to non-holonomic omnidirectional driving.

3.2 Modelling 19

3.2.4 Non-holonomic constraint in the SWMR.

In this section, the standard methods to satisfy the non-holonomic constraint in the SWMR
with only steerable wheels are presented.

(3.13) imposes that all axes of steerable wheels have to cross at one point – the ICR of
robot motion – for the robot to execute the omnidirectional driving [95]. The ICR is defined
as a point on the rigid body moving in a planar motion that has no velocity at a given time; it
reads [71, 72, 78]

xxxICM|Pn = xxxb|Pn +
1

||ω |n||2
ωωωw|n × ẋxxb|Pn. (3.14)

The desired steering that satifies the non-holonomic constraint in (3.13), and thus orients a
wheel axis to cross the ICR, reads [71, 78]

β = tan−1
(

yICM − ycp

xICM − xcp

)
+0.5π. (3.15)

The singularity in (3.15) arises, when desired ICR coincide with the contact point (i.e.,
xICM = xcp, yICM = ycp).

An alternative approach to control the SWMR with only steerable wheels is throught the
second-order kinematics, e.g., [71, 74]. To that end, (3.13) is differentiated to

AAAS(β)
drrrn(−θ|n)

dt
ẋ(b)b|Pn +AAAS(β)rrrn(−θ|n)ẍ

(b)
b|Pn+

BBBS(β)ω̇ |n =

r

0

 ν̈ −
(

dAAAS(β)

dβ
rrrn(−θ|n)ẋ

(b)
b|Pn +

dBBBS(β)

dβ
ω |n

)
β̇ .

(3.16)

(3.16) can be solved for state
[

β̇ ν̈

]T

with any desired robot motion
[

ẍ(b)Tb|Pn ω̇ |n

]T

, and

standard IK methods for the model with the mixed velocity/acceleration state can be used to
control the robot.

3.2.5 Hybrid legged-wheeled robots

Here, the standard approaches to model the hybrid legged-wheeled systems are outlined.
Kinematics of the HLW systems can be divided into two main categories, robots where

the relative motion between the robot base and the contact point is constrained in at least one
direction, and the systems where the contact point has 3DoFs with respect to the robot base.

20 Background

While, the former design – e.g., Hylos [77], Momaro [4] – is more common than the later –
e.g., CENTAURO [1], Robosimian [2], it also constraints the wheel caster and camber angles
to permit the non-holonomic omnidirectional driving.

For a hybrid legged-wheeled system, in contrary to legged robots with point feet (with
negligible foot geometry) or standard wheeled platforms (with fixed placement of wheels
w.r.t to the base), it is not possible to define a constant transformation between a wheel
contact point with the ground and a standard rigid-body reference frame attached to a robot
link/joint. Nevertheless, by assuming zero camber angle and known ground normal, the
contact point position can be computed based on the system forward kinematics [77]

xxxcp = xxxw −nnnr, (3.17)

where r stands for the wheel radius. Note, that (3.17) assumes the spherical wheel geometry.
With (3.17), the desired joint-space command is computed from the rigid-body kinemat-

ics, solving the NSPR constraint (see Section 3.2.2) for the desired robot base motion (e.g.,
[77, 78, 80])

Jcp|aqqqa =−Jcp|bqqqb,des, (3.18)

where
Jcp =

[
Jcp|a Jcp|b

]
. (3.19)

However, for the first type of the HLW platforms, i.e., when the motion of the wheel
contact point is constrained in one direction, the constraints equation takes a form similar
to (3.13), and the non-sliding constraint imposes the system non-holonomy. Typically, the
methods described in Section 3.2.4 are then used to implement the omnidirectional driving
(e.g., [76, 77, 78]).

For the second type of the HLW robots, where the contact point has 3DoFs with respect to
the robot base, the non-zero camber/caster angle is still typically assumed. Then, the contact
point Jacobian takes the form similar to (3.13) where wheel steering motion has no direct
influence on the contact point motion. However, as reported in [80], a first-order kinematics
scheme with steering reference based on the ICR alone causes the support polygon of these
systems to diverge. The second-order approach similar to (3.16) is then used to provide a
non-holonomic omnidirectional driving (e.g., [79, 80, 81, 82]).

3.2 Modelling 21

3.2.6 Legged Robots

In this section, the typical approach to model the legged robot is presented, the contact points
modelling is discussed, and the ZMP constraint is outlined.

The supporting DoFs in legged robot change depending on which legs are in the ground
contact. To incorporate the variable support state and flight phases, a floating base model is
typically adopted for the legged robots. The generalised coordinates read [96]

q̄qq =

[
q̄qqT

b qqqT
a

]T

, (3.20)

where q̄qqb ∈ {SE3 | ℜnb} refers to coordinates of any floating base representation, nb ∈ N
denotes the size of the floating base coordinates vector, and qqqa ∈ ℜna represents the vector of
link-side positions of actuated joints with na ∈ N symbolising the number of actuated joints.
Therefore, the overall system is described by nc = na +nb coordinates. We can also define a
new set of generalised coordinates

qqq =

[
qqqT

b qqqT
a

]T

, (3.21)

with qqqb ∈ {SE3 | ℜ6} denoting the floating base coordinates, and qqq ∈ ℜn with n = na + 6
therefore holds. The system’s dynamic model can then be presented by [96]

M(qqq)q̈qq+ ccc(qqq, q̇qq)+FFFg(qqq) = ST
τττ t(qqqa, q̇qqa,θθθ , θ̇θθ)+JT

c (qqq)λλλ , (3.22)

where M ∈ ℜn×n stands for the corresponding generalised inertia matrix, ccc ∈ ℜn represents
Coriolis/centrifugal forces, FFFg∈ ℜn denotes the gravitational torque vector, τττ t ∈ ℜk refers
to the vector of transmission torques applied by the passive elements, and θθθ = [θ1, ...,θna]

T

refers to the motor position vector. S =

[
0na×nb Ina×na

]
symbolises the actuation selection

matrix, Jc ∈ ℜk×n describes the constraints Jacobian, and λλλ ∈ ℜk stands for reaction forces
with k ∈ N expressing the number of system constraints.

22 Background

Ground Contact In The Legged Robots

The kinematic and dynamic models relay on the contact point assumption. To that end,
dynamic models for the tangential and normal forces at the contact point are discussed [96]
in this section.2

A Coulomb friction model is the most commonly adopted approach to model the
tangential force at the contact point of the legged robots. It reads that for the contact point
to remain static the tangential force has to remain below the threshold proportional to the
normal reaction force squared. If static condition is not met, the contact point slides with the
tangential force proportional to the normal force||Fcp|Pn|| ≤ µF2

cp|nnn if ẋxxcp = 000

Fcp|Pn =−µFcp|nnn
ẋxxcp

||ẋxxcp|| if ẋxxcp ̸= 000
. (3.23)

For the robot foot in the ground contact the unilaterality of the reaction forces is typically
assumed; that reads

Fcp|nnn ≥ 0. (3.24)

Violation of this constraint would correspond to the robot exerting the force while raising the
leg above the ground and thus breaking the contact.

Three models are prevalent when discussing the normal force at the contact point: the
rigid-body model, the compliant model and the impact model. The rigid-body model does
not allow for any ground penetration; it readsFcp|nnn ≥ 000 if ẋxxcp = 000

Fcp|nnn = 000 if ẋxxcp ≥ 000
. (3.25)

On the other hand, the compliant model captures the ground elasticity by modelling the
ground-contact as a springFcp|nnn ≥ 000 if ẋxxcp = 000

Fcp|nnn =−Kgxxxcp −Dgẋxxcp if ẋxxcp ≤ 000
, (3.26)

where Kg ∈ ℜ1 sybmolises the stiffnes of the robot-ground interaction, and Dg ∈ ℜ1 denotes
the damping of the robot-ground interaction. Finally, the impact model is used in conjunction
with the rigid-body model to compute the robot state at an instance after the contact point

2Unless directly stated otherwise, Ground Contact In The Legged Robots section is based on [96].

3.2 Modelling 23

touched the ground at time t. At this moment discontinuity in the rigid-body model appears.
The impact model assumes the contact point is static right after the impact; it reads

ẋxxcp|t+T = Jcpq̇qqt+T = 000, (3.27)

where a subscript t +T symbolises variables right after the impact.

Stability Measures

The literature presents several measures to evaluate the system stability that includes the
most widely recognised CoM position, ZMP/Centre of Pressure (CoP) [97].

On the flat ground the robot is balanced if the following condition holds [96]3

xCoM|Pn −
xCoM|n

ẍCoM|n +gg|n

(
ẍCoM|Pn +gg|Pn

)
+

+
1

m(ẍCoM|n +gg|Pn)

0 −1

1 0

 L̇|Pn = xCoP ∈ conv{xxxcp}
, (3.28)

where LLL ∈ ℜ3 stands for the angular momentum, gggg ∈ ℜ3 symbolises the gravity acceleration
vector, and xxxCoP ∈ ℜ3 denotes the CoP that reads

xCoP =
∑
(
FFFcp|nxxxcp

)
∑FFFcp|n

. (3.29)

(3.28) reads the robot remains balanced when its CoP projects on the ground within the
convex polygon confined by the feet placement also called a support polygon.

In static conditions, i.e. when L̇LL = 000, ẍxxCoM = 000, (3.28) reads that for the robot to remain
balanced its CoM has to project, towards the gravity direction, within the robot support
polygon; i.e.,

xCoM|Pn −
xCoM|n

gg|n
gg|Pn = xCoP ∈ conv{xxxcp}. (3.30)

For control, a linear model for (3.30) is often used. It assumes the robot is moving on the
flat ground (gg|Pn = 000), the robot CoM does no accelerate vertically and the robot angular

3The remainder of the Stability Measures section is based on [96]

24 Background

Figure 3.3 Mechanical model of i−th series viscoelastic actuator.

momentum does not change. With these assumptions, the balancing condition reads

xCoM|Pn −
xCoM|n

gg|n
ẍCoM|Pn = xCoP ∈ conv{xxxcp}.

3.2.7 Series Elastic Actuators

Here, the model for the Series Elastic Actuators (SEAs) is presented based on [98].
To improve the robot performance, when it is interacting with the environment, recent

robots are often powered by the SEA. Motors do not directly drive the links when the system
is powered by SEAs, as the motor torques are transmitted to links through compliant elements,
see Fig. 3.3. When taking the passive compliance dynamics into account, a na−DoF robotic
linkage includes 2na DoFs. At the joint-space level the dynamics of the unconstrained system
are then

M(qqq)q̈qq+ ccc(qqq, q̇qq)+FFFggg(qqq) = τττ t(φφφ , φ̇φφ), (3.31)

Bmθ̈θθ +Dmθ̇θθ + τττ t(θθθ , θ̇θθ) = τττm, (3.32)

τττ t(φφφ , φ̇φφ) = Ktφφφ +Dt φ̇φφ , (3.33)

where qqq = [q1, ...,qna]
T and θθθ = [θ1, ...,θna]

T are the link and motor position vectors, re-
spectively, Kt ∈ ℜna×na and Dt ∈ ℜna×na stand for the stiffness and damping matrices corre-
sponding to passive elements, φφφ = θθθ −qqq is the transmission displacement vector, whereas
τττm ∈ ℜna denotes the motor torque vector, Bm ∈ ℜna×na symbolises the motor inertia matrix
and Dm ∈ ℜna×na expresses the motor damping matrix.

3.3 Motion Control

In this section, methods to control the robotic structure are presented. First, the gravity
compensation methods for constrained, compliant robots are discussed in Section 3.3.1, then

3.3 Motion Control 25

the impedance control is outlined in Section 3.3.2, and the Inverse Kinematics (IK) methods
are discussed in details in Section 3.3.3 and Section 3.3.4.

3.3.1 Gravity Compensation for Compliant Joint Legged Robots

In this section, the gravity compensation approach for the constrained, compliant robots is
presented.

In implementation of the gravity compensation scheme for an overconstrained robot like
quadruped or humanoid upper-body in contact with environment, the external forces in the
dynamic equation (3.22) have to be considered. Over the years, several solutions based on
an orthogonal decomposition of the constraints Jacobian have been proposed to address this
issue including [99], [100], and [101]. A QR decomposition of the constraints Jacobian [102]
is one of the commonly used approaches. It can be expressed by

JT
c (qqq) = Q(qqq)R(qqq) (3.34)

where Q ∈ ℜn×n is an orthogonal matrix, and R ∈ ℜn×k is an upper triangular matrix with
rank(R) = l; l denotes number of independent contact constraints. Then, by applying (3.34)
on (3.22), one can obtain an equivalent dynamic model as

ScQT (qqq)(M(qqq)q̈qq+ ccc(qqq, q̇qq)+FFFg(qqq)) = ScQT (qqq)ST
τττ ttt +Rλλλ , (3.35)

SuQT (qqq)(M(qqq)q̈qq+ ccc(qqq, q̇qq)+FFFg(qqq)) = SuQT (qqq)ST
τττ ttt , (3.36)

where Sc =

[
Il×l 0l×(n−l)

]
expresses a selection matrix for the constrained part of the

system dynamics, and Su =

[
0(n−l)×l I(n−l)×(n−l)

]
stands for a selection matrix of the

unconstrained part of the system dynamics.
The rigid-joint gravity compensation torque (τττggg ∈ ℜna) can then be defined as [102]

τττggg(qqq) = (SuQT (qqq)ST)+SuQT (qqq)FFFg(qqq), (3.37)

which is constructed based only on the contact points positions, in addition to typical model
parameters, and the external force measurement/estimation is not needed.

26 Background

Compliance Gravity Compensation
From (3.36), (3.37), (3.32), and (3.33) in static condition, i.e. q̇qqa = q̈qqa = θ̇θθ = θ̈θθ = 000, one can
extract the desired motor positions vector as follows [54]

θθθ d = qqqd +K−1
t τττggg(qqq). (3.38)

3.3.2 Impedance Control

For a lower-level joint space control, an impedance control with the feed-forward gravity
compensation is often used to control the robotic structures. A collocated-based PD position
controller [54] is an example of such control scheme, whose corresponding control law is
described by

τττcontroller = τττggg(qqqd)+KP(θθθ d −θθθ)−KDθ̇θθ , (3.39)

where KP ∈ ℜk×k and KD ∈ ℜk×k are the proportional and derivative gain matrices of the
controller, respectively.

3.3.3 Inverse Kinematics Control

In this section, methods for the Inverse Kinematics (IK) control are presented starting from
appraoches used for simple robotic strucutres, to the prioritized IK control.

The control requirements, like the robot world posture or the contact point placement
are often described in the cartesian-space. To convert the cartesian space tasks into the joint
space commands the IK control is among the most commonly adopted methods. The forward
kinematics for a rigid-body mechanical system can be computed directly in the form [103]4

ẋxx = Jq̇qq, (3.40)

where ẋxx ∈ ℜ|Tk| describes the desired cartesian-space velocity, J ∈ ℜ|Tk|×n stands for the
Jacobian matrix mapping the cartesian-space task to the joint-space solution, and |Tk| ∈ N
notes the size of task Tk.

4The Inverse Kinematics Control section is fully based on [103].

3.3 Motion Control 27

Direct methods

For the systems with simple kinematics design (3.40) can be solved directly for q̇qq, and the
algebraic equations are used to compute the robot commands. However, for more complex
designs, computation of the algebraic solution becomes unfeasible and numerical methods
have to be adopted. If the size of the task Tk equals the size of the system state, the IK can
be computed through

q̇qq = J−1ẋxx, (3.41)

where operator (.)−1 represents an inverse of a square matrix (.). Solution (3.41) is equivalent
to solving the optimization task

minimise
q̇qq

0.5||ẋxx−Jq̇qq||2 (3.42)

On the other hand if the system is redundant for a given task (Tk) (i.e. |Tk| < n), the
Moore-Penrose inverse ((.)+) can be used instead; it reads

q̇qq = J+ẋxx, (3.43)

where
J+ = JT (JJT)−1. (3.44)

Solution (3.43) is equivalent to the following optimization task

minimise
q̇qq∈S

0.5q̇qqT q̇qq

with S = q̇qq : minimise
q̇qq∈ℜn

0.5||ẋxx−Jq̇qq||2
(3.45)

A singularity in (3.43) arises when the matrix J is not of a full rank. It corresponds to the
situation when the robot actuators are positioned in a manner that they are not capable to
affect the motion of at least one element of the operational-space task Tk. To prevent the
control scheme (3.43) from generating an infinitely large joint-space velocity commands in
the proximity of the singularity, damped pseudo-inverse is used in (3.43); it reads

J+ = JT (JJT +δδδ)−1,

28 Background

where δδδ ∈ ℜn×n is a diagonal damping matrix. It is equivalent to solving the following
optimization task

minimise
q̇qq∈S

0.5q̇qqT q̇qq

with S = q̇qq : minimise
q̇qq∈ℜn

0.5||ẋxx−Jq̇qq||2 +0.5q̇qqT
δδδ q̇qq

Task Priority

In the complex robotic systems, multiple operational-space tasks may be imposed on the
robot simultaneously. Concatenating all of the tasks into one allows to resolve the systems
using (3.41) or (3.43). However, in practice some tasks are more important than others.
For example, the legged system has to remain balanced in order to be able to perform a
manipulation/walking tasks. For that purpose, prioritized IK methods have been developed.

For the set of ith task {T0, . . . ,Ti} a weighted pseudo-inverse Jacobian can be used with
(3.43) to establish the tasks priority; it reads

J+ =WWWJT (JWWWJT +δδδ)−1, (3.46)

where WWW ∈ ℜn×n stands for the symmetric matrix of the task weights, J ∈ ℜk×n symbolizes
the matrix of concatenated tasks Jacobians. It corresponds to solving following optimization
problem

minimise
q̇qq∈S

0.5q̇qqT q̇qq

with S = {q̇qq : minimise
q̇qq∈ℜn

0.5
i

∑
j=0

i

∑
k= j

(ẋxx j −J jq̇qq)www jk(ẋxxk −Jkq̇qq)+0.5q̇qqT
δδδ q̇qq},

where www jk stands for the part of the matrix WWW corresponding to the tasks j and k. In this
solution all tasks are resolved at once, and thus the weighted IK provides a soft task hierarchy,
where the elements of the matrix WWW describe the tasks importance.

When the strict tasks hierarchy has to be imposed, the null-space projection method [104]
can be used to resolve the IK problem. In this method, the vector of joint space trajectories
respecting m tasks (q̇qqm) is computed with a recursive formula [104]

∀i ∈ {1, . . . ,m} : q̇qqi = q̇qqi−1 +(JiPPPi−1)
+(ẋxxi −Jiq̇qqi−1), (3.47)

3.3 Motion Control 29

where Ji ∈ ℜ|Ti|×n symbolises the ith task Jacobian, PPPi−1 = III − J+1,...,i−1J1,...,i−1 stands
for the projection matrix to the null-space of all the higher-priority tasks, and JT

1,...,i−1 =

[J1, . . . , Ji−1]. This task is equivalent to solving a recursive set of optimization problems
that read

∀i ∈ {1, . . . ,m} :

minimise
q̇qq∈Si

0.5||ẋxxi −Jiq̇qq||2

with Si = {q̇qq : minimise
Si−1

0.5||ẋxxi−1 −Ji−1q̇qq||2},

with initial condition S0 = ℜn, and the final task

minimise
q̇qq∈Sm+1

0.5q̇qqT q̇qq

with Sm+1 = {q̇qq : minimise
Sm

0.5||ẋxxm −Jmq̇qq||2}.

Finally, to consider the task constraints the quadratic programming task can be solved
directly

minimise
q̇qq∈Sm+1

0.5||q̇qq||2 +0.5||www||2

where Sm+1 = {q̇qq : minimise
Sm

0.5||ẋxxm −Jmq̇qq||},

subject to AAAq̇qq+aaa = 0,

BBBq̇qq−bbb ≤ 0,

CCCq̇qq− ccc ≤ www,

where AAA, aaa symbolise the equality constraints, BBB, bbb note hard inequality constraints, CCC, ccc

represent the soft inequality constraints and www stands for the slack variables.
To provide a position tracking through the IK schemes the task desired velocity ẋxx is

set-up based on the tracking error
ẋxx = KKKeee, (3.48)

where KKK ∈ ℜ|T| stands for the tunning gain, and eee = xxxd − xxx symbolise the tracking error.
If a general quaternion is defined as ρρρ = [w, vvvT]T where w ∈ ℜ1 denotes the quaternion

scalar part, and vvv ∈ ℜ3 stands for the quaternion vector part, the orientation tracking error
(eeeq ∈ ℜ3) can be defined as [105]

eeeq = wdesvvv−wvvvdes + vvvdes × vvv, (3.49)

30 Background

where ρρρ , ρρρdes symbolise the current/desired orientation, respectively.

3.3.4 Second-order Inverse Kinematics

In this section, extension of the IK control to the second-order kinematics is outlined.
A simple solution to the second-order inverse kinematics problem reads [103]5

q̈qq = J+(ẍxx− J̇q̇qq),

that is equivalent to solving the optimization problem

minimise
q̈qq∈ℜn

0.5(J+(ẍxx− J̇q̇qq))T (J+(ẍxx− J̇q̇qq)).

Similarly, to the first-order kinematics the damped and weighted Jacobian inverse as well as
the task prioritization can be used with the problem description being analogous to the first
order kinematics.

3.4 Twist-Swing Decomposition

In this section, quaternion decomposition into two orthogonal rotations is discussed, and the
swing-twist decomposition method is presented.

Any quaternion (ρρρ ∈ SO3) can be decomposed into the twist quaternion (ρρρ |a) describing
the rotation around a given axis (aaa ∈ ℜ3) and the complementary swing quaternion (ρρρ |Pa)
comprising of the remaining rotation [106]6. For each quaternion two – twist-swing and
swing-twist – decompositions can be defined. In the former case the twist rotation is
applied first, in the latter case – second. For a quaternion (ρρρ = [ρw, ρρρT

a]
T , where ρw ∈ ℜ1

symbolises the quaternion scalar and ρρρa ∈ ℜ3 refers to the quaternion vector, the twist-swing
decomposition reads

ρρρa|a = aaa
aaaT ρρρa

||aaa||
√

ρ2
w||aaa||2 +aaaT ρρρaaaaT ρρρa

;

ρw|a =
||aaa||2ρw

||aaa||
√

ρ2
w||aaa||2 +aaaT ρρρaaaaT ρρρa

;

ρρρ |Pa = ρρρρρρ
−1
a

1
||ρρρa||

. (3.50)

5Second-order Inverse Kinematics section is based on [103].
6Twist-Swing Decomposition section is fully based on [106]

3.5 CENTAURO robot 31

The swing-twist decomposition in terms of the twist-swing decomposition reads

ρρρ |a = ρρρ
−1

ρρρ
−1
|a

1
||ρρρ||||ρρρ |a||

;

ρρρ |Pa = ρρρ
−1
|Pa

1
||ρρρ |Pa||

.

(3.51)

3.5 CENTAURO robot

In this section the CENTAURO robot hardware is presented, based on [1]. First, the robot
kinematic structure is described, then the robot actuation and sensors are briefly laid out, the
robot computational units are given, and the robot mobility is discussed at the end.

The platform discussed in this work is a wheeled centaur-like robot composed of a
humanoid upper-body mounted on a quadrupedal lower-body, as shown in Fig. 3.4. Ad-
ditionally, a 3-DoF head structure composed of a yaw-pitch chain and a continuous yaw
DoF has been mounted on the upper-body. The upper-body comprises of a dual-arm robotic
system with seven DoFs per manipulator relying mostly upon an anthropomorphic design.
The shoulder complex is constructed on the basis of a 3-DoF pitch-roll-yaw arrangement
implementing extension-flexion, adduction-abduction and humeral roll motions, respectively.
It is connected to the forearm through the upper arm and an elbow joint performing a flexion-
extension DoF. The forearm apparatus is formed upon a 3-DoF yaw-pitch-yaw configuration
replicating the wrist motions required for orienting the end-effector. The length and mass
considered for each of the arms are 72.7 cm and around 10 Kg; the robot width along the
shoulders as well as the pelvis width are 61 cm.

The pelvis base encompassing the first actuator of the legs is connected to the arms
through the torso section composed of a yaw joint. The lower-body consists of four 6-DoF
legs with kinematics arrangement selected according to a spider-like configuration, see
Fig. 3.4. At the end of a 3-DoF yaw-pitch-pitch leg structure, a pitch-yaw ankle is mounted
with a wheel at the end-effector. The robot height varies from 112 to 171 cm depending on
the leg configuration.

To exploit the high fidelity torque control characteristics and physical robustness required
for interaction with environment, the robot is actuated by SEAs as described in Section 3.2.7.
Depending on the expected joint torque requirement five actuators models of an increasing
pique torque has been used. The 19/20-bit magnetic encoders measure the absolute link-side
joint positions, and the joint torques measurements are provided by the Strain-Gauge or the
Deflection-Encoder sensors [107]. Two lower-level controllers have been implemented: the

32 Background

Figure 3.4 On the left: The CENTAURO robot hybrid mobility manipulation platform. On
the right: leg kinematic structure of the CENTAURO robot.

position control and impedance/torque control for all joints with exception of the velocity
controlled wheels and the velocity controlled continuous head DoF.

The CENTAURO robot battery is placed in the robot pelvis. The robot is equipped with
two ZOTAC-EN1070K PCs with high-performance GPUs. One is responsible for the system
high-level control and motion planning while the other processes the perception data. Finally,
a COM Express conga-TS170 embedded computer with Intel Core i7-6820EQ CPU runs
with XENOMAI RT and provides the real-time control layer, and Netgear Nighthawk X10
R900 router ensures the wireless communication with the pilot.

3.5.1 Kinematics Analysis of CENTAURO Robot

The CENTAURO robot lower-body consists of nl = 25 links and na = 24 actuated DoFs (with
p = 4 legs of nleg = 6 DoFs each). The contact point assumption (Section 3.2.2) constrains
the position of the four legs end-effectors, and thus each leg in contact with the ground can
be modelled to have an additional 3-DoF spherical joint attached at the end-effector. The
overall system kinematics sums up to na +3 f DoFs, and the system mobility reads

6nl −5na −3 f =

21 f = 3

18 f = 4
,

3.6 Conclusion 33

where f ∈ N represents the number of legs in ground contact. Assuming a full floating base
state controlled, 15/12 redundant DoFs remains for f = 3/4 legs in ground contact.

During stable motion a leg, in contact with the ground, moves with NSPR assumption
(Section 3.2.2), so that the end-effector point in ground contact is constrained to remain still
with respect to the ground. The set of constraints can be expressed in the standard first-order
kinematics form

oẋxxcp = Jcsq̇qq = 0, (3.52)

with Jcs ∈ ℜ3 f×n representing constraints Jacobian. Rows associated with ith leg read as

∀i ∈F :

Jcsi =

[
Jcsi,qqqb Jcsi,qqq1 Jcsi,qqq2 . . . Jcsi,qqqp

] (3.53)

where Jcsi,qqqb ∈ ℜ3×nb denotes the part of Jacobian associated with floating base coordinates,
and Jcsi,qqqk ∈ ℜ

3×nleg stands for the part of Jacobian related to the kth leg DoFs. Then

∀k ∈ {1, . . . , p}−{i} : Jcsi,qqqk ≜ 000. (3.54)

With (3.52), (3.53) and (3.54) one can show that

Jcsi,qqqb q̇qqb =−Jcsi,qqqi q̇qqi,

i.e., a ground contact defines three DoFs per leg if the floating base state is imposed. Thus,
the CENTAURO robot kinematics allows to control a floating base, 6 DoFs of a free leg and
3 DoFs of a leg in contact with the ground.

3.6 Conclusion

In this chapter, theoretical background that forms a basis for this thesis contribution has been
presented, and the hardware used in this work has been outlined. First, the mathematical
definition of the non-holonomic systems has been recalled, then the modelling of the robotic
structures has been discussed starting from the basic rigid-body point kinematics on the
example of the contact point, through modelling of the standard wheeled mobile robots,
hybrid legged-wheeled robots and legged robots, to modelling of the Series Elastic Actuators.
Finally, control methods in robotics has been described including the gravity compensation,

34 Background

impedance control, and the whole-body inverse kinematics. At the end the CENTAURO
robot hardware has been outlined, and the robot mobility has been discussed.

Chapter 4

Simulation of the CENTAURO robot

Simulators, as a necessary mean for the development of dynamical systems, permit the
risk-free evaluation and tuning of new control methods before their implementation on the
real systems.1 As a result, simulation tools can significantly accelerate the system control
and software development and reduce the maintenance time and cost of potential damages
during the early stage of testing. Hence, it is essential to exploit a comprehensive framework
comprising all individual elements of the real platform. The increasing attention paid to
robotics during the past four decades motivated the development of a large number of
simulation tools for this class of dynamic systems. Furthermore, the communication of a
higher-level architecture with a robot and/or simulator requires an operating platform capable
of incorporating different control architectures while interacting with various devices. To
this end, middleware software layers have been developed and exploited as an important
component of the simulation, interfacing and control of robotics systems.

This chapter presents a simulator framework for a SEA (Section 3.2.7) actuated CEN-
TAURO robot (see Section 3.5) where the ROS middleware software and Gazebo simulator
are exploited. While the passive dynamics imposed by the inclusion of SEA has significant
effect on the system behaviour, it is usually neglected since the dynamics associated with
motors is not embedded in the Gazebo simulator by default. As a result, integration of the
flexible element into joints needs to be done indirectly. In this chapter, possible solutions are
explored and the development of a custom control plugin consisting of the dynamics brought
by the passive compliance is proposed. Moreover, the customisation of the control plugin
enables the capability of managing ROS topics in a way that a computationally efficient

1Work included in this chapter has been presented at the ICINCO 2016 conference with the publication titled
"A Compliant Actuation Dynamics Gazebo-ROS Plugin for Effective Simulation of Soft Robotics Systems:
Application to CENTAURO Robot" by Malgorzata Kamedula, Navvab Kashiri, Darwin G. Caldwell, and Nikos
G. Tsagarakis.

36 Simulation of the CENTAURO robot

communication can be achieved. The robot linkage representation is structured in such a way
so that the robot is split into five sections, and the system can operate user-defined section(s)
independently.

The rest of the chapter is organised as follows: Section 4.1 delineates the architecture
of the simulator, including the modular description of the robot linkage structure, and the
proposed compliant dynamics/control plugin. Section 4.2 demonstrates the simulation results
validating the accuracy of the approach propounded in this work, while Section 4.3 presents
the conclusion.

4.1 Simulator Design

The ROS middleware has been exploited for the development of the CENTAURO robot
simulation platform. It is due to the modularity of this software, and the variety of its
supported programming languages, e.g. python, C/C++ and Matlab, that results in a broad
usage by the robotics community. The robot simulator is built upon the Gazebo software
due to its extensibility through various plugins, broad customisation options, flexible choice
of the physics engine and integration with the ROS middleware; thanks to its open-sources
architecture. To integrate the simulator environment with the Matlab® software, the Robotics
System Toolbox™ is used. A pack of bridge files is generated to manage the specific
messages and services corresponding to the robot. Table 4.1 summarizes the simulation
software requirements2.

Table 4.1 The simulator software requirements.

Dynamic Simulator Gazebo 5 or higher

Middleware ROS Indigo or higher

Operation System Ubuntu 14.04 or higher

Optional software Matlab 2015a or higher

Programming language C/C++, Python, Java, Matlab

2Simulations in this work are performed using a laptop with a processor of Intel® Core™ i5-5200U
4×2.2 GHz, 8 GB RAM, and a Graphics card of GeForce 920M.

4.1 Simulator Design 37

4.1.1 URDF Model

Robot Linkage Representation

The Unified Robot Description Format (URDF) representation of the robot is structured
according to the robot description (presented in Chapter 3.5), see Fig. 4.1, and the Gazebo
simulator associated with the robot linkages is accordingly generated. The robot structure
is represented by means of a tree topology with a base link at the pelvis centroid. The tree
is constructed on the basis of five branches, four of which are assigned to legs, while the
fifth branch establishes the upper-body by connecting the torso to three descendant branches
associated with the arms and the robot head.

System Modularity

As the development of control algorithms can be facilitated by an initial implementation on a
section of the robot, the robot is structured by six separate sections: pelvis, torso, left and
right arms, legs and head. As a result each section can be included or excluded in simulator
and control scheme at will. Nevertheless, when an ancestor of a section does not spawn, the
descendant branches are disabled automatically; for instance, head can be included provided
that torso is not excluded. Furthermore, while the pelvis is connected to a floating-based
system by default, it turns to a stationary base when a user grounds the pelvis at will or
disables the legs, and the torso can be loaded as a revolute or a fixed joint. The active sections
of the structure are therefore selected by setting up the main launch file when assigning
true/false arguments for different sections, see Fig. 4.2.

Furthermore, developed simulator supports a few visualisation and collision models that
differ in the complexity of an underlying geometry, and thus a computational power they
require to render. Each implemented visualisation model is automatically available as a
collision model, and vice versa. Currently three models are available: a full mesh files, a
simplified mesh files3 and convex hulls, see Fig. 4.3. Finally, a few different end-effectors
have been implemented and integrated with the CENTAURO robot simulator; it includes
a simulation with no end-effector attached, a stick end-effector and three different robotic
hands: SoftHand [108], HERI hand [109] and Schunk Hand4. End-effectors for left and right
arms are decoupled, and any of the implemented end-effectors can be attached to each hand;

3The simplified lightweight mesh files are supported thanks to the MeshLab script provided by University
of Bonn.

4Schunk Hand simulation has been developed and provided by the University of Bonn.

38 Simulation of the CENTAURO robot

PELVIS

WHEEL3

ANKLE3_PITCH

ANKLE3_1

ANKLE3_YAW

HIP3_YAW

HIP3_1

HIP3_PITCH

HIP3_2

KNEE3_PITCH

KNEE3

TORSO

q33
ARM2_1

ARM2_2

ARM2_3

ARM2_4

ARM2_5

ARM2_6

ARM2_7

J_ARM2_1

J_ARM2_2

J_ARM2_3

J_ARM2_4

J_ARM2_5

J_ARM2_6

J_ARM2_7

q35

q36

q37

q38

q39

q34
q26

ARM1_1

ARM1_2

ARM1_3

ARM1_4

ARM1_5

ARM1_6

ARM1_7

J_ARM1_1

J_ARM1_2

J_ARM1_3

J_ARM1_4

J_ARM1_5

J_ARM1_6

J_ARM1_7

q27

q32

q31

q30

q29

q28

q25

q4

HIP_YAW_4

HIP_4_1

HIP_PITCH_4

q8

KNEE_4

KNEE_PITCH_4

ANKLE_4_1

q12

ANKLE2_PITCH

ANKLE2_1

ANKLE2_YAW

WHEEL2

HIP2_YAW

HIP2_1

HIP2_PITCH

HIP2_2

KNEE2_PITCH

KNEE2

q6

q10

HIP1_YAW

HIP1_1

HIP1_PITCH

HIP1_2

KNEE1_PITCH

WHEEL1

KNEE1

ANKLE1_PITCH

ANKLE1_2

ANKLE1_YAW

q1

q5

q9

q3

q7

q11

WORLD

q06

q05

q04

q03

q02

q01

TORSO_YAW

CENTER

q2

ANKLE_PITCH_4

ANKLE_4_2

ANKLE_YAW_4

WHEEL_4

BASE

LEFT FRONT LEG LEFT REAR LEGRIGHT FRONT LEGRIGHT BACK LEG

RIGHT ARM LEFT ARM
NECK_YAW

NECK_1

NECK_PITCH

NECK_2

J_VELODYNE

VELODYNE

HEAD

HIP_4_2

ANKLE2_2

ANKLE1_2

ANKLE3_2

q16

q20

q24

q14

q18

q22

q13

q17

q21

q15

q19

q23

q34

q35

q36

Figure 4.1 URDF file structure for the CENTAURO robot.

4.1 Simulator Design 39

Figure 4.2 Examples of the CENTAURO robot simulator with different parts of the robot
rendered.

40 Simulation of the CENTAURO robot

Figure 4.3 Examples of the CENTAURO robot simulator running with different visualisation
and collision models.

4.1 Simulator Design 41

Figure 4.4 Examples of the CENTAURO robot upper-body simulator initialized with different
end-effectors. On the left: The CENTAURO robot upper-body without an end-effector
attached to the left arm, and a stick end-effector attached at the end of the right arm. On the
right: The CENTAURO robot upper-body with HERI hand attached at the end of the left arm
and SoftHand attached at the end of the right arm.

Fig. 4.4 shows the CENTAURO robot upper-body simulation initialized with different left
and right arm end-effectors.

4.1.2 Control Plugin

Multiple Joints Controller

The “ros_control” packages provide the controller interfaces/managers handling the con-
nection between the ROS platform and the Gazebo software (or the real hardware). Given
a robot with na actuated DoFs, when one uses the default “ros_controllers” packages, the
number of threads concerning the lower-level controller is 2na as each DoF demands a couple
of threads for sending and receiving data. Such an approach results in many threads when a
robot possesses a large number of DoFs such as humanoids, quadrupeds and centaur-like
robots. However, it is burdensome for a system to coordinate executions of numerous small
threads; as the large number of threads aggravates system performance and elevates hardware

42 Simulation of the CENTAURO robot

requirements. To address such a potential problem, a control plugin dedicating only two
threads to the lower-level of multiple joint controllers of the robot has been developed, while
guaranteeing the user-friendly and independent control of individual joints, besides ensuring
the synchronisation of data sent/received to/from all DoFs.

The control plugin is structured with two non-real-time ROS topics: the “command”,
and the “state”. One thread manages the data transmitted on the former, that includes three
input variables to be subscribed to the controller associated with each DOF. The other thread
takes care of the data published to the latter, that comprises a set of output variables. The
input variables are reference position and velocity values as well as a centralized torque
command, and the output signals are motor-side position and torque states. Moreover, the
plugin incorporates five constant gains for each DOF to be set through the ROS service
and/or through the ROS parameter server during the controller initialisation 5.

Furthermore, to facilitate the tuning and debugging stages which requires full state
feedback of joints, a debugging mode is defined to operate in another thread. For a user-
defined group of joints, a set of additional data is subscribed to another ROS topic, named
“debug”. It includes the motor velocities, transmission torques, and position references,
as well as position/velocity values of links when received at the controller. The group of
joints whose additional data is to be monitored is assigned by means of the ROS parameter
server and/or a ROS service entitled “update_print”. To set/read the input/output states
corresponding to different joints, a unique number is assigned to each joint and is provided
for the user by a ROS service “get_joint_names”. It is also used for allocating the set of
joints whose data is read in debugging mode.

The data flow in the system is displayed at Figure 4.5 showing rqt_graph for the simulation.
It can be seen that the simulator operates two types of control plugins associated with wheels
and compliant joints, named “wheel_controller” and “flexiblejoint_controller”, respectively.
Thus, support for the multiple joints through the developed ros_control controller decreases
the number of threads required to control the 42 DoFs CENTAURO robot from 84 to 4 in
the normal operation mode and 6 in the debugging mode, while providing the additional
motor-side state feedback.

5Although the control law (3.39) includes only two gains, the implementation of more sophisticated control
schemes such as [110] requires a larger number of gains.

4.1 Simulator Design 43

Figure 4.5 rqt_graph of a full simulation depicting system data flow.

44 Simulation of the CENTAURO robot

Series Elastic Actuator Module

SEAs powers the CENTAURO robot links, while the inclusion of compliance into drive
units has not been taken into account in the Gazebo software explicitly. Possible solutions
addressing this deficiency are listed as follows

1. Addition of an extra DOF per joint replicating the motor-side dynamics while adding
spring–damper forces to link-side joints;

2. Use of a ros_control transmission interface;

3. Employment of a Gazebo model plugin;

4. Definition of an independent ROS node simulating compliant actuators;

5. Incorporation of compliant system dynamics into a real-time controller module on the
basis of “ControllerBase” plugin.

Solution 1, however, doubles the number of DOFs that increases the computational
burden of the system to a great extent when the robot possesses a large number of DOFs. As
for solutions 2 and 3, they cannot directly propagate the motor-side states to the controller
while maintaining the minimal control functionality. Solution 4 imposes an unknown delay
to the system due to the inclusion of a non-real-time node. It contravenes the synchronisation
of motor-side and link-side states, that results in instability of the dynamical system. Hence,
solution 5 is selected for the implementation of the compliant actuator as the control scheme
is implemented in a real-time module, and the synchronisation of full state feedbacks is
therefore guaranteed.

SEA Module Development

The implementation of the SEA dynamics in the control plugin requires a digital form of
the corresponding equations. To this end, (3.32) and (3.33) need to be discretised. Since
the afore-said equations are related to a set of linear time-invariant systems, they can be
expressed by

θ̈θθ [n] = B−1
m (τττm[n]−Dmθ̇θθ [n]− τττ t [n]), (4.1)

τττ t [n] = Kt(θθθ [n]−qqq[n])+Dt(θ̇θθ [n]− q̇qq[n]), (4.2)

when the Euler method is used. Similarly, the control law, e.g. (3.39), can also be expressed
in a discrete form from which the motor torque τττm can be derived. The motor-side angular

4.1 Simulator Design 45

Link-side dynamics

Controller

+
-

Desired position,
Desired velocity, &
Gravity compensation

+
-

+

-

ROS
non real-time gazebo_ros_controlgazebo_ros_control

ROS topic
joint_states

Kt+Dts

Bms2+Dms
1

q

τt

Motor-side dynamics

τm

θ

F(s)

ros_control
custom plugin

gazebo

ROS topic
command

ROS topic
state

Kp+Kds

g(qd(t))

+

[θd,θd](t)
.

ros_controllers
joint_state_controller

Figure 4.6 Structure of SEA module model and its integration.

accelerations θ̈θθ can therefore be computed from (4.1) with the transmission torque τττ t given
by (4.2). The motor-side positions and velocities are thus calculated from the integrations of
the acceleration. In this work, the Euler integration method is exploited due to the simplicity
of implementation.

From (4.2), it can be observed that the accuracy of the simulation results depends on the
both motor-side and link-side data. These readings therefore need to be synchronised in time
whereas they are provided by two different sources; the link feedback is given by Gazebo
meanwhile the motor-side data is generated in the ROS control plugin. The data flow between
the afore-stated sources needs to be designed in such a way so that delays in the data flow
that can disturb the synchronisation of the readings are avoided. Hence, the “ros_control”
plugin time is coordinated with the Gazebo time. Depending on the stiffness of the passive
compliance element, the dynamics of the system can evolve in different frequencies. Discrete
representation of such a dynamic system may then cause numerical instability if the sampling
frequency fs used for the discretisation is too low to include the major dynamics variations.
Since the energy stored in a discrete system within one sample time is presumed to be
constant, the spring motion can converge to a stable state provided that the sampling time
is sufficiently small to support this assumption. The simulation of dynamical systems with
higher impedance then requires smaller time steps.

46 Simulation of the CENTAURO robot

Figure 4.7 Screen-shot from the rrbot gazebo simulation.

The functionality of the simulator in terms of stability and accuracy can therefore depend
on the sampling frequency, while it is essential to set the control loop frequency equal to that
of the real hardware, so that the results extracted from simulations are comparable with that
from experiments on the robot. On the other hand, the controller and the actuator dynamics
are implemented at the same thread, and a change in the system sampling frequency fs affects
the controller frequency fc, while the later may need to be set lower than the former. To this
end, the control law setting the motor torque is revised in a way that the motor torque τττm is
updated at a user-defined frequency fc. It is expressed as follows

τττm[n] =

τττm[n−1] ⇐ t mod(

1

fc
)> ε

τττcontroller[n] ⇐ t mod(
1

fc
)< ε

(4.3)

where t is a simulation time, ε is a small constant, and the operator amod(b) gives the
remainder after division of a by b.

Fig. 4.6 depicts the structure of the simulator with the proposed control plugin, in
which the data flow and the role of each part of the simulation framework are also de-
noted. The linkage dynamics (3.31) is computed by the Gazebo software, and the real-time
“gazebo_ros_control” bridge sends the link states to the control plugin and the “joint_state_-
controller” from “ros_controllers” packages. The “joint_state_controller” publishes the data
to a non-real-time ROS topic named “joint_states” for higher-level control schemes. The
real-time “gazebo_ros_control” bridge sends the input torques, i.e. the transmission torques
τττ t , to Gazebo from the “ros_control” plugin consisting of motor-side dynamics (3.32), trans-
mission unit (3.33), and the controller (3.39). The desired motor positions and the gravity
compensation torques are sent to the control plugin through the non-real-time ROS topic
“command”, while the ROS topic “state” published the motor states.

4.2 Results 47

-0.05

0

0.05

0.1

φ
[r
a
d
]

φmat

φgaz -0.02

0

0.02

0.04

φ
[r
a
d
]

φmat

φgaz

0 2 4 6 8 10

time [s]

-0.002

0

0.002

0 2 4 6 8 10

time [s]

-0.002

0

0.002

Figure 4.8 Time history of transmission displacement for a given step reference: low
stiffness on the left, default stiffness on the right. Bottom plots show the errors between two
simulations.

-0.01

0

0.01

0.02

φ
[r
a
d
]

φmat

φgaz

0 2 4 6 8 10

time [s]

-0.002

0

0.002

Figure 4.9 Time history of transmission displacement for a given step reference for the high
stiffness set-up. Bottom plot shows the errors between two simulations.

4.2 Results

4.2.1 Comparison with Matlab

To validate the above implementation, a comparison between a Gazebo-ROS simulation
and a Matlab simulation is presented. To this end, simulation of the last joint-link of the
rrbot manipulator shown at Fig. 4.7, available in “gazebo_ros_demos” repository, when
powered by a SEA is carried out. The controller gains are set to Kp = 1000 and Kd = 0 with
a saturation limit of τmax = 33 N, and the SEA transmission parameters are Kt = 180 Nm/rad
and Dt = 0.5 Nms/rad. The motor-side inertia and damping reflected to the link-side through
the gearing system are Bm = 0.0742 Kg/m3 and Dm = 24.768 Nms/rad, where the motor
damping value includes both the physical damping and the back-EMF effect. The Matlab

48 Simulation of the CENTAURO robot

-0.5

0

0.5

1

q
[r
a
d
]

qd
qmat

qgaz

-40

-20

0

20

40

τ
m
[N

m
]

τm mat

τm gaz

Figure 4.10 Results from the test comparing the proposed SEA dynamics implementation
with the continuous Matlab simulation. On the left side there are the link positions and
velocities, on the right there are the motor torques. Bottom plots show the errors between
two simulations.

-5

0

5

τ
t
[N

m
]

τt mat

τt gaz

Figure 4.11 Results from the test comparing the proposed SEA dynamics implementation
with the continuous Matlab simulation the transmission torques. Bottom plot shows the
errors between two simulations.

4.2 Results 49

Figure 4.12 Evolution of CENTAURO robot posture. On the left there is the initial position,
in the middle there is the spider-like posture, on the right is the mammal-like pose.

simulation was done with a continuous PD controller when using a fixed-step solver at 1 kHz,
and the Gazebo simulation was executed using the Bullet physics engine with fc = fs = 1 kHz.
Fig. 4.8 and Fig. 4.9 illustrate the evolution of the transmission displacement when a one
radian step is sent as the reference trajectory for the above-said transmission impedance
values, in addition to that for two other transmission impedance sets with Kt = 100 and
500 Nm/rad when Dt = 0.3 and 1.5 Nms/rad, respectively. The second simulation comparison
is executed when the reference trajectory is composed of a 0.1 rad/s ramp, a negative step
of 1 rad and a chirp signal described by 0.5sin(0.02πt +0.004πt2). Fig. 4.10 and Fig. 4.11
demonstrate the evolution of positions and torques over time when using two simulators with
default stiffness/damping values. It shows that the ROS-Gazebo simulator reproduces the
Matlab simulator results with 99.9% matching in link position data when the corresponding
maximum error and the normalized root mean squared error (NRMSE) are 1.2e-3 and 4.5e-
7 rad, respectively. The transmission torque and motor torque may instantaneously show
differences up to 0.12 and 2.11 Nm, although the corresponding NRMSE values of 3.6e-5
and 5.3e-4 Nm expresses that such a high error occurs only in a few moments.

4.2.2 Whole-body Simulation

A simulation of the whole robot is presented in this section, when the robot moves from an
initial position to a spider-like posture providing larger support polygon and then a mammal-
like pose more suitable for dynamic walking tasks. This simulation has been performed on
the prototype CENTAURO robot kinematics with the 2-DoFs yaw-pitch torso, two 7-DoFs
arms with the same kinematic arrengment as in the final the CENTAURO robot described
in Section 3.5, and four 3-DoF yaw-pitch-pitch legs with two sets of wheels attached at the
CENTAURO robot hip and knees, see Fig. 4.12. The simulation was executed at fc = 1 and

50 Simulation of the CENTAURO robot

fs = 2 kHz using the Bullet physics engine. Simulation results of the shoulder and elbow
joints of one arm and all joints of one leg are illustrated in Fig. 4.13, Fig. 4.14, Fig. 4.15 and
Fig. 4.16. It can be seen that joints which are highly load by the gravity exhibit non-negligible
steady state error resulting from low impedance gains of the controller. For instance, the hip
yaw joint is not under the gravitational torque, and therefore the position error can converge
to zero, while the pitch joints present considerable errors.

4.3 Conclusion

This chapter presented a simulator for the CENTAURO robot powered by SEAs, utilising
a Gazebo-ROS framework. While the incorporation of passive elements into the robot
actuators using conventional approaches requires the inclusion of extra DoFs, the proposed
approach implements the passive dynamics on the control plugin so that the control scheme
can have access to both motor-side and link-side readings simultaneously. To achieve this, the
“gazebo_ros_control” bridge is focused on, and a custom control plugin is designed in such a
way that the dynamics of motor-side and link-side are synchronised. A simulation comparison
with Matlab approving the accuracy of the introduced architecture is demonstrated. Finally,
the proposed control plugin is exploited in the simulation of the prototype CENTAURO robot
possessing 36 DoFs. In the end, it should be noted that the approach propounded in this work
can be employed for the incorporation of the dynamics of different actuators such as variable
impedance actuators (VIAs) or clutch-based drive units into various robots. The simulation
framework presented in this chapter has been used in the development of controllers proposed
in Chapter 7 and Chapter 8 for the initial simulation validation.

4.3 Conclusion 51

0 20 40

time [s]

-0.2

-0.1

0

0.1

0.2

0.3

q,
q d

[r
a
d
]

-0.5

0

0.5

q̇
[r
a
d
/s
]

qd
q
q̇

0 20 40

time [s]

0

0.2

0.4

0.6

0.8

1

q,
q d

[r
a
d
]

-1

-0.5

0

0.5

1

1.5

q̇
[r
a
d
/s
]

qd
q
q̇

0 20 40

time [s]

-0.2

-0.1

0

0.1

0.2

0.3

θ
[r
a
d
]

-0.5

0

0.5

θ̇
[r
a
d
/s
]

θ

θ̇

0 20 40

time [s]

0

0.2

0.4

0.6

0.8

1

θ
[r
a
d
]

-1

-0.5

0

0.5

1

1.5

θ̇
[r
a
d
/
s]

θ

θ̇

0 20 40

time [s]

-100

-50

0

50

100

150

τ
m
[N

m
]

-60

-40

-20

0

20

40

τ
t
[N

m
]

τm

τt

0 20 40

time [s]

-200

-100

0

100

200

τ
m
[N

m
]

-10

0

10

20

30
τ
t
[N

m
]

τm

τt

Figure 4.13 The whole-body simulation results for the left arm: the reference and actual link
positions, and link velocities on top; the motor positions and velocities in the middle; the
motor and transmission torques at the bottom – shoulder joint on the left; elbow joint on the
right.

52 Simulation of the CENTAURO robot

0 10 20 30 40 50

time [s]

-0.5

0

0.5

1

1.5
q,
q d

[r
a
d
]

-0.2

0

0.2

0.4

0.6

0.8

q̇
[r
a
d
/
s]qd

q
q̇

0 10 20 30 40 50

time [s]

0

0.5

1

q,
q d

[r
a
d
]

-1

-0.5

0

0.5

1

q̇
[r
a
d
/
s]

qd
q
q̇

0 10 20 30 40 50

time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

q,
q d

[r
a
d
]

-1

-0.5

0

0.5

q̇
[r
a
d
/
s]

qd
q
q̇

Figure 4.14 The whole-body simulation results for the left front leg: the reference and actual
link positions, and link velocities – hip yaw joint on the top; hip pitch joint in the middle;
knee pitch joint at the bottom.

4.3 Conclusion 53

0 10 20 30 40 50

time [s]

-0.5

0

0.5

1

1.5

θ
[r
a
d
]

-0.2

0

0.2

0.4

0.6

0.8

θ̇
[r
a
d
/
s]θ

θ̇

0 10 20 30 40 50

time [s]

0

0.5

1

θ
[r
a
d
]

-1

-0.5

0

0.5

1

θ̇
[r
a
d
/
s]

θ

θ̇

0 10 20 30 40 50

time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

θ
[r
a
d
]

-1

-0.5

0

0.5

θ̇
[r
a
d
/
s]

θ

θ̇

Figure 4.15 The whole-body simulation results for the left front leg: the motor positions
and velocities – hip yaw joint on the top; hip pitch joint in the middle; knee pitch joint at the
bottom.

54 Simulation of the CENTAURO robot

0 10 20 30 40 50

time [s]

0

50

100

150
τ
m
[N

m
]

-40

-20

0

20

40

τ
t
[N

m
]

τm

τt

0 10 20 30 40 50

time [s]

-400

-200

0

200

400

τ
m
[N

m
]

-100

-50

0

50

τ
t
[N

m
]

τm

τt

0 10 20 30 40 50

time [s]

-300

-200

-100

0

100

200

τ
m
[N

m
]

-30

-20

-10

0

10

τ
t
[N

m
]

τm

τt

Figure 4.16 The whole-body simulation results for the left front leg: the motor and transmis-
sion torques – hip yaw joint on the top; hip pitch joint in the middle; knee pitch joint at the
bottom.

Chapter 5

Simplifying Operations in Locomotion -
Framework for Efficient Research

A functional robotic platform is a complex synthesis of different cooperating components.
Besides the robotic hardware, one of the key elements of the successful control application is
a reliable, flexible software layer. In this chapter, a software for a research in locomotion has
been developed.

Simplifying Operations in Locomotion - Framework for Efficient Research (SOL-FER)
has been developed as a part of this thesis to facilitate research in locomotion. It provides
a way to quickly try out ideas by maximizing the flexibility and reconfigurability of the
developed modules. It is achieved through the reconfigurable YAML files and a simple
end-user API. An abstraction layers for the robot kinematics and dynamics are provided, and
a communication layer that consists of the reconfigurable feedbacks/commands has been
developed. This communication layer is automatically loaded on the plugin initialization. The
configurable feedbacks/commands allow, for example, to run multiple cooperating plugins
simultaneously or to switch between the online/offline implementation of the module without
any source code modification, and thus without a need to recompile the code. Furthermore, the
software provides a unified interface for the non real-time ROS and the real-time XBotCore
middlewares. Thanks to the automatically generated plugins, the software can be moved
from the simulation to the hardware with one parameter change in the configuration file.

A Robot Points interface has been developed to simplify a definition of the locomotion
problems by providing a common interface for different robot characteristics and correspond-
ing Jacobians. With these elements defined through the common interface, a template class
has been developed to manage the elements together while ensuring access to individual
points if required.

56 Simplifying Operations in Locomotion - Framework for Efficient Research

This chapter is organized as follows: First, core components are presented in Section 5.1,
the middleware support and algorithms implementation through the SOL-FER are discussed
in Section 5.2, and a short summary is given in Section 5.3. Furthermore, the configuarition
examples and listings for the main interfaces are cited in Appendix B.

5.1 Core components

In this section, essential elements that create the SOL-FER are described. It inculdes the
hardware and kineamatic abstraction layer, and the mapping system described in Section 5.1.1.
The abstraction layer for robot dynamics is presented in Section 5.1.2. Then, the concept of
the Robot Points is proposed in Section 5.1.3; and Handler is introduced in Section 5.1.4
that also includes practical examples of the usage of the Robot Points/Handler structure.

5.1.1 Robot Structure

A key component of the developed system is a Robot structure that contains description of
the robot and its state. Furthermore, it coordinates the model and state updates. The Robot
kinematics is read from the URDF file, and the SOL-FER configuration file describes the
robot communication layer. Additionaly, the Semantic Robot Description Format (SRDF)
file can be provided to specify a robot subgroups and predefined joint-space states.

Robot Description

The robot is described with the rigid-body kinematic model provided by the RBDL library
[111], actuation type and state, gravity vector and state size. Furthermore, mappings between
the robot links, joints, state and actuators are provided.

Robot State

Elements of the robot state are split into two categories, the joint-space data and the Robot
Points that describe the higher-level characteristics of the robot, see Section 5.1.3. The former
is implemented through the State class that provides the position, velocity, acceleration and
torques interfaces by default; more interfaces can be added to each State online. The Robot
structure provides following joint-space states: the current link-side and motor-side states,
the desired state and the joint-space lower/upper limits. The Robot Points in the Robot
consist of the CoM, CoP, contact points positions and reaction forces.

5.1 Core components 57

Mapping system

Integration of various components is necessary in a functional robotic framework. While the
DoFs order in the SOL-FER corresponds to the DoFs order in the RBDL model, the external
components often adopt different conventions. To simplify integration of different elements
with the SOL-FER, Bidirectional Map class that allows to select and sort group of DoFs
between two conventions has been implemented. To improve flexibility of the developed
components, a few commonly used bidirectional maps are generated automatically at the
Robot initialization. It includes mappings between the full robot state and

• the RBDL model1;

• the actuated DoFs;

• the default state feedback2;

• the lower-level controller3.

Furthermore, since the order of DoFs in the RBDL model is used as a defualt for the
SOL-FER plugins, mappings between the robot state and different RBDL models can be
initialized from the external URDF files specified in the configuration file.4 This mechanism
is useful to integrate SOL-FER plugins that work with only part of the robot (e.g. arms for
manipulation plugins or lower body for the locomotion plugins). Finally, an API is provided
to add the Bidirectional Maps online.

Besides the Bidirectional Map, Unidirectional Map is implemented to allow user to
select a group of the robot DoFs (e.g. wheels, left arm). Unidirectional Map can be
predefined in the SRDF file through the group tag or added online.

5.1.2 Dynamic Model

Dynamic Model provides an abstraction layer for the robot dynamics. It computes three
components of the robot dynamics: the robot bias force, generalized inertia matrix and the
inverted inertia matrix. Two dynamic models have been implemented, a full constrained
robot dynamics (3.22) and unconstrained dynamics computed with the QR decomposition of
the constraints Jacobian (3.36).

1It is an identity map, it has been implemented to maintain the consistency in the interfaces.
2specific implementation depends on the middleware interface
3See footnote 2

4In Appendix B in Code B.1 the example SOL-FER configuration that defines the external RBDL maps is
given.

58 Simplifying Operations in Locomotion - Framework for Efficient Research

Since computation of the robot dynamics is numerically expensive, to decrease the
numerical cost of the integrated control scheme, a subscription-based update system has been
implemented. It allows to share the robot dynamic model between the different parts of the
program without recomputing it.

At the plugin initialization, each object that relies on the robot dynamics declares how
many times per loop each component of the robot dynamics is going to be called; these
declarations increase the call counter. The Update Manager counts the calls from the last
model update and upon the update request, it checks if the call counter has been exhausted.
As a result, it updates only elements that have been cleared since the last update; it also
prevents computations of the robot dynamics components that are not used by the plugin.
Thanks to this system, each component can be programmed as an independent module that
updates the dynamic model without consideration given to the order of the objects in the
final plugin. As a result, the components can be easily rearranged in/added to/removed from
the plugin.

5.1.3 Robot Points

Robot Point is an interface to simplify a definition of the locomotion problems by providing
a common interface for frequently used variables. It relies on the assumption that most of the
control problems can be described through a vector of values and a mapping matrix between
two spaces. E.g., rigid-body point can be described by the current position or tracking error
and the Jacobian mapping the element from the cartesian-space to the joint-space. The Robot
Points interface provides the basic algebraic operations between the different Robot Points
and update method.5 Through the Robot Points following elements are implemented

• Rigid Point Position,

• Rigid Frame Orientation,

• Rigid Body Spatial State,

• Linear/Angular/Spatial Velocity,

• CoM,

• CoP,

• SPV,
5The interface code is quoted in Appendix B at Code B.3.

5.1 Core components 59

• Constant Point,

• Point and Rolling Contacts,

• Point Difference,

• Point Norm.

5.1.4 Handler

With all elements defined through the Robot Point interface, a template class Handler has
been implemented. It provides methods to handle Robot Points updates as a group. It
generates a concatenated vector of Robot Points values and a concatenated matrix of Robot
Points mappings, and it ensures access to all individual Robot Points through the custom
iterators.

Together, Robot Points and Handler, create simple, yet powerful tandem that can, in
an easy, intuitive way, describe variety of robotics motion control problems. Thanks to
an extensive use of templates and simple interfaces, elements implemented through Robot
Points are reusable, and integrate naturally with the software previously developed with the
Robot Points/Handler pattern. For example, a simple one task inverse kinematics problem
(3.43) comes to Code 5.16. A more complex example is given at Code 5.2, where a pseudo-
code for implementation of the IK for the robot CoM tracking task and the position tracking
task of the robot hands relative to the torso is shown in Code 5.2. Note that the update
methods are the same in the two examples, and the reference task in Code 5.2 only adds
the task reference number. The declaration in Code 5.2 replaces the Robot Points with the
Handlers, and the Linear Point (Code 5.1) is replaced by the Robot Point (Code 5.2) to
support variety of tasks besides position tracking of a point on a rigid-body. The basic code
of the task initialization is the same in the both examples; however, in Code 5.2 dynamic
number of linear point tracking tasks is generated. Finally, note that in Code 5.2 the size of
the ’_tasks’ Handler is bigger than the number of tasks as it also contains the support Robot
Points for the relative tracking task. The order of the points in the ’_tasks’ Handler ensures
that all lower-level Robot Points are updated before the higher-level, dependent ones. This
chaining capability of the Handler update method allows to further expand the reusability of
the implemented Robot Points. In Appendix B, in Code B.2, additional example is given
for the program that computes the euclidean norm between the robot hands and the robot
reference point.

6The C++ pseudo-code in the examples accurately represents SOL-FER API.

60 Simplifying Operations in Locomotion - Framework for Efficient Research

1 protected: // variables declaration
2 // Robot Point that computes the position and Jacobian of the

point on the rigid-body↪→

3 LinearPoint _task;
4 // Constant Robot Point that implements the 'set' method to set

the state by hand↪→

5 Constant _reference;
6 // Minus Robot Point that subtracts two Robot Points
7 Minus _ik;
8 public:
9 // memory allocation, initialize inverse kinematics for the

end-effector tracking↪→

10 function init(Robot& robot, string pointName = "EndEffectorName"){
11 // create the end-effector position point
12 _task = LinearPoint(pointName, robot);
13

14 // create a reference point of a size to the task '_task'
15 RobotPoint _reference = Constant(_task.size());
16 // set the reference jacobian to zero for the Minus robot point

update method↪→

17 _reference.set(Matrix::Zero(_reference.rows(),
_reference.cols()));↪→

18

19 // initialize the tracking error computation
20 RobotPoint _ik = Minus(_task, _reference);
21 }
22

23 function update(){ // control loop
24 // update current end-effector state
25 _task.update(true); // true means update jacobian
26

27 // update an inverse kinematics
28 _ik.update(); // jacobian_update=true
29 _q = inverse(_ik.getJacobian())*_ik.getState();
30 }
31

32 // update the reference
33 function reference(const Vector& x_des){ _reference.set(x_des);}

Listing 5.1 Pseudo-code for the Robot Points, Handler implementation of the IK scheme
for the point position tracking, with example initialization for and user specified end-effector.

5.1 Core components 61

1 protected: // variables declaration
2 // Handler of Robot Points to support any IK task
3 Handler<RobotPoint> _tasks;
4 // Handler of references, it is specialized for Constant Robot

Point to have an access to the set method↪→

5 Handler<Constant> _reference;
6 // Handler of the Minus points to compute the tracking errors
7 Handler<Minus> _ik;
8 public:
9 // memory allocation, initialize inverse kinematics for a given Robot,

and requested end-effectors↪→

10 function init(Robot& robot, str points="hands", str root="torso"){
11 // initialize the COM tracking task with the COM embedded in the Robot
12 _tasks.add(robot.COM());
13 // initialize reference and task
14 _reference.add(Robot.COM.size());
15 _ik.add(Minus(_tasks[-1],_reference[-1]);
16 // add the Linear Point of torso
17 _tasks.add(LinearPoint(root));
18 // functionined the task for each point in the Unidirectional Map

requested specified the the user↪→

19 for (auto& point: Robot.getLinks(points)){
20 // add Linear Points
21 _tasks.add(LinearPoint(point));
22 // compute a state of the relative point
23 _tasks.add(Minus(_tasks[-1], _tasks[0]));
24 // initialize reference and task
25 _reference.add(Constant(_tasks[-1].size()));
26 _ik.add(Minus(_tasks[-1],_reference[-1]));}
27 // init the reference Jacobians
28 for (auto& point: _reference) point.set(Matrix::Zero(point.rows(),

point.cols()));}↪→

29 function update(){ // control loop
30 // update all the support points
31 _tasks.update(true); // jacobian_update=true
32 // update an inverse kinematics
33 _ik.update(true); // jacobian_update=true
34 _q = inverse(_ik.getJacobian())*_ik.getState();}
35 function reference(Vector& x_des, int i){//reference update in task i
36 _reference[i].set(x_des);} // access Constant set method

Listing 5.2 Pseudo-code for the Robot Points, Handler implementation of the IK scheme
for multiple aggregated tasks. Example for the IK: CoM tracking and the position of the ’n’
hands with respect to the torso.

62 Simplifying Operations in Locomotion - Framework for Efficient Research

Dynamic Points

The Robot Point interface well fits the robot first-order kinematics that is described by the
linear equations in the form yyy = AAAxxx. However, it is not sufficient to describe the second-
order kinematic and dynamic problems that read yyy = AAAxxx+bbb. To support the higher-order
robot description, the child Dynamic Point interface to the Robot Points interface has been
introduced. Dynamic Point has an additional offset member; and it provides an interface for
the following elements

• linear, angular and spatial acceleration for the rigid-point/body,

• point/body force, torque and wrench,

• SPV acceleration.

5.2 Plugins

The SOL-FER adopts a plugin system that exploits two software layers to provide the support
for different middlewares. The first layer consists of the components that are middleware
independent implementations of specific algorithms/programs. Each component has to
inherit from the Base class and adhere to the provided interface7. The second layer consists
of SOL-FER plugins that generate the middleware dependent components including the
communication layer. They also coordinate the kinematic updates of the Robot instance.
Dynamically loaded plugins for all supported middlewares are auto-generated from the plugin
template specialization that is required for each Component. In Appendix B in Code B.14,
an example of the template specialization for the joint-space controller module is given.

Remainder of this section is organized as follows: First, the SOL-FER configuarition
files are described in Section 5.2.1, then a few exmples that highlight felxibility of the
developed Plugin/Component structure are shown in Section 5.2.2, and the shared plugin
is introduced in Section 5.2.3.

5.2.1 Configuration File

Plugin loads the communication layer and the Robot instance based on the URDF/SRDF
files defined in the configuration file. The communication layer depends on the middleware,
and, after ROS, adopts a strict publisher-subscribes pattern. Each connection between two
plugins is refereed to as a pipe.

7as shown at Code B.13 in Appendix B

5.2 Plugins 63

Library of pipes

The communication layer for the robot current/desired States is specified in the configuration
file. To that end, a configuration for each pipe has to be given in the configuration file creating
a library of predefined pipes the plugins can load from. A pipe configuration consists of:
a type of information a pipe transfers, affected DoFs, State interfaces the pipe publishes
for/subscribes to, robot State the pipe should be attached to and the Bidirectional Map that
should be used for mapping.

One of two information types can be passed through the auto-generated pipe: joint-space
values (see Code B.4 in Appendix B for an example configuration) or the state of the robot
rigid-body (see Code B.5 in Appendix B for an example configuration). Other types of pipes
are not supported for the auto-generation. If plugin specific higher-level communication not
supported through the configuration file is required, it can be defined in the plugin template
specialization _initCallbacks method (see Code B.14 in Appendix B).

The affected DoFs are described by providing the information, which robot chain should
be considered (all, SRDF group tags), and what type of DoFs is affected (e.g. all, actuated,
body, Bidirectional Map name). If the body type is used, a link name has to be provided.
Finally, the ’function’ tag describes State a pipe is attached to, where options are ’state’ for
the robot current state and ’reference’ for the robot desired state. When the pipe provides
a state of the rigid-body, a convention used to describe it has to be specified (Code B.5,
Appendix B).

Finally, a middleware specific configuration is required (see Code B.6 in Appendix B).
For example, ROS requires type and topic of a message, and – due to the callback nature of
the ROS communication layer – an information if given pipe has to be initialised before the
component initial conditions can be set. On the other hand, XBotCore needs the software
layer the pipe communicates with and the pipe name. Some more specific tags may be
required depending on the pipe loaded; Table 5.1 and Table 5.2 provide overview over
implemented pipes that can be auto-generated for ROS and XBotCore, respectively.

Plugin Configuration

Plugins are loaded based on the configuration specified in the SOL-FER configuration file; a
minimal example is given at Code B.7. Each plugin configuration is identified by a unique
name (’joint_online’ in the example). For XBotCore plugins this name has to correspond
with identifier hardcoded in a template specialization required for each component, as the
middleware does not provide a solution to pass additional arguments on the plugin start-up.

64 Simplifying Operations in Locomotion - Framework for Efficient Research

ROS

type input output comments

join-space NRT lower-level ros_control, impedance controller

join-space NRT lower-level ros_control, velocity controller

join-space lower-level NRT ros_control, state feedback

rigid-body lower-level NRT simulated floating base state

join-space lower-level NRT simulated contact forces

rigid-body NRT NRT pass Robot Point state

joint-space NRT NRT pass joint-space state in ROS
Table 5.1 Overview over ROS pipes implemented for the auto-generation in the SOL-FER
plugin.

XBotCore

type input output comments

join-space RT lower-level desired state

join-space lower-level RT state feedback

rigid-body lower-level RT imu readings

joint-space RT RT shared memory

rigid-body RT RT Robot Point state, shared memory

rigid-body RT NRT rigid-body state

joint-space NRT RT from ROS topic

joint-space RT NRT publish to ROS topic
Table 5.2 Overview over XBotCore pipes implemented for the auto-generation in the SOL-
FER plugin.

5.2 Plugins 65

In ROS, by default the same configuration corresponding to the hardcoded plugin identifier
is loaded. However, the user can load a plugin with any configuration by passing an optional
command line argument ’n’ when launching the plugin. The command to run the ROS
plugins read

1 rosrun plugins plugin -p plugin_identifier -n config_name

A plugin configuration has to specify a layer the plugin operates in, what determines types
of pipes loaded, and a secondary configuration file8 that describes parameters dependent
on the software layer. These consist of control loop frequency and filters tuning. A plugin
configuration also specifies a plugin mode, where the ’full’ mode operates with the full
communication layer, while the ’idle’ mode prevents the lower-level commands from being
send to the robot. In the ’idle’ mode plugin still receives the system state, but it does not
control the robot. The ’idle’ mode is useful to collect the data, debug the code with the real
robot state or to check a plugin for the memory allocations. A plugin configuration also
contains declarations if plugin relies on the robot kinematics/dynamics, and if it modifies
the robot state internally. These flags are used to coordinate updates on Robot instances.
Finally, the ’controller’ and ’robot’ parameters define the plugin communication layer. The
’controller’ tag consists of list of pipes the plugin publishes to, or a name of a predefined
set of pipes that can be declared in the ’controllers’ tag9. The ’robot’ tag specifies one of
predefined configurations to be loaded. These ’robot’ configurations describe the list of
subscribers the Robot receives the feedbacks from, and if the robot actuation models and
contacts are required by the plugin10. Similarly to the publishers list in the ’controller’ tag,
the lists of subscribers can also be predefined in the ’feedbacks’ tag 11. In the end, the
configuration for each plugin is passed to the Component constructor, and so any custom
tags can be added to tune/set-up the Component.

Secondary Configuration Files

With an extensive use of the libraries of the predefined elements in the configuration files –
the library of pipes, publishers/subscribers layers and the Robot configurations – range of the
different plugins arrangements can be achieved with a minimal change in the configuration
file. However, often only a small change in a given predefined configuration is required for a
desired configuration. Rather than maintaining multiple full configuration files with a one/two

8See Section 5.2.1 for details on the secondary configuration files.
9See Code B.9 in Appendix B for an example of the predefined pipeline set-up.

10An example of the online and offline ’robot’ configurations is provided in Code B.8 in Appendix B
11See Code B.9 in Appendix B for an example of the predefined pipeline set-up.

66 Simplifying Operations in Locomotion - Framework for Efficient Research

1 modules:
2 joint_online: # plugin name/configuration id
3 layer: NRT # layer the plugins runs at
4 robot: joint_space # which robot configuration should be

loaded↪→

5 controller: direct # which controllers should be loaded
6 mode: full # if 'full' all controllers are loaded, if

'idle' the desired states are not send to the
lower-level controller

↪→

↪→

7 kinematics: false # does it require kinematic update
8 dynamics: false # does it require dynamic update
9 model_change: false # does it modify the robot state

internally↪→

Listing 5.3 Example of the plugin configuration for the joint-space controller.

lines difference, a secondary configuration files have been introduced. The secondary files
are merged with the full configuration file with the priority given to the secondary file tags
when the two overlap. Thus, the secondary configuration files allow to overwrite any element
of the original configuration file and add tags not present in the original file. Secondary files
are specified for each plugin independently by an optional ’secondary_file’ tag in the plugin
configuration.12

Two sets of secondary files are used by default in the SOL-FER. These files load the
configuration specific for the software layer the plugin operates in (i.e., control loop fre-
quency) and the configuration specific for the hardware/simulation (i.e., sensors calibration).
These files can be expanded to add plugin configuration specific for the software layer or the
hardware/simulation (e.g., filter tunning).

Furthermore, the secondary files simplify integration of the SOL-FER with the XBotCore.
This mechanism allows to add only one parameter to the XBotCore configuration file – a
path to the SOL-FER configuration file – to run multiple XBotCore plugins. Otherwise,
starting multiple XBotCore plugins with contradicting parameters would require specifying
and maintaining a SOL-FER configuration file for each XBotCore plugin independently.
Examples of the practical application of the secondary files for the manipulation and state
estimation plugins are given in Appendix B in Code B.11 and Code B.12, respectively.

12See Code B.10 in Appendix B for an example of the a plugin configuration with a secondary file.

5.2 Plugins 67

Figure 5.1 Scheme that visualises the Plugin–Component structure and the Plugin in-
teraction with the middleware. Pink areas show loaded Robot configuration, blue areas
indicate the Plugin space which green interiors represent the Component space. Yellow
areas symbolise the third party elements.

Figure 5.2 An example of the plugin communicating with the lower-level control. Pink
area marks loaded Robot configuration, blue area indicates the Plugin space which green
interior represents Component space. Yellow area symbolises the third party element -
hardware/simulator.

5.2.2 Examples

Fig. 5.1 visualises the two layers Plugin–Component structure, and Fig. 5.2 presents an
example of the manipulation plugin controlling the robot upper-body, where the mapping
between the upper-body and the lower-level controller is generated automatically in the
plugin layer. The automatic map generation based on the robot kinematics specified in the
configuration file means the same plugin can be used to control different parts of the robot
without any modifications in the Component/Plugin source code (e.g. gravity compensation,
joint-space control, IK, Inverse Dynamics (ID)). Furthermore, definition of the communi-
cation layer through the configuration files allows to switch between the online and offline
plugin implementation without any modification of the source code, see Fig. 5.3 for a concept
scheme.13.

13In Appendix B in Code B.8 the corresponding robot/feedbacks configurations are given

68 Simplifying Operations in Locomotion - Framework for Efficient Research

Figure 5.3 An example of the configuration for the online/offline plugin configuration. Pink
areas mark loaded Robot configurations, blue areas indicate the Plugin space which green
interiors represent Component space. Yellow areas symbolise the third party elements -
hardware/simulator.

Shared control

For a complex robots with multiple kinematic chains, only part of the robot structure may
be required to solve a given task. In these cases, to speed-up the computations, a simplified,
partial robot model is typically used. Thanks to the flexible communication layer and the
mapping system (see Section 5.1.1), multiple plugins that control specific parts of the robot
structure can cooperate without interference. Fig. 5.4 shows an example of the locomotion
and manipulation plugins working simultaneously controlling the robot upper-body and
lower-body structures, respectively. In this example, the gravity compensation plugin that
operates on the whole-body model maps partial – lower-body and upper-body – solutions
to the full robot state and sends the whole-body command to the firmware. Note, that in
this example any component14 that loads the whole-body model could be used to merge the
partial commands.15 That is because the pipes are combined at the auto-generated plugin
layer. However, although not necessary, the merging component is highly recommended to –
for safety reasons – have only one plugin that sends commands directly to the lower-level.
Depending on the communication layer design in the underlying middleware two plugins
sending partial state commands to the lower-level may or may not be supported.

14including an empty component that does not implement any algorithms
15To be more specific, a full whole-body model is not a requirement. Any model that includes all DoFs

controlled by other plugins is sufficient. Otherwise, the DoFs not represented in the final model would not be
parsed to the lower-level.

5.2 Plugins 69

Figure 5.4 An example of the shared control structure. Pink areas mark loaded Robot
configurations, blue areas indicate the Plugin space which green interiors represent the
Component space. P() represents the permutation operation, and yellow area symbolises a
third party element - hardware/simulator.

5.2.3 Shared plugin

With the basic ROS/XBotCore plugins, elements share the states through the pipes, but each
plugin runs as an independent, self-sufficient program. In practice, when running multiple
plugins, the same robot model/feedback configuration is often used multiple times. In such
cases, number of updates on the robot kinematics/dynamics could be reduced if the plugins
would share the same Robot instance. To that end, a shared plugin, for both ROS and
XBotCore middlewares, have been developed to coordinate allocation and updates of the
Robot instances for the Components. It implements a mechanism to automatically detect
that multiple plugins configurations require compatible Robot instances. It automatically
creates correct Robot instances and provides the Components with references.

Shared plugin also provides a shared space – a middleware independent communication
layer between the Components that allows to share the information immediately without
relying on the middleware communication mechanism that may introduce delays. To that end,
new types of pipes for the plugins to communicate the joint-space and Robot Points states
through the shared space have been developed. These shared pipes are created automatically,
when the pipe publisher is created to communicate with the middleware, i.e., all information
broadcasted outside the shared plugin is also broadcasted to the shared space. When the
subscriber is created for the Component inside the shared plugin, priority is given to the
shared space pipes; the middleware pipes are generated if no matching shared publisher
exists. Other, custom shared pipes can be initialized in the _initCallbacks method of the

70 Simplifying Operations in Locomotion - Framework for Efficient Research

Figure 5.5 An example of the full control scheme implemented with the SOL-FER including
cooperation between the RT and NRT layers. Pink areas show loaded Robot configuration,
blue areas indicate the Plugin space, and green areas represent the Component space. Yellow
areas symbolise the third party elements, and purple area denotes the shared plugin shared
space.

5.2 Plugins 71

plugin template. Finally, the shared plugin provides a mechanism in XBotCore to load the
same Plugin/Component with different configurations.

The shared plugin configuration does not adhere to the minimum plugin configuration
described in Section 5.2.1. The only required tags are ’layer’ and a list of plugins to be
loaded. Custom plugin configuration may be specified using the double colon as a separator;
otherwise, a default configuration is used.16. Note that the same plugin can be loaded multiple
times simultaneously with different, or even the same, configurations.

Fig. 5.5 shows an example control scheme built from the shared plugin cooperating with
a SOL-FER plugin, a higher-level third party component and a hardware/simulation. In
the shared plugin, four basic plugins cooperate: the state estimation and the whole-body
locomotion control use the same lower-body robot model, and the estimation of the reaction
forces and the gravity compensation share the full whole-body model.

On shared plugin update, the Robot lower-body kinematics is updated, and the state
estimation Component computes the estimated robot floating base position. The state
estimation plugin updates the state of the lower-body Robot it is attached to. Then, it
sends the estimated floating base position to the shared space and to the middleware. The
whole-body Robot floating base state is read from the shared space, and the kinematic
and dynamic models are updated. The next step consists of update of the reaction forces
Component that estimates and updates the reaction forces in the whole-body Robot, and
which sends the estimated reaction forces to the shared space and the middleware space. Next,
the lower-body Robot kinematics is updated again, since the state estimation Component
modified its current state internally. Moreover, the estimated reaction forces are read from
the shared space and updated in the lower-body Robot. Then, the locomotion Component
computes the lower-body joint-space commands to track the desired CoM and SPV positions
received from the third party navigation plugin operating in the non-real-time ROS space.
The computed joint-space command is sent to the shared-space and the middleware space.
Finally, the gravity compensation Component is computed. Since, the whole-body Robot
state has not been changed since the last update, there is no update of the whole-body Robot
kinematics. The desired lower-body command is read from the shared space, and the desired
upper-body command is read from the middleware. The whole-body gravity compensation is
computed based on the contact points positions, and whole-body position, velocity and torque
commands are send to the lower-level simulation/hardware. The upper-body reference is
defined by the external SOL-FER manipulation plugin that operates on the static upper-body

16In Appendix B in Code B.15, an example of the shared plugin configuration to load 5 different plugins is
given

72 Simplifying Operations in Locomotion - Framework for Efficient Research

model. In XBotCore, the manipulation plugin is ensured to be updated before the shared
plugin. Otherwise, since in ROS the order of the plugins updates cannot be secured, the last
known desired upper-body joint-space command is used. In the shared plugin, order of the
Components updates is always ensured.

These control scheme has been tested in non-real-time ROS with CENTAURO robot
simulation and in real-time XBotCore with CENTAURO robot hardware. These control
scheme has been used in the experiments shown in the Chapter 8. In real-time implementation,
the higher-level locomotion CoM and SPV commands have been send from the non-real-time
ROS layer.

5.3 Summary

In this chapter, Simplifying Operations in Locomotion - Framework for Efficient Research
(SOL-FER), a software for the locomotion research has been introduced. This framework has
been designed to provide a way to quickly try out ideas by maximizing the flexibility and re-
configurability of the developed modules. An abstraction layers for the robot kinematics and
dynamics have been introduced, and the communication layer that consists of the reconfig-
urable feedbacks/commands has been described. These reconfigurable feedbacks/commands
allow, for example, to run multiple cooperating plugins simultaneously or to switch between
the online and offline implementations of a module without any source code modification,
and thus without a need to recompile the code. Furthermore, the shared plugin that de-
creases the computational burdain of the multiple cooperating plugins by sharing the same
robot abstraction layers have been proposed. Finally, the Robot Points/Handler structure
have been introduced to simplify the implementation of the locomotion control schemes.
The proposed framework has been used in the development of the controllers presented in
Chapter 7 and Chapter 8 in the initial simulations with the CENTAURO robot (Chapter 4) as
well as in experiments presented in Chapter 7 and Chapter 8.

The proposed framework can be extended by automatically sharing the robot dynamic
model between plugins. Similar system to the mechanism currently implemented for the robot
hardware/kinematics layer could be used. Furthermore, the update management mechanism
implemented in the dynamic model could be used throughout the framework to decrease the
computational burden of implemented modules. An algorithm to detect that different robot
configurations are compatible to share the same kinematic model would further decrease the
computational load of the multiple cooperating plugins. Finally, a plugin execution scheduler

5.3 Summary 73

to support modules operating on different frequencies would greatly enhance the framework
capabilities.

Chapter 6

Model of a Support Polygon Vertex in
the Hybrid Legged-Wheeled Robots

As reported in [80], a first-order kinematics scheme with steering reference based on the ICR
alone causes the support polygon of some of the hybrid legged-wheeled robots to diverge.
In this chapter, a new kinematic model for the SPV of a general HLW robot is developed
and analysed to investiagte this behaviour.1 To that end, the torus wheel geometry rather
than standard cylindrical and spherical geometries is considered to describe the support
polygon of a legged-wheeled robot. Then, its first and second-order derivatives are computed
under the wheel rolling assumption. Furthermore, this new model is applied to a general
legged-wheeled robot as well as a standard mobile platform, and a non-holonomic constraint
for legged-wheeled robots is discussed with respect to standard non-holonomic wheeled
mobile robots.

The chapter is organized as follows: First, torus wheel model is introduced in Section 6.1,
and the SPV velocity is computed in Section 6.2. Obtained result is discussed and analysed
in Section 6.3, and the developed model is computed at the acceleration level in Section 6.4.
Finally, a conclusion is given in Section 6.5

1The work included in this chapter has been presented at the IROS 2018 conference with the publication
titled "On the kinematics of wheeled motion control of a hybrid wheeled-legged centauro robot" by Malgorzata
Kamedula, Navvab Kashiri, and Nikos G. Tsagarakis. An extension of this publication has been submitted to
Robotics and Autonomous Systems with the submission titled “Wheeled Motion Kinematics and Control of a
Hybrid Mobility CENTAURO robot” by the same authors which is currently under revision. The second-order
kinematics model has been published in the IEEE Robotics and Automation Letters article titled “Reactive
Support Polygon Adaptation for the Hybrid Legged-Wheeled CENTAURO robot” by Malgorzata Kamedula
and Nikos G. Tsagarakis.

76 Model of a Support Polygon Vertex in the Hybrid Legged-Wheeled Robots

6.1 Wheel-ground contact model

In this section, a wheel geometry is discussed, and the ground contact model is studied, so
that an expression for the SPV in terms of the robot state and the ground normal is derived.

A wheel-ground contact is a complex function of the geometry and elastic properties
of the wheel as well as the ground [112]. To discuss the system kinematics, in this work, a
simplified wheel-ground contact model is considered in which the contact area is reduced
to a single point that depends only on the ground and wheel geometries. The former is an
extrinsic parameter and no specific properties can be presumed; however, for the sake of
simplicity, it is assumed that the ground normal is constant in the proximity of a contact
point. The latter, as an intrinsic characteristic, can be modelled with more details.

A common simplification is to consider the wheel as a sphere or a cylinder that provides
a sufficient approximation for systems with fixed camber angle. However, the cylindrical
geometry does not allow to model a non-zero camber angle without taking into account
deformations, while the spherical geometry implies the wheel centre and the contact point
are collinear along the ground normal. It is shown at the Fig. 6.1, on the left, where blue line
represents the torus and green line a sphere model. In this work, we propose to model the
wheel as a torus to more closely represent the kinematics of the ground-wheel contact for a
non-zero camber angle. Particularly, the proposed model is compatible with the geometry
of the wheel used in the CENTAURO robot shown at Fig. 6.1. The top photograph of the
Fig. 6.2 shows the CENTAURO robot in a configuration with the zero camber angles, and so
with the wheels perpendicular to the ground. The bottom photograph on the Fig. 6.2 presents
the CENTAURO robot adopting the configuration with the non-zero camber angles, and so
with the wheels at an angle with respect to the ground surface. Even though the zero camber

Figure 6.1 On the left: A contact point placement in sphere and torus models for a non-zero
camber angle; in the middle: Torus model with wheel plane, wheel axis, and ground-wheel
frame axes; on the right: Photo of the CENTAURO robot wheel.

6.1 Wheel-ground contact model 77

Figure 6.2 On the left: CENTAURO robot with all legs in the zero camber angle position.
On the right: CENTAURO robot with all legs in the non-zero camber angle configuration.

angle assumption is common in the modelling of the hybrid legged-wheeled platforms, when
this motion is permissible by the robot mechanical design, maintaining the zero camber angle
throughout the motion cannot be safely ensured on uneven terrains. When the robot adopts a
non-zero camber angle position, the motion controllers developed with the zero-camber angle
assumption cannot ensure the stable motion. Furthermore, consideration of the non-zero
camber angle position allows the robot to extend its leg workspace with comparison to the
standard zero camber angle controllers.

Let us define the ’wheel plane‘ that is constructed upon the torus centre line, i.e. it divides
the wheel in half with the plane normal being parallel to the wheel axis (yyyw ∈ ℜ3). Then the
position vector from the wheel centre to the SPV (wxxxSPV ∈ ℜ3) is, as shown in Fig. 6.1,

wxxxSPV =−zzzcR−nnnr, (6.1)

where R ∈ ℜ+ represents the torus major radius, r ∈ ℜ+ stands for a torus minor radius,
nnn ∈ ℜ3 symbolises the unit vector along the ground normal, and zzzc ∈ ℜ3 denotes a unit
vector that lies in the cross-section of a wheel plain and a plane constructed with the wheel
axis and ground normal.

The vector zzzc in (6.1) is not fixed in any of the robot frames. It is convenient to define a
new frame at the wheel centre, referred as wheel-ground frame and marked by Fc in this
work (Fig. 6.3). Its y-axis (yyyc ∈ ℜ3) coincides with wheel axis (yyyc ≜ yyyw), and the x-axis
(xxxc ∈ ℜ3) is perpendicular to the ground normal

xxxc ≜
yyyc ×nnn
|yyyc ×nnn|

. (6.2)

78 Model of a Support Polygon Vertex in the Hybrid Legged-Wheeled Robots

The z-axis is defined by a right-hand-side rule, and it coincides with the vector zzzc in (6.1),

zzzc ≜
xxxc × yyyc

|xxxc × yyyc|
. (6.3)

Equations (6.2) and (6.3) can be expressed, as functions of robot state (qqq) and ground
normal (nnn). Using linear algebra operations, it can be shown that

xxxc(qqq,nnn) = ỹyyw(qqq)nnn
1

||ỹyyw(qqq)nnn||
,

zzzc(qqq,nnn) = (nnn−ααα(qqq,nnn))χ(qqq,nnn), (6.4)

where the tilde symbol (̃.) represents a vector (.) skew matrix, and the auxiliary variables
ααα ∈ ℜ3 and χ ∈ ℜ1 read

ααα(qqq,nnn) = yyyw(qqq)nnn
T yyyw(qqq), (6.5)

χ(qqq,nnn) =
1

||nnn−ααα(qqq,nnn)||
. (6.6)

6.2 Derivative of the SPV

A SPV position, expressed in (6.1), describes the robot characteristic that is not directly
associated to any point of the robot body. On the other hand, NSPR constraint (3.5) applies a
condition on the wheel point that is in contact with the ground, i.e. the point rigidly attached
to the robot body. At a given time (t ∈ ℜ1) the vector from the world origin to the constraint
end-effector point – oxxxcp – coincides with the vector from the world origin to the SPV –
oxxxSPV ∈ ℜ3 –

oxxxSPV |t = oxxxcp|t . (6.7)

However, their time derivatives differ (oẋxxSPV |t ̸= oẋxxcp|t). To examine a set of feasible SPV
motions under the NSPR condition, the time derivatives of oxxxSPV and oxxxcp are computed
next.

6.2.1 Non-sliding Pure Rolling Constraint

First, let us discuss the NSPR condition (3.5) that constrains velocity of the point on the
wheel in a ground contact relative to the ground. Using rigid body transformation, one can
show (3.2)

oxxxcp =
oxxxr +

rxxxw +wxxxcp, (6.8)

6.2 Derivative of the SPV 79

where oxxxr ∈ ℜ3 stands for the vector from the world origin to the robot reference point
and defines the world posture of the robot, rxxxw ∈ ℜ3 symbolises the vector from the robot
reference point to the wheel centre that describes internal state of the robot, and wxxxcp ∈ ℜ3

denotes the vector from the wheel centre to the wheel point in contact with the ground.
Vectors oxxxr and rxxxw and corresponding derivatives are commonly evaluated variables in
robot kinematic analysis that can be computed with a standard rigid body kinematics. Time
derivative of (6.8) reads (3.3)

oẋxxcp =
oẋxxr +

rẋxxw +wẋxxcp. (6.9)

The vector wxxxcp belongs to a robot wheel – a rigid body – and therefore its derivative is
defined as (3.5)

wẋxxcp = ωωωw ×wxxxcp, (6.10)

where ωωωw ∈ ℜ3 symbolizes wheel angular velocity relative to the reference frame. (6.10)
expressed by a skew-matrix operator reads

wẋxxcp =−wx̃xxcpωωωw. (6.11)

Furthermore, wheel angular velocity can be written in a general first-order kinematic form

ωωωw = Jwq̇qq+ωωωm, (6.12)

where Jw ∈ ℜ3×n denotes the wheel orientation Jacobian that is a known variable within a
standard kinematic model, and ωωωm ∈ ℜ3 represents all potential reference frame angular
velocity components dependent on external factors that are not modelled in this work such as
ground curvature or external non-inertial reference frame.

SPV derivative

Now, consider the vector from the world origin to the SPV defined as

oxxxSPV = oxxxr +
rxxxw +wxxxSPV , (6.13)

where wxxxSPV represents the vector from the wheel centre to the SPV as described by (6.1).
The time derivative of (6.13) reads

oẋxxSPV = oẋxxr +
rẋxxw +wẋxxSPV , (6.14)

80 Model of a Support Polygon Vertex in the Hybrid Legged-Wheeled Robots

Figure 6.3 The wheel-ground and steering frames in the legged-wheeled structure. On the
left: the view aligned with the steering frame y-axis, on the right: the view aligned with the
steering frame x-axis.

where only wẋxxSPV remains unknown. From (6.1) it reads

wẋxxSPV =−żzzcR− ṅnnr. (6.15)

The derivative of the ground normal depends on the ground properties. We assume a flat
ground in this thesis, and thus the derivative depends only on the reference frame angular
velocity (ωωωn ∈ ℜ3)

ṅnn = ωωωn ×nnn.

It can be further decomposed as follows

ṅnn = (Jnq̇qq+ωωωm)×nnn, (6.16)

where Jn ∈ ℜ3×n represents the rotation Jacobian from the reference to the inertial frame.
The remaining term of (6.15) – the derivative of the wheel-ground frame z-axis (6.4) –

reads
żzzc = (nnn−ααα) χ̇ +(ṅnn− α̇αα)χ. (6.17)

From (6.5) and (6.6) one can see that zzzc depends on the ground normal and wheel axis – yyyw –
that by definition is constant in the wheel reference frame. The wheel axis time derivative

6.2 Derivative of the SPV 81

reads
ẏyyw = ωωωw × yyyw =−ỹyywωωωw. (6.18)

Then, taking into account (6.16) and (6.18), it can be shown that derivative of (6.5) reads

α̇αα(qqq,nnn) =−γγγ(qqq,nnn)ωωωw + yyywyyyT
wṅnn, (6.19)

where
γγγ(qqq,nnn) = γ̃γγs + yyywnnnT ỹyyw,

γγγs(qqq,nnn) = yyywnnnT yyyw.

A remaining term in (6.17) – χ̇ – represents a derivative of a cross product normalisation
used in (6.3) to ensure a unit length of a frame axis. To compute χ̇ an euclidean norm in
(6.6) is expressed as a vector dot product that reads

χ(qqq,nnn) =
1√

(nnn−ααα(qqq,nnn))T (nnn−ααα(qqq,nnn))
.

Recall that the ground normal and the wheel axis have been defined as unit vectors, and thus
||nnn||= ||yyyw||= 1. The above equation simplifies to

χ(qqq,nnn) =
1

√
1−αααT nnn

, (6.20)

and its derivative reads
χ̇(qqq,nnn) =−0.5χ

3 d
dt
(1−ααα

T nnn).

With the derivative of the wheel axis computed as in (6.18), the above equation results in

χ̇(qqq,nnn) =−0.5χ
3nnnT

γγγωωωw +χ
3
ααα

T ṅnn. (6.21)

Finally, from (6.17), taking into account (6.4), (6.19) and (6.21), the formula of (6.15) in
terms of the robot state – yyyw(qqq), Jθw(qqq), ωωωw(q̇qq) – and the ground normal – nnn, ṅnn – takes form

wẋxxSPV = (ζζζ − III)γγγωωωwχR− (ψψψR+ IIIr)ṅnn, (6.22)

where
ζζζ = 0.5χ

2(nnn−ααα)nnnT ,

82 Model of a Support Polygon Vertex in the Hybrid Legged-Wheeled Robots

ψψψ = (III − yyywyyyT
w)(III +nnnααα

T
χ

3),

and III ∈ ℜ3×3 stands for an identity matrix.

6.2.2 Constraint SPV

In stable wheeled motion, the NSPR condition is ensured and only a limited subset of possible
solutions for (6.14) is of an interest for the motion scheme design. To determine a subspace
of feasible motions, the derivative of a SPV is resolved under the NSPR condition. (6.22)
from (3.5), (6.9) and (6.14) reads

oẋxxSPV = wẋxxSPV −wẋxxcp. (6.23)

Given that from (6.7), (6.8) and (6.13) one gets

wxxxcp|t =
wxxxSPV |t , (6.24)

(6.11) at any given time reads
wẋxxcp|t =−wx̃xxSPV ωωωw. (6.25)

As a result, when the NSPR condition is satisfied, under (6.22), (6.23) and (6.25), (6.14) can
be written as

oẋxxSPV |t = ζζζ γγγ(qqq,nnn)ωωωwχR− ñnnωωωw(χR+ r)

− yyywnnnT ỹyywωωωwχR− (ψψψR+ IIIr)ṅnn
(6.26)

that depends solely on the robot state, the ground normal and ωωωm that gathers unmodelled
extrinsic factors.

Note that the (6.26) gives the value of the first-order SPV derivative under given as-
sumption and not an expression for the SPV function. If one wish to compute higher-order
derivatives of SPV, (6.22) and (6.14) should be considered directly.

6.3 Result Analysis

The expression in (6.26) describes an instantaneous SPV motion under the NSPR condition.
To further discuss the obtained result, (6.26) is expressed with respect to the ground frame,
noted with Fn in this work2. It is an inertial frame, thus Jn = 0, and – for a flat ground –

2Reacall that the variables expressed in a specific frame are indicated by a superscript consisting of the
frame symbol in a parentheses, e.g. x(n).

6.3 Result Analysis 83

ωωωm = 0, ṅnn = 000. The ground frame is defined so that its z-axis, zzzn, coincide with the ground
normal, while the corresponding x-axis, xxxn, is an arbitrary reference vector that lies on the

ground plane. Then, the ground normal is a constant value that reads nnn(n) =
[

0 0 1

]T

, the

wheel axis is yyy(n)w =

[
y(n)x y(n)y y(n)z

]T

, and (6.20) becomes

χ
(n) =

1√
1− y2(n)

z

.

Equation (6.26) in the ground frame reads

oẋxx(n)SPV |t = AAA(n)J(n)w q̇qq (6.27)

where3

AAA(n) =

−yxyyχ

3
R (1+ y2

xχ2)χR+ r 0

−(1+ y2
yχ2)χR− r yxyyχ3R 0

0 0 0

 .
Equation (6.27) implies that SPV cannot move along the ground normal if the NSPR

assumption is satisfied as that would correspond to raising a leg above or penetrating the
ground. Thus a subspace of feasible motions is reduced from a full 3-D space to a two
dimensional subspace of the ground plane. This constraint can be also expressed in a frame
independent manner

oẋxxT
SPV nnn = 0. (6.28)

(6.27) also shows that the wheel rotation around the ground normal is an internal motion that
has no direct influence on the SPV.

Furthermore, to gain more insight into the contact point motion in terms of rolling,
steering and camber angles that are often used to describe a wheel orientation, a new frame
is introduced, called steering frame and marked by Fs in this work (Fig. 6.3). It is defined
in a way that its z-axis (zzzs ∈ ℜ3) coincides with zzzn, and the x-axis (xxxs ∈ ℜ3) coincides with

xxxc. The ground normal is constant and equal to nnn(s) =
[

0 0 1

]T

, what on a flat ground

3The equation is expressed in the ground frame, and so all the variables. The frame superscripts have been
neglected for readability.

84 Model of a Support Polygon Vertex in the Hybrid Legged-Wheeled Robots

implies ωωωn||nnn; ṅnn = ωωωn ×nnn = 0 therefore holds. The wheel axis becomes

yyy(s)w =

0

y(s)y

y(s)z

 , χ
(s) =

1√
1− y2(s)

z

,

and (6.26) reads

oẋxx(s)SPV |t =

0 χ(s)R+ r 0

−r 0 0

0 0 0

ϕ̇

ν̇

β̇

 (6.29)

with

ωωω
(s)
w = J(s)w q̇qq =

ϕ̇

ν̇

β̇

 .

The x-coordinate of the wheel angular velocity (ϕ ∈ ℜ1) signifies change in the wheel
camber angle, the z-coordinate (β ∈ ℜ1) indicates rotation around the ground normal, and
y-coordinate (ν ∈ ℜ1) directly maps to the wheel rolling motion. The term χR+ r represents
the wheel effective radius, i.e the radius the wheel is rolling around given current camber
angle.

Note that the z-axes of both the ground frame and the steering frame are parallel to
the ground normal, and thus the rotation around the ground normal by β describes the
transformation from the ground frame to the steering frame.

Equation (6.29) decouples impact of the wheel angular velocity components on the SPV
motion. In the real system, the range of camber angle motion is limited with the wheel
geometry and joint limits while the wheel camber angle defines the wheel grip on the ground.
In practical applications, the camber angle value is designed to satisfy these condition and is
not available for SPV tracking. As a result, regardless the system kinematics, maximum one
dimension remains to track a contact point on a 2D ground plane. With constrained camber
angle (ϕ = const) the system in (6.29) – and so in (6.26) – is subject to a non-holonomic
constraint.

6.3 Result Analysis 85

Note, that in derivation of (6.26) only a wheel geometry has been assumed and no
assumptions on the system kinematics has been made. As a result, (6.26) describes the support
polygon in a general legged-wheeled robot for which the wheel model holds, regardless a
specific wheel assembly. The system kinematics in (6.26) is expressed by ωωωw which Jacobian
structure may limit the support polygon motion.

6.3.1 Non-holonomy of legged-wheeled and all-steerable mobile robots

In this section, the non-holonomy in (6.29) for the system with defined camber angle and the
SPVs tracking is laid out. It is shown, that for the planar base motion, (6.29) takes the same
form as kinematics equation of a standard non-holonomic mobile robot with only steerable
wheels.4

As mention previously in this section, β describes a rotation from ground to steering
frame. This transformation reads

oẋxx(n)SPV |t =

cos(β) −sin(β) 0

sin(β) cos(β) 0

0 0 1

oẋxx(s)SPV |t . (6.30)

To compare a legged-wheeled robot motion with a motion of standard wheeled mobile
robots, consider a simple case when the desired base velocity is composed of the robot base
planar coordinates, and the robot moves with a constant support polygon, i.e wheel contact
points and the robot base move as a rigid body, it reads

oẋxx(n)SPV ,des =

oẋSPV ,des

oẏSPV ,des

ożSPV ,des

=

oẋb,des

oẏb,des

0

+

0

0

ωz,des

×

bxSPV ,des

bySPV ,des

bzSPV ,des

 , (6.31)

where ẋb,des, ẏb,des ∈ ℜ1 represent the vector coordinates of the desired base linear velocity,
ωz,des ∈ ℜ1 stands for the desired angular base velocity around the ground normal and
bxSPV ,des, bySPV ,des, bzSPV ,des ∈ ℜ1 symbolise the coordinates of the position vector from the
robot base to the SPV. In this case, taking into account (6.30) and (6.31), (6.29) takes, for

4This type of mobile robots is refereed to as ’all-steerable’ platform in this work.

86 Model of a Support Polygon Vertex in the Hybrid Legged-Wheeled Robots

each leg, a form cos(β) sin(β)

−sin(β) cos(β)

oẋSPV ,des

oẋSPV ,des

=

Rχ ν̇

−rϕ̇

 , (6.32)

where underline (.) highlights the unknown variables and Rχ = χ(s)R+ r. With the camber
angle motion – ϕ̇ – defined, only one variable remains – ν̇ – and SPV can be tracked along
the wheel rolling direction only. However, the solution exists if β takes a value that the
desired SPV motion lies along the wheel rolling motion. According to (6.29), β̇ is an internal
DoF that does not directly influence the SPV.

For ϕ = 0, (6.31) and (6.32) accurately represent the well-known kinematics of the all-
steerable non-holonomic platforms as given in [72, 74, 75]. For these robots, violation of the
non-holonomic constraint prohibits the wheels motion without sliding. However, for hybrid
legged-wheeled platforms the relative motion between the robot base and SPVs (bxxxSPV ∈ ℜ3)
is possible. For the CENTAURO platform with 6-DoF legs any relative motion is feasible,
and the SPV velocity (6.31) for a system following the planar base motion expands to

oẋxx(n)SPV ,LW =

oẋSPV ,des

oẏSPV ,des

ożSPV ,des

+

bẋSPV

bẏSPV

bżSPV

 , (6.33)

where oẋxxSPV ,LW ∈ ℜ3 represents the velocity of the SPV in the HLW robots, and (6.30) reads cos(β) sin(β)

−sin(β) cos(β)

oẋSPV ,des +

bẋSPV

oẏSPV ,des +
bẏSPV

=

Rχ ν̇

−rϕ̇

 . (6.34)

In contrary to standard platforms, the solution to (6.34) exists – the desired base motion is
achievable with a relative motion between the robot base and the support polygon. This
indicates the system is holonomic for omnidirectional driving unless a desired support
polygon velocity is imposed (bxxxSPV = bxxxSPV ,des) together with the camber angle (ϕ̇ϕϕ = ϕ̇ϕϕdes).
In such situations, (6.34) can be expressed as (6.32) with a constant offset. Thus (6.34) is
subject to the same non-holonomic constraint, when both the support polygon and camber
angles are tracked.

6.3 Result Analysis 87

Figure 6.4 On the left – schematic of the conventional wheel assembly, on the right – trace
of the caster wheel contact point with respect to the robot base.

88
M

odelofa
SupportPolygon

V
ertex

in
the

H
ybrid

L
egged-W

heeled
R

obots

Table 6.1 Support polygon evolution of the standard wheeled platforms.

Wheel Type Fixed Steerable Caster

Parameters (Fig. 6.4)
β = 0
d = 0

νd = 0
d = 0

νd = 0

Auxiliary Variables
νF = νL +νd +θ|n

k = sin(νF)ẋb − cos(νF)ẏb

νS = νL +β +θ|n

k = sin(νS)ẋb − cos(νS)ẏb

νC = νL +β +θ|n

k = sin(νC)ẋb − cos(νC)ẏb

NSPR condition1

ν̇ =

Lsin(νd)θ̇|n + sin(νF)ẏb + cos(νF)ẋb

R+ r
Lsin(β)θ̇|n + sin(νS)ẏb + cos(νS)ẋb

R+ r
Lsin(β)θ̇|n + sin(νC)ẏb + cos(νC)ẋb

R+ r

k = Lcos(νd)θ̇|n Lcos(β)θ̇|n Lcos(β)θ̇|n +d
(

θ̇|n + β̇

)
Support Polygon
(6.36)

bẋxx(b)SPV

0

0

0

0

0

0

−d sin(νL +β)

d cos(νL +β)

0

1 The unilateral condition for all standard mobile platforms imposes żb = 0.

6.3 Result Analysis 89

6.3.2 Support polygon analysis for standard wheeled mobile robots

In this section, (6.29) is applied to analyse the evolution of the support polygon for well-
studied conventional wheel assemblies: fixed, steering and caster wheels. To this end,
the kinematics of the generalized standard wheel assembly, as given at Fig. 6.4, has been
considered first; (6.29) results to

oẋxx(s)SPV |t =

(R+ r)ν̇

0

0

 .

In the next step, the feasible values of ν̇ are computed from the NSPR constraint for each
wheel type and applied to (6.35). Finally, to achieve more clear-cut result, the robot world
posture is eliminated from (6.35) by moving the vector origin to the robot base with a
rigid-body transformation that reads

bẋxx(b)SPV = bRRRs (
oẋxxSPV − oẋxxb)

(s)− (ωωωb × oxxxb)
(b) , (6.36)

where oxxxb represents the current base position, ωωωb ∈ ℜ3 denotes the angular velocity of the
robot base with respect to the inertial frame, and bRRRs ∈ ℜ3×3 expresses the rotation matrix
from the steering frame to the base reference frame.

Table 6.1 provides a summary of the above analysis. It shows that the contact point
placement is locked for the fixed and steering wheels, while the mobility of the castor wheel
imposes the support polygon adjustment on a circular path around the wheel steering axis
whose radius equals to the wheel offset (Fig. 6.4). As follows from (6.29) the holonomic
omnidirectional driving scheme can be designed for the wheeled platform provided that
its support polygon is not constrained and/or the camber angle is not imposed. In case of
standard wheeled platforms, that applies only to the systems with only castor wheels, whose
motion imposes support polygon change. Other standard platforms, with fixed and steering
wheels, enforce a constant support polygon where the former excludes omnidirectional
driving, and the later introduces non-holonomy [68].

The analysis provided in this section shows that the proposed SPV model can be applied
to any wheeled and legged-wheeled robot, and verifies that the developed model yelds the
excpected results for the simple platforms.

90 Model of a Support Polygon Vertex in the Hybrid Legged-Wheeled Robots

6.4 Acceleration of the Support Polygon Vertex

In this section, the SPV model developed in Section 6.2 has been extended to the second-order
kinematics, and the linear model with the mixed acceleration/velocity state is designed.

To that end, the equation on the SPV velocity is recalled. For simplicity, the inertial
frame and flat ground are assumed, i.e., ṅnn = 000,

oẋxxSPV = oẋxxw +wẋxxSPV = oẋxxw +(ζζζ − III)γγγωωωwχR, (6.37)

Derivative of (6.37) reads
oẍxxSPV = oẍxxw +wẍxxSPV , (6.38)

where
wẍxxSPV = ζ̇ζζ γγγωωωwχR+(ζζζ − III)(γ̇γγωωωwχR+ γγγω̇ωωwχR+ γγγωωωwχ̇R) (6.39)

with
ζ̇ζζ = 2ζζζ

χ̇

χ
+0.5χ

2
γγγωωωwnnnT , (6.40)

dγγγωωωw

dt
= γγγω̇ωωw + ω̃ωωwα̃ααωωωw −2ω̃ωωwyyywnnnT

ω̃ωωwyyyw − yyywnnnT
ω̃ωωwω̃ωωwyyyw, (6.41)

χ̇ =−χ
3nnnT

α̃ααωωωw. (6.42)

To compute the SPV acceleration under the rolling constraint, the rolling constraint at
the acceleration level is derived. From (3.5) and (6.1), the non-sliding pure rolling condition
implies the wheel centre has to move with the velocity

oẋxxw =−ωωωw ×wxxxSPV = ωωωw × ((nnn−ααα)χR+nnnr). (6.43)

At the acceleration level, (6.43) reads (3.8)

oẍxxw =−ω̇ωωw ×wxxxSPV −ωωωw ×wẋxxSPV . (6.44)

Introducing (6.44) to (6.38), the derivative of (6.37) under the rolling assumption reads

ẍxxcp = Jω̇ωωw + J̇ωωωw, (6.45)

where
J = (ζζζ − III)γγγχR+wx̃xxcp

6.5 Conclusion 91

J̇ = (χ2nnnT
αααωωωw(2III −3ζζζ)γγγ +2ζζζ ω̃ωωwγγγ + Φ̃ΦΦ− Γ̃ΓΓ− yyywnnnT

ω̃ωωwỹyyw)χR,

ΦΦΦ = ζζζ γγγωωωw, ΓΓΓ = yyywnnnT
ω̃ωωwyyyw.

6.4.1 Properties of the SPV acceleration

To delineated properties of (6.45), the wheel angular velocity has been decomposed into the
two linear subspaces: the ground normal space (|n) and its complement of the ground normal
null-space (|Pn); that reads ωωωw = ωωωw|n +ωωωw|Pn. From (6.45), the following properties can be
proofed directly. The SPV acceleration

• is zero along the ground normal, nnnT oẍxxcp = 000;

• is independent on the wheel angular acceleration around the ground normal, i.e.,
Jω̇ωωw|n = 000;

• depends linearly on the wheel angular velocity along the ground normal,
i.e., J̇(yyyw,nnn,ωωωw|n)ωωωw = 000 and J̇(yyyw,nnn,ωωωw|Pn)ωωωw ̸= 000.

Thus a linear model on the SPVs acceleration may be defined in terms of the wheels
acceleration/velocity

oẍxxSPV = Jc

ω̇ωωw|Pn

ωωωw|n

+AAAc, (6.46)

where Jc =

[
J J̇(ωωωw|Pn)

]
, AAAc = J̇(ωωωw|Pn)ωωωw|Pn. (6.46) is a linear model for the SPV

motion that can be used to solve the non-holonomic constraint.

6.5 Conclusion

In this chapter, a new model of the SPV in the HLW robots that does not make any assump-
tions on the robot kinematics or the wheel camber angle has been proposed. To this end,
the wheel has been modelled as a torus rather than a standard sphere. Implications of the
developed model on the motion control of a legged-wheeled and a standard wheeled mobile
platform has been discussed, and a non-holonomy in these two types of robots has been
outlined. Finally, the second-order kinematic model has been derived, and its properties have
been delineated. It has been shown that during the pure-rolling motion, the support polygon

92 Model of a Support Polygon Vertex in the Hybrid Legged-Wheeled Robots

acceleration of the legged-wheeled robot is linearly dependent on the mixed wheel angular
velocity/acceleration state.

The SPV model developed in the chapter forms a basis for the robust omnidirectional
driving scheme proposed for the CENTAURO robot in Chapter 7 and the reactive support
polygon adaptation scheme described in Chapter 8.

Chapter 7

Robust Omnidirectional Driving Scheme

Even though the non-holonomy takes the same form for standard all-steerable platforms and
legged-wheeled robots (Section 6.3.1), the nature of this constraint is different. For standard
all-steerable platforms the non-holonomy for omnidirectional driving comes from the system
design, while in the legged-wheeled robots it is imposed by the control requirements. This
may occur to respect the workspace boundaries or to keep the system balanced. To tackle
the non-holonomic constraint in the control of the legged-wheeled robot, in this chapter, an
omnidirectional driving scheme is proposed for the CENTAURO robot.1

First, in Section 7.1 the notion of the constant support polygon is considered in different
ground conditions, then the desired SPV velocity that satisfies the rolling constraint (6.28)
for omnidirectional driving with the support polygon regulation is designed. The kinematic
model developed in Section 6 forms the basis for the design of a first-order IK control
scheme to regulate the robot posture and SPVs presented in Section 7.2. To ensure the SPV
convergence in Section 7.3, a steering strategy that accounts for the non-holonomic constraint
is proposed, and a damping injection method is developed to handle structural singularity
in the non-holonomic constraint. Finally, the proposed omnidirectional driving scheme is
verified in experiments on the CENTAURO robot in Section 7.4, and a conclusion is given in
Section 7.5.

1The work included in this chapter has been presented at the IROS 2018 conference with the publication
titled "On the kinematics of wheeled motion control of a hybrid wheeled-legged centauro robot" by Malgorzata
Kamedula, Navvab Kashiri, and Nikos G. Tsagarakis. An extension of this publication has been submitted to
Robotics and Autonomous Systems with the submission titled “Wheeled Motion Kinematics and Control of a
Hybrid Mobility CENTAURO robot” by the same authors which is currently under revision.

94 Robust Omnidirectional Driving Scheme

7.1 SPV Velocity Shaping

Tracking the SPV with respect to the inertial frame implies a time-varying SPV reference
to ensure a long distance stable motion. A more practical solution is to track the support
polygon with respect to the robot reference point. The robot reference point then moves
as it belongs to the same rigid-body with the SPVs, and thus the constant support polygon
reference remains feasible throughout the motion on a flat ground. Knowing the velocity
of the reference point on a rigid-body (oxxxr), and the position vector between the points
(rxxxSPV ∈ ℜ3), the velocity of a second point such as a SPV(oxxxSPV) reads (3.3)

oẋxxSPV = oẋxxr +
o
ωωωr × rxxxSPV . (7.1)

However, (6.28) constrains the SPV to remain on the ground plane, while it cannot be
ensured simultaneously with (7.1) for an arbitrary floating base reference. To comply with
any robot world posture command, the desired base reference has been decomposed to the
planar and spatial motions; the planar coordinates reads

oẋxxr|nnn = (I −nnnnnnT)oẋxxr,

o
ωωωr|nnn = nnnnnnT o

ωωωr.
(7.2)

The SPV velocity for the system with constant support polygon is then described by applying
(7.1) to the planar motion (7.2) only; this reads

oẋxxSPV = oẋxxr|nnn +
o
ωωωr|nnn × rxxxSPV ,des. (7.3)

On the other hand, (7.1) for a spatial – 3D – motion reads

oẋxxSPV = oẋxxr +
o
ωωωr × rxxxSPV + rẋxxSPV , (7.4)

where vector rẋxxSPV ∈ ℜ3 represents the robot internal motion that compensates for the
non-planar commands. Such SPV motions ensure the constant support polygon command
remains feasible throughout the robot motion on a surface, where the constant non-planar
floating-base coordinates can be consistently defined for all SPVs.

However, even if this condition is met, the system balance is not ensured during the robot
motion on an uneven terrain, where a relative motion of the gravity vector w.r.t. the ground
normal may move the CoM out of the support polygon. To address this, the constant support
polygon requirement, expressed in (7.1), may be redefined to follow the planar coordinates

7.2 Inverse Kinematics Whole-Body Control 95

w.r.t the gravity vector
oẋxxr|ggg = (I −ggggggT)oẋxxr,

o
ωωωr|ggg = ggggggT o

ωωωr,
(7.5)

where ggg ∈ ℜ3 symbolises the unit vector along the gravity direction. The rigid-body equation
then reads

oẋxxSPV = oẋxxr|ggg +
o
ωωωr|ggg × r|gggxxxSPV ,des +gggẋr|ggg, (7.6)

where r|gggxxxSPV ,des is the desired SPV position in the null-space of the gravity vector, and
ẋr|ggg ∈ ℜ1 is a scalar value that represents SPV motion in the gravity direction to comply
with (6.28); for the spatial – 3D – motion (7.4) holds. Definition of the constant support
polygon with respect to the gravity direction provides a direct control over the system stability.
However, with a change in a ground inclination a system configuration automatically adjusts,
and as a result a constant support polygon reference may become unfeasible with terrain
change due to the joint/workspace limits.

Finally, a similar derivation may be provided for a system with a relative base-SPV
motion. It yields

oẋxxSPV = oẋxxr|ggg +
o
ωωωr|ggg × r|gggxxxSPV ,des +gggẋr|ggg +PPPT

g ẋSPV ,des, (7.7)

where ẋSPV ,des ∈ ℜ2 symbolises the desired velocity of a SPV in the null-space of the gravity
direction, and PPPg ∈ ℜ2×3 stands for the matrix projecting a 3D space into the null-space
directions of the gravity vector.

7.2 Inverse Kinematics Whole-Body Control

The CENTAURO robot hybrid legged-wheeled kinematics provides a wide range of end-
effector motions what benefits its mobility. However, as a result the robot balance is not
ensured within the end-effectors workspace. Direct control over the SPVs placements is then
central to traverse more challenging terrains such as stairs or cluttered environments. To
address this concern, a non-holonomic first-order kinematics scheme is proposed. To this end,
the hierarchical operational space control framework [55] is used in a way that the NSPR
constraints are satisfied at all time and the system balance during the whole-body motion is
ensured as the robot base and support polygon references are simultaneously tracked.

First, the inverse kinematic resolution scheme is described in Section 7.2.1, and the
robot world posture task is outlined in Section 7.2.2. The tasks defined to track SPVs are

96 Robust Omnidirectional Driving Scheme

introduced in Section 7.2.3. The proposed control scheme with the IK task stack is outlined
in Section 7.2.4, and an extension to incorporate legged motion is given in Section 7.2.5.

7.2.1 Inverse Kinematics Scheme

The control requirements consisting of the robot world posture and SPVs positions
are defined in the task-space. The lower-level joint-space position/velocity references are
resolved with a hierarchical IK scheme. In this work, a scheme (3.47) has been implemented,
where the desired operational space velocity (ẋxxi) is defined as the position tracking error
(3.48). This scheme directly provides reference for the velocity controlled joints after the
whole stack of tasks is evaluated (q̇qqdes = q̇qqm), and the position reference is determined through
numerical integration

qqqdes = qqq+ q̇qqmT,

where T ∈ ℜ1 stands for the time step of the IK control loop.
Constraints Task

To ensure the compatibility of the joint-space solutions with the current/desired support state,
the set of contact constraints (3.5) is computed with the highest priority in the IK scheme. As
a result, generated joint space trajectories lie within the null-space of the constraints Jacobian.
Thus, the recursive algorithm in (3.47) is initialized with

q̇qq1 =−J+cpeeecp, (7.8)

where eeecp ≜ 000 ∈ ℜ3 f represents the constraints task error, Jcp ∈ ℜ3 f×n symbolises the
Jacobian of the point on the wheel that is in the contact with the ground, and f ∈ N stands
for the number of legs in ground contact.

7.2.2 World Posture Task

As discussed in Section 3.2.6, the system static balance is measured through the robot CoM
position in the gravity vector null-space, while motion along the gravity direction has no
influence on the robot static stability. For a robot with a non-negligible leg weight, as is the
case with the CENTAURO robot, the pelvis/base position gives a better indication about the
distance between the robot base and the ground than the CoM position along the gravity
direction. Therefore, the world posture task is composed of three subtasks defined to control
the CoM position in the gravity null-space, pelvis position along the gravity vector, and

7.2 Inverse Kinematics Whole-Body Control 97

the pelvis spatial orientation. This task provides a clear indication about the system safety
margin to the ground, and the upper-body reach; it also uniquely defines the robot world
posture (oxxxr).

In the first subtask – a CoM regulation task – the tracking error eeer1 ∈ ℜ2 reads

eeer1 = Pg(xxxCoM,des − xxxCoM),

where xxxCoM,des,xxxCoM ∈ ℜ3 represent the desired/current CoM coordinates. The task Jacobian
(Jr1 ∈ ℜ2×n) is defined from the whole-body CoM Jacobian determined using the sum of
CoM Jacobians (jJCoM ∈ ℜ3×n) of robot parts weighted by their masses (m j ∈ ℜ+)

Jr1 =−Pg

nl

∑
j=0

jJCoM

m j
.

The second subtask is the pelvis height regulation. The tracking error er2 ∈ ℜ1 is defined
as

er2 = gggT (oxxxb,des − oxxxb),

where oxxxb, oxxxb,des represents the current/desired pelvis position. The task Jacobian Jr2 ∈ℜ1×n

can be computed from a standard rigid-body kinematics.
The third subtask, the pelvis orientation task is defined in a 3D space, and it has a

quaternion as an input, where the task error (eeer3 ∈ ℜ3) is defined after (3.49). Similar to
Jr2, the task Jacobian (Jr3 ∈ ℜ3×n) can be directly computed from a standard rigid-body
kinematics.

Finally, the world posture tracking task is constructed by aggregating the three above
tasks, so that the task error (eeer ∈ ℜ6) reads

eeer =

[
eeeT

r1 eT
r2 eeeT

r3

]T

, (7.9)

and the task Jacobian is defined as

Jr =

[
JT

r1 JT
r2 JT

r3

]T

. (7.10)

7.2.3 Support Polygon Regulation

As discussed in Section 3.5.1, the contact point constraint for the CENTAURO robot may be
solved with a desired base motion for any non-singular state with a 3-DoF redundancy at

98 Robust Omnidirectional Driving Scheme

each leg in contact with the ground. However, based on this assumption alone, no conclusion
on the support polygon can be drawn. To guarantee correct tracking of the SPV position,
additional tasks are applied based on (6.29).

Camber Angle Regulation

First, consider a wheel camber angle (ϕ) which measures the angle between the ground
normal and the wheel plane that is a complementary acute angle to the angle from the ground
vector to the wheel axis (Section 3.2.2). In other words, the desired rotation is equal to the
rotation between the ground normal and the vector that is orthogonal to the rotation axis and
lies in the wheel plane.

The rotation axis is defined first. Since by definition in (6.2) the vector xxxc is orthogonal to
the wheel axis and the ground normal, the vector xxxc indicates the camber angle rotation axis.

To find the remaining vector, note that the vector zzzc is defined in a way that it is orthogonal
to the wheel axis (6.3), and as a result, the vector zzzc lies in the wheel plane. Moreover, by
definition (6.3), the vector zzzc is orthogonal to the rotation axis xxxc. In consequence, the vector
zzzc lies on both the camber angle plane of rotation and the wheel plane. The camber angle
reads

ϕ = tan−1
(
(nnn× zzzc)

T xxxc

nnnT zzzc

)
, (7.11)

which is a function dependent on the ground normal and robot state only.
The set of feasible camber angle values is constrained by the wheel geometry and joint

limits, whereas the camber angle value determines the wheel grip on the ground. As a
dynamic parameter, in this work, the camber angle value is not resolved on the kinematics
level and it is considered a higher-level task. An execution of the desired camber angle is
ensured through a 1-dimensional regulation task, whose error reads

eϕ = ϕdes −ϕ, (7.12)

where ϕdes ∈ ℜ1 represents the task reference. The task Jacobian can be extracted from the
time derivative of (7.11).

Steering Angle Regulation

The result from (6.29) implies that with constrained camber angles, the system becomes non-
holonomic for an omnidirectional driving. Compliance with the non-holonomic constraint
is ensured by a higher-level scheme proposed in Section 7.3 that provides reference for the

7.2 Inverse Kinematics Whole-Body Control 99

steering task, which controls the wheel world rotation around the ground normal. The wheel
orientation is expressed through the vector xxxc that is orthogonal to the ground normal and
lies in the wheel plane. The current steering angle (β) is then computed as a function of the
robot state and the ground normal only

β = tan−1
(
(xxxn × xxxc)

T nnn
xxxT

n xxxc

)
. (7.13)

The task error (eβ ∈ ℜ1) reads
eβ = βdes −β , (7.14)

where βdes ∈ ℜ1 stands for desired steering angle. The task Jacobian is determined from a
derivative of (7.13).

Support polygon regulation

To define the SPV tracking task based on (7.7), recall that according to (6.29), the SPV is not
constrained solely along xxxs. Tracking of the SPV is set up to follow the world posture of the
robot as defined in Section 7.2.2. The task error is constructed by mapping the SPV tracking
error on the rolling direction as

eSPV = xxxT
s (

oxxxr +
r|gggxxxSPV ,des − oxxxSPV). (7.15)

The task Jacobian is extracted from a derivative of (7.15), where a desired SPV velocity
(oẋxxSPV ,des ∈ ℜ3) is computed as in (7.7). The task error reads

ėSPV = oẋxxSPV ,des − oẋxxSPV . (7.16)

The desired SPV position is given with respect to the robot base planar coordinates,
and it can be expressed in the world frame (r|gggxxxSPV ,des) by the twist-swing decomposition
(Section 3.4) of the reference frame rotation around the ground normal.

7.2.4 Tasks Arrangement

The proposed control scheme, depicted at Fig. 7.1, consists of six IK tasks arranged
in a manner that the constraint task (7.8) is set at the top priority. It is followed by the
steering tracking task constructed upon (7.14). Then, the robot base tracking task is applied

100 Robust Omnidirectional Driving Scheme

Figure 7.1 Block diagram of a designed motion control scheme.

as described in Section 7.2.2. Next, the support polygon regulation task using (7.15) and
(7.16) is pushed into the stack. The final task is the camber angle task defined by (7.12).

The steering, SPV, and camber angle tracking tasks are p-dimensional tasks that gather
the respective 1-dimensional tasks defined for each leg end-effector.

7.2.5 Wheeled-Legged Motion Control

The control scheme described in the Section 7.2.4 is sufficient to ensure the continuous,
long-distance wheeled motion. However, in certain scenarios it is beneficial to intentionally
break the ground-wheel contact to adopt stepping motion. To integrate such scenarios into
the proposed control scheme, the SPV tracking task defined in (7.15) and (7.16), on the basis
of the 2-dimensional SPV position, is extended to 3-dimensions. The SPV position input is
set as

r|gggxxxSPV ,des = gggxggg,des +PPPT
g xxxSPV ,des, (7.17)

where xggg,des ∈ ℜ1 is the desired SPV position in the gravity direction. It therefore allows
for violation of the condition (6.28) holding the ground contact. The SPV tracking error
becomes

eeeSPV = [xxxs yyys zzzs]T (oxxxr +
r|gggxxxSPV ,des − oxxxSPV), (7.18)

and the task Jacobian can be extracted from

ėeeSPV = TTT (oẋxxr +ωωωr|ggg × r|gggxxxSPV ,des − oẋxxSPV),

7.3 Steering Strategy 101

Figure 7.2 Geometric interpretation of the desired steering angle.

where the activation matrix TTT reads

TTT =

[xxxs 0003×1 0003×1]
T if ∈ F

[xxxs yyys zzzs]T if /∈ F
.

This Jacobian definition ensures that the SPV assumption (6.28) is satisfied even if a non-zero
value has been set with r|gggxxxSPV ,des.

7.3 Steering Strategy

In this section, a strategy to generate the steering task reference that complies with non-
holonomic constraint in (6.29) is proposed. Input to the IK controller consists of the desired
robot world posture and SPV positions. However, as the non-holonomic constraint is
considered, the set of feasible motions depends on the current state. Two types of input,
position and velocity based, are discussed in reference to the desired steering angles in
Section 7.3.1 and Section 7.3.2, respectively, and a discussion with respect to the SWMR
is provided in Section 7.3.3. A strategy for tracking the robot base and support polygon
references is designed in Section 7.3.4, and a method to cope with a structural singularity is
presented Section 7.3.5.

102 Robust Omnidirectional Driving Scheme

7.3.1 Position Reference

Consider the robot world posture and SPVs positions are given as the controller inputs. The
desired SPV placement then reads

oxxxSPV ,des =
oxxxr +

r|gggxxxSPV ,des,

and depends only on the robot base and relative SPV. Let us assume, the robot motion is
designed to satisfy (6.28) (Section 7.1), and thus a desired SPV position lies on the ground
plane, then in the ground frame it reads

oxxx(n)SPV ,des =

[
ox(n)SPV ,des

oy(n)SPV ,des 0

]T

.

Fig. 7.2 depicts the ground plane where current and desired SPV as well as the wheel
steering angle are marked. Symbol ι ∈ ℜ1 describes the SPV motion generated by the camber
angle change, η ∈ ℜ1 stands for the distance travelled with the wheel rolling motion, and

xxxη =

[
xη yη zη

]T

∈ ℜ3 represents the SPV position for the constant camber angle. The

desired SPV in the desired steering frame (Fs,des) is

oxxx(s,des)
SPV ,des =

oxxx(s,des)
SPV +

[
ηp ιp 0

]T

, (7.19)

and

xxx(s,des)
η = oxxx(s,des)

SPV ,des −
[

0 ιp 0

]T

.

As discussed in Section 3.5.1, the desired steering angle (βp ∈ ℜ1) describes transforma-
tion from the ground frame (Fn) to the desired steering frame (Fs,des); therefore the vector
xxxη can be expressed in the ground frame as

xxx(n)η = oxxx(n)c,des −

cos(βp) −sin(βp) 0

sin(βp) cos(βp) 0

0 0 1

0

ιp

0

 . (7.20)

From (6.29) follows that the wheel rolling motion renders SPV translation along the xxxs

only; therefore the desired steering angle should be design to ensure that xxxs||(xxxη − oxxxSPV). It

7.3 Steering Strategy 103

is equal to an angle from the axis xxxn to the vector xxxη − oxxxSPV

βp = tan−1
(
[oxxxn × (xxxη − oxxxSPV)]

T nnn
xxxT

n (xxxη − oxxxSPV)

)
,

that can be evaluated in the ground frame as

βp = tan−1

(
y(n)η − oy(n)SPV

x(n)η − ox(n)SPV

)
, (7.21)

where oxxx(n)SPV =

[
ox(n)SPV

oy(n)SPV
oz(n)SPV

]T

. By substituting (7.20) into (7.21), one gets

∆xSPV sin(βp)−∆ySPV cos(βp) =−ιp,

where ∆xSPV = ox(n)SPV ,des −
ox(n)SPV , ∆ySPV = oy(n)SPV ,des −

oy(n)SPV . The trigonometric equation of
such form solved for the angle yields

βp = tan−1
(

∆ySPV

∆xSPV

)
+ sin−1

 −ιp√
∆x2

SPV +∆y2
SPV

 . (7.22)

7.3.2 Velocity Reference

For a robot moving with constant support polygon, the robot reference point and SPVs move
as a rigid-body and the SPVs velocities respect (6.28). (7.3) describes the velocity of the
SPV under such conditions, while (7.7) allows for variable support polygon reference at the
velocity level. To compute the desired steering from the velocity inputs, note that according
to (6.29) the SPV velocity is confined in the ground plane, and thus it does not move along
the ground normal. In the desired steering frame, it reads

oẋxx(s,des)
SPV ,des =

ηv

ιv

0

 , (7.23)

where ηv ∈ ℜ1 expresses the SPV velocity related to the wheel rolling motion and ιv ∈ ℜ1

symbolizes the SPV velocity associated with the camber angle motion. Furthermore, the

104 Robust Omnidirectional Driving Scheme

ground frame z-axis is parallel to the ground normal and thus the condition (6.28) implies

oẋxx(n)SPV ,des =

oẋ(n)SPV ,des

oẏ(n)SPV ,des

0

 . (7.24)

Since the rotation around the ground normal by the steering angle describes the transfor-
mation from the ground frame to the steering frame, one gets

ηv

ιv

0

=

cos(βv) sin(βv) 0

−sin(βv) cos(βv) 0

0 0 1

oẋ(n)SPV ,des

oẏ(n)SPV ,des

0

 , (7.25)

where βv ∈ ℜ1 represents the desired steering variable. The equation can be solved for the
desired steering angle; it yields

βv = sin−1

 −ιv√
oẋ(n)

2

SPV ,des +
oẏ(n)

2

SPV ,des

+ tan−1

oẏ(n)SPV ,des

oẋ(n)SPV ,des

 . (7.26)

The term ι in (7.22) and (7.26) represents the change due to the camber angle modification.
As these variations are often slow, the camber angle can be considered constant within a
time step, i.e., ι ≈ 0. Moreover, solutions for position (7.22) and velocity (7.26) inputs are
equivalent, where the former is a closed-loop and the latter an open-loop solution. In the next
section, (7.26) has been applied to a standard all-steerable platforms.

7.3.3 Steering in all-steerable platforms

Consider (7.26) for standard all-steerable mobile robots, i.e., with the constrained cam-
ber angle ιv = 0 and the platform mobility restricted to the motion plane where oẋxx(n)b =

7.3 Steering Strategy 105

Figure 7.3 Desired steering angle in the combined position/velocity mode.

[oẋ(n)b
oẏ(n)b 0]T and ωωω

(n)
b = [0 0 ω

(n)
z,b]

T . The SPV motion from (7.3) then becomes

oẋxx(n)SPV ,des =

oẋ(n)b

oẏ(n)b

0

+

0

0

ω
(n)
z,b

×

bx(n)SPV

by(n)SPV

0

 , (7.27)

and the steering angle (7.26) simplifies to

βv = tan−1

oẋ(n)b −ω
(n)
z,b

by(n)SPV

oẏ(n)b +ω
(n)
z,b

bx(n)SPV

 .

This is a well-known result in the literature of all-steerable mobile robots that describes a
steering motion in compliance with the ICR constraint.

Similarly, (7.26) can be shown to be consistent with solutions obtained from constraints
equation in [75, 77, 79, 80] for their respective kinematics. However, it has been obtained
without directly solving the system kinematics.

7.3.4 Combined Methods

Even though the non-holonomic constraint for the omnidirectional driving takes a similar
form for standard all-steerable mobile platforms and legged-wheeled robots (Section 6.3.1),
the nature of this constraint is not alike. For all-steerable platforms, the non-holonomic
constraint is a hard constraint imposed by the system design, and the steering tracking errors

106 Robust Omnidirectional Driving Scheme

increase the system’s internal forces or cause the wheel to slip. The robot remains still if the
non-holonomic constraint is violated. On the other hand, the non-holonomic constraint of the
legged-wheeled robot is introduced by control requirements on a support polygon and/or
camber angles. The robot base motion is possible without satisfying the non-holonomic
constraint by moving the base relative to the support polygon. The support polygon and
camber angle have lower priority in the proposed IK scheme than the NSPR constraint and
the robot world posture tracking tasks, and therefore the steering tracking errors affect the
execution of the support polygon reference.

The open-loop solution (7.26) resolves the wheel orientation, so that the desired SPV
trajectory becomes feasible for the robot. However, it does not account for the tracking errors,
which as accumulated may destabilize the system. These errors, that arise due to an imperfect
realisation of the non-holonomic constraint, occur in the lateral direction to the wheel motion
where the SPV motion is constrained. Meanwhile, the tracking error along the wheel rolling
direction is compensated by the controller. Given that the outcome of the non-holonomic
constraint is an angle, and so it is invariant to the magnitude of the tracking error, introducing
SPV tracking feedback directly into the open-loop solution leads to the high variance in the
computed steering reference for slow desired motions. To stabilize this approach, one can
use (7.22) to introduce a tunable feedback on the SPV position. The steering reference then
becomes a vector angle of the two approaches superimposed

βdes = tan−1
(

Kvηv sin(βv)+Kp|ηv|ηp sin(βp)

Kvηv cos(βv)+Kp|ηv|ηp cos(βp)

)
, (7.28)

where ηp and ηv symbolise the velocity vectors magnitudes computed with (7.19) and (7.23),
respectively. Kv ∈ ℜ1 and Kp ∈ ℜ1 represent the tuning gains whose ratio (Kp

Kv
) determines

the weight in which the feedforward (βv) and the feedback (βp) terms contribute to the final
steering reference (βdes). It ensures that the position feedback does not overshadow the
open-loop values during the slow wheeled motion, and thus excessive steering motions due
to the imminent miniscule tracking errors are eliminated.

The steering scheme (7.28) has been derived considering the robot reference point and
SPV without relying on the specific robot kinematics. Thus, (7.28) can be applied to any
legged-wheeled robot with controllable steering angle regardless a specific wheel assembly.
However, for some legged-wheeled robots with simpler kinematics, (7.26) is sufficient. This
is, for example, a case of standard mobile robots with only steerable wheels, where the
support polygon is constant by hardware design. On the other hand, in the standard mobile
robots with only caster wheels, their kinematic design does not allow the robot to adopt a

7.3 Steering Strategy 107

Figure 7.4 Block Diagram of the overall steering scheme.

statically unbalanced pose. In consequence, no direct support polygon control is required, and
thus no steering scheme is necessary, and a holonomic omnidirectional driving is achieved.

7.3.5 Structural Singularity of the Non-Holonomic Constraint

If the SPV reference is satisfied perfectly, computation of the steering angle with (7.22),
(7.26) and (7.28) leads to a singularity. At such configurations, the motion is not restraint
by the non-holonomic constraint and any steering angle can be adopted. However, a small
variation in the magnitude of the velocity of the desired SPV may cause an arbitrary desired
steering angle. To reduce this effect and to avoid an unstable behaviour in the proximity
of singularities, damping have been introduced in the computation of the desired steering
angles (βdes, βp, βv) as well as the magnitudes of the velocity of the SPV (ηdes, ηp, ηv).
The overall algorithm consists of six steps shown in Fig. 7.4.

First, the steering angles for closed-loop (βp) and open-loop (βv) strategies are computed
directly from (7.22) and (7.26). Next, the closed-loop (ηp) and open-loop (ηv) magnitudes
of the velocity of the desired SPV are evaluated directly from (7.19) and (7.25).

In the step two, the magnitudes of the desired SPV motion are damped through the
formula that reads

ηp|t = ηp|t−T + tanh
(

ηp|t
εp

)
(ηp|t −ηp|t−T),

ηv|t = ηv|t−T + tanh
(

ηv|t
εv

)
(ηv|t −ηv|t−T),

(7.29)

where (.)|t−T refers to the value at the previous time step, and (.)|t symbolises current time
step values. εp ∈ ℜ1 and εv ∈ ℜ1 denote damping threshold applied for the closed-loop and
the open-loop values, respectively. The damped values from (7.29) are used as the measure
of the proximity to singularity in the remainder of the damping scheme.

108 Robust Omnidirectional Driving Scheme

The step three of the damping scheme consists of damping the desired steering angles –
computed in the first step of this algorithm; it reads

βp|t = βp|t−T + tanh
(

ηp|t
εp

)
(βp|t −βp|t−T),

βv|t = βv|t−T + tanh
(

ηv|t
εv

)
(βv|t −βv|t−T).

(7.30)

In the step four of the damping scheme, a steering angle (βdes) is evaluated based on
(7.28) with results from (7.29) and (7.30) sent as inputs. Then, the magnitude of the desired
SPV velocity vector (ηdes ∈ ℜ1) is computed based on Fig. 7.3; it reads

ηdes =
√

K2
vη2

v +K2
pη2

p +2KvKpηvηp cos(βv −βp) (7.31)

with results of (7.29) and (7.30) used as input variables.
In the step five of the damping scheme, the magnitude of the vector of the desired SPV

motion (ηdes) computed in the previous step is damped in the same way as variables in (7.29).
In the final step of the damping scheme, the desired steering is computed

βdes|t = βdes|t−T + tanh
(|ηv|t |ηdes|t

εvεdes

)
(βdes|t −βdes|t−T), (7.32)

where εdes ∈ ℜ1 represents a damping threshold, and the damped values from the previous
steps are used as inputs.

7.3.6 Evolution of the steering scheme

Proposed form of the damping scheme as presented in this section has been chosen based on
the simulation validation and hardware experiments. In contrary to the original attempt as
described in [113], the tuning gains in (7.31) and the scaling factor in (7.28) and (7.32) have
been introduced. As a result, the robustness of the proposed scheme improved what allowed
for a successful hardware implementation of the omnidirectional driving scheme as shown in
Section 7.4. Furthermore, the range of the feasible robot base velocities increased.

7.4 Results

Four experiments have been performed on the CENTAURO robot to test the proposed model
and control scheme. The first experiment, described in Section 7.4.1, has been designed to

7.4 Results 109

evaluate the control scheme robustness to the non-perfect trajectory and steering reference
singularity. The second experiment, presented in Section 7.4.2, verifies the control scheme
ability to change to support polygon type, and the third experiment, outlined in Section 7.4.3,
tests the control scheme ability to track the support polygon with the non-zero camber angles.
Finally, the fourth experiment, described in Section 7.4.4, has been designed to compare
the contact point tracking with the proposed steering scheme with respect to the standard
approach.

In all of the experiments, the state estimation algorithm as described in Appendix A.1
has been used to estimate the robot world posture. The proposed control scheme executes
at the embedded CENTAURO robot computer2 in 0.4 ms, and the state estimation requires
0.1 ms. The experiments have been performed with the real-time control loop working at
500 Hz frequency. Furthermore, in simulation, the proposed framework have been validated
with the non-real-time ROS plugins at the 200 Hz frequency.

Tuning the steering parameters requires a trade-off between the strong enough feedback
gain Kv to ensure the convergence of a contact point, and the damping of a steering to prevent
the undesirable steering in the slow motion. Impact of the open-loop and the closed-loop
solutions is determined through the ratio (Kp

Kv
) (7.28); it has been set up to (Kp

Kv
= 0.01). This

value has been determined in the simulation as the minimal value that ensures the contact
point convergence. In the steering method described in Section 7.3, the support polygon
regulation at the velocity level is considered, in contrary to the steering method proposed
in [113] – and outlined in Section 7.3.6 – where the support polygon regulation has been
provided with the closed-loop approach. This change allowed to decreased the feedback
gains from Kp

Kv
= 0.33;3and therefore to increase the range of feasible base velocities.

The damping parameters have been set-up to the smallest values that generated the
stable motion for the system near singularity as well as for the robot moving with the very
slow motion below 0.005 m/s threshold; these parameters read εdes = 0.001, εp = 0.0015,
εv = 0.0008.

7.4.1 Steering strategy robustness

In the first experiment, the robot executes a set of support polygon references while concur-
rently it follows a complex non-smooth world posture reference that includes turning manoeu-

2on COM Express conga-TS170 embedded computer with Intel Core i7-6820EQ CPU.
3In this work, in (7.28) the scaling factor in the desired steering angle has been introduced, and thus this

comparison is not direct.

110 Robust Omnidirectional Driving Scheme

Figure 7.5 Photos from the CENTAURO robot performing the experiment testing the
robustness of the motion control scheme.

7.4 Results 111

Robustness of the Motion Control Scheme I set

cm front left front right rear left rear right

mean 1.4 1.5 1.8 2.0

std 1.3 1.0 1.0 0.8

50% 1.1 1.4 1.7 2.0

Robustness of the Motion Control Scheme – II set

cm front left front right rear left rear right

mean 1.55 1.32 1.66 1.18

std 1.32 1.18 1.61 1.06

50% 1.37 0.69 1.19 0.53

Table 7.1 Statistical data describing the SPV tracking error in the experiment testing the
robustness of the motion scheme.

vres; this experiment has been executed twice.4 Fig. 7.5 shows a few snap-shots from the
experiment, and Fig. 7.6 provides corresponding support polygons and commanded/executed
CoM trajectories. The control scheme robustness is tested in this experiment by defining the
desired base/SPVs trajectories so, at a few time instances, the steering angle computed with
(7.22) or (7.26) yields a discontinuous desired trajectory for the steering angle. Additionally,
during the motion the robot crosses through the structural singularity of the non-holonomic
constrain.

4A video recording from the first trial can be seen at https://youtu.be/ZCx8mjBIUOg.

https://youtu.be/ZCx8mjBIUOg

112
R

obustO
m

nidirectionalD
riving

Schem
e

Figure 7.6 Robustness of the motion control scheme – experimental results. Segments of the desired (dashed red) and executed (solid
black) CoM trajectories. The SPVs desired (dashed green, dashed orange) and executed (solid blue, solid violet) trajectories are given
for a desired (yellow) and executed (blue) support polygons; green areas mark overlaps between the desired and executed support
polygons. The purple dot marks the CoM corresponding with the support polygon.

7.4 Results 113

Figure 7.7 Robustness of the motion control scheme – experimental results. Contact point
tracking error for front left (blue), front right (yellow), rear left (green) and rear right leg
(red). The dashed black line represents error’s mean, and the grey box marks points within
the standard deviation. Result from the first trial on top, and the second trial at the bottom.

Fig. 7.6 shows desired and executed trajectories of SPVs and CoM, and respective support
polygons at a few time steps. The average tracking error of the world posture task from
both experiments are given at Fig. 7.8, where the tracking errors for the non-planar base
orientation tracking task have been recorded only for the second trial. The average SPV
tracking error computed with respect to the estimated robot world posture does not cross
2 cm for any leg, with a standard deviation of 1.3 cm for front left leg, 1.6 cm for rear left
leg in the second run, and less than a 1 cm for other end-effectors (Table 7.1). An increase
in a tracking error appears in presence of a non-smooth reference at SPV that relates to
the violation of a non-holonomic constraint. These errors are compensated thanks to the
feedback term (βp) applied during the motion, and all SPV tracking errors remains under
2 cm at the end of the experiment (Fig. 7.7).

The desired steering reference (βdes) follows closely the open-loop solution (βv) with
a slight modification towards a direction indicated by feedback (βp) (Fig. 7.9, top plot). A
discontinuous jumps of a value about π in computed open-loop and closed-loop steering
angle references at Fig. 7.9 are related to a sign switch in a desired wheel rotation due to a
change in the tracking error sign. The final steering reference βdes however, is implemented
to always choose the solution closest to the previous one, so that the configuration change is
not required.

Middle plot at Fig. 7.9 shows the level of the damping generated by the scheme. It is
indicated by the value of tanh

(
η

ε

)
in (7.30) and (7.32), which range includes a set of real

114 Robust Omnidirectional Driving Scheme

Figure 7.8 Robustness of the motion control scheme – experimental results. World posture
tracking error, the CoM planar motion tracking error on top, height regulation in the middle,
and the x (blue line), y (red) and z (green) coordinates orientation tracking error at the bottom.

Figure 7.9 Robustness of the motion control scheme – experimental results for
left front leg. Top figure: βdes (green), βv (blue) and βp (yellow); middle figure:
tanh

(
(|ηv|ti|ηdes|ti)/(εvεdes)

)
(green), tanh

(
ηv|ti/εv

)
(blue), and tanh

(
ηp|ti/εp

)
(yellow);

bottom figure: desired support polygon velocity – ẋSPV ,des (blue) and ẏSPV ,des (yellow)
expressed in the frame oriented along with the robot heading.

7.4 Results 115

Figure 7.10 Photos of the CENTAURO robot executing the hybrid legged-wheeled motion
with whole-body rotation.

numbers from 0 to 1. In the proposed damping scheme, a zero value of the hyperbolic tangent
function corresponds to variable being fully damped, i.e., only the previous time step is used.
On the contrary, when the hyperbolic tangent function takes the value of one, it corresponds
to an inactive damping, when only a current time step is considered.

The whole motion has been confined to a 2 by 3 meter experimental space, and thus a
desired robot motion is slow. The damping remains active throughout the whole motion
(Fig. 7.9, middle plot) at an average value for the desired steering (βdes) of 0.009 and a
standard deviation of 0.025 for the front left leg. The desired steering is fully damped when
the contact point is commanded to remain still (e.g. 25 s), as well as during the final breaking
manoeuvre. It also approaches zero, when the front left leg crosses the structural singularity
between 64 s and 70 s. In this time interval, both open-loop and closed-loop solutions remain
active, while the damping of the desired steering reaches its minimum value of 0.00023.

Discontinuities of values below a 0.5 mm have appeared between the reference segments.
This corresponds with a jump steps in contact point reference (Fig. 7.9, bottom plot) and the
level of the damping scheme activation (Fig. 7.9, middle plot) at a few time steps (e.g., 24 s,
39 s, 70 s, 123 s).

116 Robust Omnidirectional Driving Scheme

Figure 7.11 Photos of the CENTAURO robot executing the hybrid legged-wheeled motion
with whole-body forward motion.

7.4.2 Variable contact polygon type

In the second experiment, the hybrid wheeled-legged motion has been executed four times.
First two times, the experiment have been performed with the robot moving forward, while
the desired base velocity has been increased between the trials. The third and fourth times,
the experiment has been executed on the robot in pure rotation with increasing base angular
velocity, while the desired base angular velocity has been increased between the trials.5 In
all experimental conditions, the same set of support polygon commands has been executed.
First, during a whole-body wheeled motion a support polygon has been shifted to support the
system balance on 3 legs, then a swing leg trajectory has been executed while supporting
legs have been commanded to follow a time-varying trajectory. Then a full state support
polygon has been restored, and a final support polygon position has been adopted. In the
forward motion the robot executed the same set of support polygon references in 75 s with
the base translation velocity of 0.02 m/s in the first run, and in 53 s with the base velocity
of 0.04 m/s. In the experiments with the angular base motion, the robot executed the same
support polygon reference in 75 s with the base velocity of 0.04 rad/s in the first run, and in
53 s with the base angular velocity of 0.1 rad/s.

Fig. 7.10 shows a few snap-shots of the CENTAURO robot executing aforementioned tra-
jectory while rotating in place, and Fig. 7.11 shows a few snap-shots of the CENTAURO robot

5A video recording from the first and third experiments can be seen at https://youtu.be/joV4Xg1lo14

https://youtu.be/joV4Xg1lo14

7.4 Results 117

Figure 7.12 Hybrid legged-wheeled motion with base rotation – experimental results. Desired
(dashed red) and executed (solid black) CoM trajectories offset 10 cm towards robot heading.
The SPVs desired (dashed green, dashed orange) and executed (solid blue, solid violet)
trajectories are given for a desired (yellow) and executed (blue) support polygons; green
areas mark overlaps between the desired and executed support polygons. The purple dot
marks the CoM corresponding with the support polygon.

executing the same support polygon trajectory while moving forward. The world posture task
tracking errors are given at Fig. 7.14 and Fig. 7.15, where the non-planar base orientation
tracking errors have been recorded only for the second set of experiments.

Desired and executed trajectories of SPVs and CoM, and respective support polygons
at a few time steps are given for the first experiment with the base rotation at Fig. 7.12 and
the first experiment with the forward motion at Fig. 7.13. To indicate the position of the
robot upper-body in the base rotation experiment, at Fig. 7.12 the CoM has been marked
with an offset of 10 cm towards the robot heading. The SPVs tracking errors with respect to
the estimated world posture for both experiments are shown at Fig. 7.17, and Fig. 7.18; the
corresponding statistical data are given at Table 7.2 and Table 7.3.

The average tracking errors for all contact points remain under 2.5 cm for all end-effectors,
where the average error as well as standard deviation in the pure rotation is higher than for
the forward motion. At the end of all experiments the tracking errors stay under 2 cm for
all end-effectors except that of the front left leg in the first experiment, when the system is
rotating in place, which has a 2.25 cm steady state position error.

The right rear leg z-coordinate reference and tracking errors for the second set of experi-
ments are given at Fig. 7.166. Fairly low tuning gains have been used for the z-coordinate

6These data have not been recorded for the first set of experiments.

118 Robust Omnidirectional Driving Scheme

Figure 7.13 Hybrid legged-wheeled motion with base translation – experimental results.
Desired (dashed red) and executed (solid black) CoM trajectories. The SPVs desired (dashed
green, dashed orange) and executed (solid blue, solid violet) trajectories are given for a
desired (yellow) and executed (blue) support polygons; green areas mark overlaps between
the desired and executed support polygons. The purple dot marks the CoM corresponding
with the support polygon.

Figure 7.14 Hybrid legged-wheeled motion – results for the forward motion experiments.
On the left: first experiment, on the right: second experiment. World posture tracking error,
the CoM planar motion tracking error on top, height regulation in the middle, and the x (blue
line), y (red) and z (green) coordinates orientation tracking error at the bottom.

7.4 Results 119

Figure 7.15 Hybrid legged-wheeled motion – results for the rotation motion experiments.
On the left: first experiment, on the right: second experiment. World posture tracking error,
the CoM planar motion tracking error on top, height regulation in the middle, and the x (blue
line), y (red) and z (green) coordinates orientation tracking error at the bottom.

Figure 7.16 Hybrid legged-wheeled motion – results for the second set of experiments for the
right rear leg. Top plot: reference of the contact point z-coordinate, bottom plot: z-coordinate
tracking error for the robot rotating in place (green line) and the forward motion (blue).

120 Robust Omnidirectional Driving Scheme

Figure 7.17 Hybrid legged-wheeled motion – results for the first set of experiments. Top
plot: base rotation, bottom plot: forward motion. SPV tracking error for front left (blue),
front right (yellow), rear left (green) and rear right leg (red). The dashed black line represents
error’s mean, and the grey box marks points within the standard deviation.

Figure 7.18 Hybrid legged-wheeled motion – results for the second set of experiments. Top
plot: base rotation, bottom plot: forward motion. SPV tracking error for front left (blue),
front right (yellow), rear left (green) and rear right leg (red). The dashed black line represents
error’s mean, and the grey box marks points within the standard deviation.

7.4 Results 121

rotation - I set

cm front left front right rear left rear right

mean 2.45 2.44 1.79 1.80

std 1.51 1.53 1.22 1.18

50% 2.26 2.02 1.54 1.65

translation - I set

cm front left front right rear left rear right

mean 1.35 2.00 1.67 1.54

std 0.82 0.87 1.06 0.81

50% 1.15 1.87 1.63 1.29

Table 7.2 SPV tracking error statistical data for the first set of hybrid motion experiments.

contact point tracking task, and thus tracking errors up to 5 cm have been recorded. However,
with time, the tracking errors converge to zero. It should be noted that, the information
whether the contact point was touching the ground was hard-coded based on the system
performance in simulations (Chapter 4). It resulted in a noticeable, unknown delay between
the moment the contact point touched the ground and the moment the controller had received
the information about the contact being restored. That caused the system disturbance and may
explain the noticeable increase in the tracking errors at the moments of establishing/breaking
contacts.

7.4.3 Experiment with a non-zero camber angle

In the third experiment, the robot has been rotating with the constant velocity of 0.1 rad/s
while extending its support polygon.7 When the robot approached its leg workspace limits
in the standard configuration with the wheels remaining parallel to the ground normal, the
non-zero camber angle configurations have been adopted to extend reach of the robot legs
and thus allow the robot to further increase the support polygon.

7A video recording from this experiment can be seen at https://youtu.be/jymWhvXupno.

https://youtu.be/jymWhvXupno

122 Robust Omnidirectional Driving Scheme

rotation - II set

cm front left front right rear left rear right

mean 1.28 1.38 1.00 1.20

std 1.52 1.58 1.19 1.21

50% 0.68 0.70 0.61 0.69

translation – II set

cm front left front right rear left rear right

mean 1.60 1.61 1.12 1.31

std 1.97 1.63 0.85 1.14

50% 0.95 1.07 0.93 1.01

Table 7.3 SPV tracking error statistical data for the second set of hybrid motion experiments.

Figure 7.19 Photos of the CENTAURO robot executing the non-zero camber angle reference.

7.4 Results 123

Figure 7.20 Non-zero camber angle experiment. X-coordinates of the SPV desired/executed
trajectory on top; the front and rear SPVs on the left/right, respectively. Y-coordinates of
the SPV desired/executed trajectory at the bottom; the left and right SPVs on the left/right,
respectively.

Fig. 7.19 presents a few snap-shots from the experiment, and the Fig. 7.20 shows the
desired/executed SPV trajectories with respect to the estimated robot world posture. The
SPVs tracking errors with respect to the estimated robot world posture and the desired/adopted
camber angles are shown at Fig. 7.21; the corresponding statistical data that describes the
SPVs tracking errors are given at Table 7.4. Furthermore, at Fig. 7.22, the world posture
tracking errors have been shown. The presented results show that the camber angle is tracked
accurately, and the average SPV tracking errors remain under 1.0 cm for all contact points
with the standard deviation remaining around 0.5-0.6 cm for all legs.

Note that in the non-zero camber angle configuration, the CoM motion is induced
whenever the steering position is changed because these motion requires adjustment of all
6-DoFs of a leg. Furthermore, this experiment has been performed with the higher steering
feedback gains Kp

Kv
= 0.03 that the minimum required to maintain the support polygon stability

Kp
Kv

= 0.018, thus bigger steering adjustments have occurred. The slight steering adjustments
induced by the higher steering feedback gains generated the CoM motions, which caused
higher tracking errors in two legs in the second part of the experiment (Fig. 7.21).

The experiment shows that the controller allows to track the support polygon with the
non-zero camber angle position, what effectively increases the robot workspace by allowing
the robot to adopt the positions not reachable with the controllers constraint to the zero
camber angle states.

8as used in the remaining experiments

124 Robust Omnidirectional Driving Scheme

Figure 7.21 Non-zero camber angle experiment. Contact point tracking error on top and the
desired/executed camber angle at the bottom for front left (blue), front right (yellow), rear
left (green) and rear right leg (red). On top: the dashed black line represents error’s mean,
and the grey box marks points within the standard deviation, at the bottom: dashed black line
representing the camber angle reference.

Figure 7.22 Non-zero camber angle experiment. World posture tracking error. The CoM
planar motion tracking error on top, height regulation in the middle, and the x (blue line), y
(red) and z (green) coordinates base orientation tracking error at the bottom.

7.4 Results 125

Non-zero camber angle experiment

cm front left front right rear left rear right

mean 0.7 0.9 0.8 0.7

std 0.5 0.6 0.6 0.5

50% 0.6 0.7 0.6 0.6

Table 7.4 Statistical data describing the SPV tracking error in the experiment with the
non-zero camber angle.

7.4.4 Evaluation of the combined steering approach

In the fourth experiment, the robot has been given a constant forward velocity reference of
0.04 m/s and the constant support polygon reference. The experiment have been performed
twice in the robot with high impedance gains of 300 to 2000 Nm/rad on the lower-level
control. In the first trial, no steering feedback has been applied, what corresponds with the
standard method to resolve the non-holonomic constraint at the velocity level (7.26). In the
second trial, the feedback gain of a value Kp

Kv
= 0.01 have been applied, and the full proposed

steering scheme (7.28) have been active.
At Fig. 7.23, the y-coordinate of the contact point tracking error with respect to the

estimated robot world posture are shown. These values represent the tracking error in the
direction perpendicular to the desired base motion. The results show that, when the proposed
steering method is applied the initial contact point tracking errors, that come from the sensor
noise and state estimation, converge to zero. On the other hand, when the standard steering
approach have been applied, for 3 legs, the tracking errors increased during the motion.

In this experiment, the robot moved by 3.66 m, and the overall tracking errors in the
experiment without steering feeedback have not crossed 2 cm. On the longer trajectory, the
support polygon could diverge, or it could find a stable position. When the high impedance
gains or stiff position control are applied, the support polygon may find the stable position
and keep the support polygon bounded even when no steering feedback is applied. However,
when the robot is controlled with softer impedance gains or the desired base trajectory
requires the motion of the wheel steering angles, the bounded support polygon cannot be
ensured for the platform with CENTAURO robot kinematics if the non-holonomic constraint
is resolved without the feedback.

126 Robust Omnidirectional Driving Scheme

Figure 7.23 Evaluation of the steering feedback. The contact point y-coordinate tracking
results for the forward motion without the steering feedback on top, and the proposed steering
method at the bottom. Results for front left (blue), front right (yellow), rear left (green) and
rear right leg (red).

7.5 Conclusion

In this chapter, an omnidirectional driving scheme for the CENTAURO robot has been
proposed. To that end, a first-order IK scheme that resolves a whole-body motion of the
CENTAURO robot, and that supports both wheeled and legged mobility, has been developed
based on the kinematic model developed in Chapter 6. In this control scheme, a continuous
wheel motion is resolved through the IK scheme which generates robot motion compliant
with the NSPR condition. It tracks world posture of the robot, its SPVs, camber and steering
angles. Finally, a higher-level scheme resolving a steering motion to comply with the non-
holonomic constraint has been designed, and the damping scheme has been proposed to
tackle the structural singularity.

The proposed control scheme has been tested in the set of experiments designed to
evaluate motion control scheme robustness to a non-smooth base trajectory, its performance
near the structural singularity, and its ability to change a support polygon type during the
whole-body motion. Presented experimental results show that the proposed control scheme
produces a stable motion and correct tracking of a given world posture reference and the SPVs
positions. The system remains stable in presence of a non-smooth reference, and it generates
continuous steering reference near the structural singularity. Furthermore, presented results
validate the controller ability to support 3 and 4 leg configurations, as well as its capability
to modify a support polygon configuration during the whole-body motion of the robot. The
controller ability to track the desired wheel camber angles while adjusting the robot support

7.5 Conclusion 127

polygon has been experimentally verified. Finally, the proposed approach to resolve the
non-holonomic constrained has been experimentally compared with the standard method.

The proposed controller has been formulated in such a way that non-flat and uneven
grounds can be incorporated directly through the ground normal direction near the wheel.
However, further experiments are needed to verify the controller performance in these
situations. Moreover, experiments in the scenarios closer to the real-world applications
would provide a valuable feedback on the controller performance.

Chapter 8

Reactive Support Polygon Adaptation

In this chapter1, a new reactive control scheme has been proposed for the CENTAURO
robot2. The developed controller engages the robot articulated leg and steerable wheels
to continuously adjust the support polygon in the entire 2-D space of the ground plane
to response to unknown disturbances. To this end, a novel quadratic programming task
has been designed in the cartesian-space to push the system support polygons away from
the robot CoM, while respecting the leg workspace limits. To account for the hardware
limits the cartesian-space optimisation task is expressed in the joint-space. To that end, to
resolve the non-holonomic constraint in the SPV tracking (Section 6.3.1) in the means of the
quadratic programming, a second-order kinematic model developed in Section 6.4 is used.
The proposed control is experimentally verified on the CENTAURO robot, demonstrating the
support polygon adjustment when external disturbances are applied to the robot.

This chapter is organised as follows; The cartesian-space support polygon adaption
scheme is proposed in Section 8.1, the second-order SPV kinematic model is expressed in
the terms of the joint-space velocities in Section 8.2, and the joint-space task is introduced in
Section 8.3. The experimental results are given in Section 8.4, and the conclusions are drawn
in Section 8.5.

1The work included in this chapter has been presented in the IEEE Robotics and Automation Letters
article titled “Reactive Support Polygon Adaptation for the Hybrid Legged-Wheeled CENTAURO robot” by
Malgorzata Kamedula and Nikos G. Tsagarakis.

2In this chapter, only the lower-body kinematics is considered. The upper-body motion is expressed through
the whole-body CoM.

130 Reactive Support Polygon Adaptation

8.1 Support polygon adaptation task

This section examines two main factors that restrict the legged robots motion in the cartesian-
space: the support polygon stability margin (SPSM) that quantifies the system balance, and
the workspace boundary that defines a robot capability to move an end-effector in a given
direction. Then, the support polygon adaptation task is formulated and discussed.

In the presence of sudden disturbance, steady-state position errors in lower-level controller
increase, and a theoretically balanced reference may generate an unbalanced pose, see Fig. 8.1
on the left, where the disturbance applied to the robot pushes the CoM outside the support
polygon. To counteract this effect, a reflex motion that adjusts the support polygon to improve
the system balance has been developed in this section. The proposed scheme takes advantage
of the 6-DoF CENTAURO robot leg kinematics by actively using its steering motion to
regulate the support polygon and enhance the robot balance.

The proposed task combines two approaches to maintain the system balance. First, it
adjusts the SPVs to ensure sufficient SPSM of the disturbed CoM, as shown in Fig. 8.1 in the
middle. At Fig. 8.1, the CoM is pushed to the side, and the SP (light purple area) does not
fully encapsulate the CoM safety boundary (cyan circle). In response, the SPVs are moved
to the side to extend the SP (purple area), so the CoM safety boundary (green circle) lies
within the new SP (purple area). Since the robot legs are not massless, the CoM is moved
towards the direction of SPVs motion (green versus cyan circle). However, the SP edge on
the left side moves more than the CoM, and the SPSM is increased.

In the second reflex, shown at Fig. 8.1 on the right, when part of the CoM safety margin
(cyan circle) lies outside the SP (light purple area), the legs mass – and thus the CoM (green
circle) – is shifted away from the SP edge, and the SPSM is increased. The SP extends
(purple area) with the SPVs motion. Since, for the affected SP edge, the CoM safety margin
was within the SP, the system balance is not significantly affected, unless the leg workspace
limit is approached.

8.1.1 Support Polygon Stability Margin

In this section, the SPSM is defined, and the linear model for the SPSM is derived. The SPSM
is the shortest distance from the robot CoM to the side of the convex polygon constructed
upon robot-ground contact points. A robot is statically balanced when its CoM remains
within its support polygon (Section 3.2.6). Thus, the SPSM measures how far the system is

8.1 Support polygon adaptation task 131

Figure 8.1 Reactive support polygon adaptation in response to the unknown disturbance -
concept. On the left, robot response to the disturbance with no reactive control; in the middle,
support polygon edge adjustment and the CoM adaptation on the right.

from an unbalanced pose. The SPSM reads

m = min
i∈E

mi,

where set E includes all polygon edges described by the pair of adjacent SPVs, and

mi = (xxxCoM − xxxSPV , j)×
(xxxSPV ,k − xxxSPV , j)×nnn
|(xxxSPV ,k − xxxSPV , j)×nnn|

, (8.1)

where nnn ∈ ℜ3 symbolises the ground normal vector, xxxCoM ∈ ℜ3 stands for the CoM position
vector, j,k ∈ L , where L denotes a set of robot legs in the ground contact. Vectors xxxSPV , j

and xxxSPV ,k ∈ ℜ3 represent the position of the support polygons describing an edge i, and
thus only pairs of adjectent SPVs are considered as feasible j,k pairs in (8.1). In practice,
to maintain the system balance, an offset between the support polygon edge and the system
CoM is needed to account for the modelling inaccuracies, unpredicted disturbances and
control tracking errors. These minimum SPSMs, defined for each support polygon edge
(mmmmin ∈ ℜ|E |), are referred to as ’safety margins’ in this work. The SPSM is described by the
non-linear function (8.1) with respect to the support polygons. To express the safety margin
limits in a linear form, (8.1) has been moved to the velocity space. Accounting for the rolling
motion that constraints the support polygon to stay on the plane, i.e., ∀i ∈ L : nnnT ẋxxSPV ,i = 0
(6.28); the time derivative of (8.1) reads

ṁmm =

[
ṁ1 . . . ṁ|E |

]T

= JSPV
m ẋxxSPV +JCoM

m ẋxxCoM, (8.2)

132 Reactive Support Polygon Adaptation

where JSPV
m ∈ ℜ|E |×2p and JCoM

m ∈ ℜ|E |×3 denote respective Jacobians;

xxxT
SPV =

[
xxxT

SPV ,1|Pn . . . xxxT
SPV ,p|Pn

]
, xxxSPV ,i|Pn ∈ ℜ2 describes the ith leg support polygon in

the ground normal null-space.

8.1.2 Workspace Boundaries

In this section, the robot workspace is discussed, and the linear model is derived. In this
work, the reach of a leg is considered to be the main indicator of the robot workspace; the
joint-space limits are tackled separately in Section 8.2. The maximum leg reach is a constant
characteristic of the hardware that depends on the system kinematic arrangement and length
of the robotic limbs. For most of the standard robotic systems, the workspace boundary
can be approximated by the distance between the two distal points of the fully extended leg.
Consequently, a measure of the distance from the workspace limits is a distance between
these two distal points at the current time step. This value is referred to as the ’virtual leg
length’ in this work.

For the CENTAURO robot leg, the two distal points are the point defined by the cross-
section between the hip yaw and hip pitch axes (∀i ∈ {1, . . . p} : xxxh,i ∈ ℜ3) and the wheel
contact point. Slightly smaller values than the fully extended legs have been considered
as a limit to a reachable leg lengths (wwwmax ∈ ℜp) to account for the wheel camber angle

limits. For convenience, the square of the adopted virtual leg lengths (www =

[
w1

2 . . . wp
2

]
) is

computed, where

∀i ∈ {1, . . . p} w2
i = (xxxSPV ,i − xxxh,i)

T (xxxSPV ,i − xxxh,i). (8.3)

The vector of maximum workspace limits wwwmax should be adjusted accordingly.
To define the workspace limits in the linear form, (8.3) has been expressed at the velocity

level. In the rolling motion – i.e assuming that nnnT ẋxxSPV ,i = 0 – it reads

ẇww = JSPV
w ẋxxSPV +Jh

wẋxxh, (8.4)

where JSPV
w ∈ ℜp×2p and Jh

w ∈ ℜp×3p denote respective Jacobians, and xxxT
h =

[
xxxT

h,1 . . . xxxT
h,p

]
.

8.1.3 Support Polygon Adaptation Task in the Cartesian-Space

The proposed support polygon adaptation task is designed to minimise the support polygons
motion while respecting the safety margin and maximum workspace constraint. The task

8.1 Support polygon adaptation task 133

reads
minimise

ẋxxSPV , δδδ

ẋxxT
SPV ẋxxSPV +δδδ

TWWWδδδ

subject to JSPV
m ẋxxSPV ≥ ∆mmmmin −δδδ m

JSPV
w ẋxxSPV ≤ ∆wwwmax +δδδ w

δδδ w ≥ 000, δδδ m ≥ 000

(8.5)

where δδδ
T =

[
δδδ

T
w δδδ

T
m

]
, δδδ w ∈ ℜp, δδδ m ∈ ℜ|E | represent the slack variables in the constraints of

the workspace/SPSMs, respectively; WWW ∈ ℜ(p+|E |)×(p+|E |) denotes diagonal weight matrix.
The position SPSM/workspace limits are expressed at the velocity level through the finite
difference between the designed limits and the current values: ∆(.)min/max =

(.)min/max−(.)

T ,
where T ∈ ℜ1 is the controller time step. The matrices JSPV

m and JSPV
w , defined in (8.2) and

(8.4), relate the support polygons velocities to the estimated SPSM/workspace velocity limits.
In (8.5) the SPSM/workspace limits are defined as soft inequality constraints thorough

the slack variables. If these limits are set-up over the theoretical safety margin (Section 8.1.1)
and below the hardware workspace limits (Section 8.1.2), the task detects that the system
approaches its limits and pushes the support polygon towards the more robust configuration
before the physical limit has been reached. Since (8.5) minimises the support polygons
motion subject to the inequality constraints, the support polygon remains constant as long as
the robot stays within its safety boundaries/workspace limits.

In the cartesian-space, there is no straight-forward way to accurately model the impact of
the support polygon motion on the robot CoM. In the design of (8.5), a simple quadruped
model with the massless legs has been used. This assumption is removed in Section 8.2,
where the joint-space control is proposed. The applied disturbance is considered to be
comprised in the base motion, and the hip origins are rigidly attached to the robot base. As
a result, the CoM (ẋxxCoM) and hip (ẋxxh) motions are fully defined by the base motion. With
the massless legs, the SPVs motion does not affect the system CoM. Thus, only the first
approach to improve the system balance (Fig. 8.1) could be implemented. Note, that only
the part of Jacobians associated with support polygons motion is taken into account in the
constraints in (8.5), and so, the support polygon adaptation starts when the soft limits have
already been violated on the hardware.

134 Reactive Support Polygon Adaptation

8.2 Joint-space model

In this section, limitations of the operational-space formulation in (8.5) are discussed, and
non-holonomy in the first-order kinematic model that results in the non-linear function with
respect to the wheel steering motion is recalled. Then, the second-order kinematics derived
in Section 6.4 is moved to the space of joint velocities.

The cartesian-space task (8.5) generates the minimal support polygon motion that satisfies
the safety margin and robot workspace limits. However, (8.5) assumes that the desired wheel
rotation can be achieved instantaneously. While the solution feasibility is restricted by the
joint-space limits that cannot be easily accounted for at the operational level. These limits
become imperative when the desired steering orientation is outside the hardware limits. If the
position limit has been reached, the unconstrained task maybe finding an infeasible solution
even if the reachable solution exists. As a result, joint limits may delay/stop the controller
reaction.

This situation is visualised at Fig. 8.2, which shows the unconstrained cartesian-space
task in the middle, and the constrained joint-space solution on the right. In an initial position,
the same in both cases, a part of the CoM safety boundary (cyan circle) lies outside of the
support polygon (light red area). The unconstrained cartesian-space task (in the middle)
finds the support polygon that encapsulates the CoM safety boundary with the smallest SPVs
motion (purple area). However, one of the SPVs lies in the area not reachable by the robot
due to the joint-space limits (yellow area). As a result, the robot only partially executes the
desired support polygon reference, stopping on the edge of the feasible space (red area), and
part of the safety boundary remains outside of the support polygon. If the SPVs constrained
by the joint-space limits will move forward (red area on the right), the constrained solution
can be fully executed by the robot (the purple and red areas overlap on the right side). At the
expense of a bigger support polygons motion, a safety boundary lies fully inside the support
polygon.

To overcome these pitfalls, (8.5) may be moved to the joint-space. However, while
driving with restrictive camber angles as typical in wheeled robots, the support polygon can
only be controlled along the wheel rolling direction (6.29). As a result, the control over the
2D ground space can only be achieved rotating the wheel, and so the rolling direction, around
the ground normal beforehand. This is a nonlinear function with respect to the wheel steering
position, while the wheel steering velocity does not affect the SPV motion. Thus, the standard
quadratic optimization methods cannot be applied to control the system support polygon
in the whole 2D ground space. To solve an optimization problem (8.5) in the whole 2D

8.2 Joint-space model 135

Figure 8.2 On the left: torus model of a wheel SPV. In the middle: cartesian-space solution
infeasible due to the joint-space limits and the hardware response. On the right: feasible,
constrained joint-space solution.

ground in the joint-space, (6.46) that depends on the wheel angular velocities/accelerations is
expressed in terms of the wheel’s angular velocities. Then (8.5) is moved to the joint-space,
and proposed reactive control is integrated with the lower-level IK.

In a general legged-wheeled platform the camber angle is not constrained, and the
mapping from components of the wheel angular velocity/acceleration vector to the joint-
space is coupled and dependent on the robot state. In general mapping from the joint space
to the wheel-space reads

ωωωw = Jω q̇qq, ω̇ωωw = Jω q̈qq+ J̇ω q̇qq, (8.6)

where ωωωT
w=

[
ωωωT

w,1 . . . ωωωT
w,p

]
, Jω ∈ ℜ3p×n denotes the wheel orientation Jacobian, a stan-

dard variable in the rigid-body kinematics. Expressing (3.42) as the joint-space optimisation
problem with (6.46) and (8.6) is not trivial, as it imposes an optimisation for the velocity and
acceleration of same variables. Furthermore, some joint-space constraints may affect the
wheel orientation around the ground normal at the acceleration level. A lower-level control
in Section 7.2 relies on the first order-kinematics that expects the SPV position/velocity as
input. Since, the acceleration dynamics may be too fast for the underlying first-order IK, the
linear SPV velocity model that can solve the non-holonomic constraint is developed from
(6.46). To that end, the Euler integration method has been applied to the SPV acceleration

136 Reactive Support Polygon Adaptation

and the wheel angular acceleration. It reads

ẋxxSPV ,i = ẋxxt−T
SPV ,i +

Jc,i

(III −nnnnnnT)
ωωωw,i−ωωω

t−T
w,i

T

nnnnnnT ωωωw,i

+AAAc,i

T,

where superscript (.)t−T symbolises a variable at the previous time step, and nnnnnnT , (III −nnnnnnT)

map to the ground normal space/null-space, respectively. Finally, the above equation in a
linear form reads

ẋxxSPV ,i = JSPV ,iωωωw,i +AAASPV ,i. (8.7)

Similarly to (8.1), taking into account only the support polygon velocity in the ground normal
null-space, and grouping (8.7) for all legs in ground contact, a linear equation can be defined.

ẋxxSPV = JSPV ωωωw +AAASPV , where (8.8)

JT
SPV =

[
JT

SPV ,1|Pn ... JT
SPV ,p|Pn

]
, AAAT

SPV =

[
AAAT

SPV ,1|Pn ... AAAT
SPV ,p|Pn

]
, JSPV ,i|Pn ∈ ℜ2×n stands for

the projection of JSPV ,i to the ground-normal null-space, and AAASPV ,i|Pn ∈ ℜ2 denotes the
projection of AAASPV ,i to the ground-normal null-space.

8.3 Support Polygon Adaptation in the Joint-Space

In this section, (8.5) is expressed at the joint-space level with joint-space limits added as
inequality constraints. Then, a set of constraints is introduced to ensure that the final solution
is feasible to execute on the robot.

To move (8.5) to the joint-space, based on (8.6) and (8.8), a transformation ẋxxSPV =

JSPV Jω q̇qq is applied. As preliminary simulation results indicated that the dynamics of the
offset term (AAASPV) is too fast for an underlying first-order IK control, it has been neglected.
The joint-space task reads

minimize
q̇qq

q̇qqT QQQq̇qq+δδδ
TWWWδδδ

QQQ = JJJT
ω(J

T
SPV JSPV +ρρρSPV)Jω +ρρρω

subject to JMq̇qq ≥ ∆mmmmin −δδδ m (8.9)

JW q̇qq ≤ ∆wwwmax +δδδ w

δδδ w ≥ 000, δδδ m ≥ 000,

8.3 Support Polygon Adaptation in the Joint-Space 137

where ρρρcp ∈ ℜ3p×3p and ρρρω ∈ ℜn×n are the diagonal damping matrices to prevent the rank
degeneration in the cost matrix QQQ, when JSPV or Jω is singular. The SPSM constraint maps
from the operational-space to the joint-space by introducing ẋxxSPV = JSPV Jω q̇qq to (8.2); the
SPSM Jacobian reads

JM = JSPV
m JSPV Jω +JCoM

m JCoM, (8.10)

where JCoM ∈ ℜ3×n denotes robot’s CoM Jacobian. Likewise, the workspace Jacobian from
(8.4) in joint-space reads

JW = JSPV
w JSPV Jω +Jh

wJh, (8.11)

where Jh ∈ ℜ3p×n maps ẋxxh to the joint-space. The rigid-body kinematics directly provides
JCoM and Jh.

Furthermore, the joint-space constraints have been added to (8.9) to account for the robot
hardware limits

max(q̇qqmin, ∆qqqmin)≤ q̇qq ≤ min(q̇qqmax,∆qqqmax),

τττminT + τττb ≤ MMMq̇qq ≤ τττmaxT + τττb,
(8.12)

where τττb = −FFFbT +MMMq̇qqt−T , and FFFb ∈ ℜn stands for the bias force that includes gravity,
coriolis, centrifugal and ground reaction forces (3.22). Subscripts (.)min/max denote mini-
mum/maximum position (qqq), velocity (q̇qq) and torque (τττ) joint-space limits.

In the joint-space, additional constraints are needed to ensure the wheel rolling motion
on the ground plane. It includes the non-sliding pure rolling condition and the constraint on
the camber angle. Furthermore, the robot world posture has been constrained to account for
the motion of the robot base and the upper-body. In this work, the robot motion at the current
time step has been used as an approximation for the next step motion. These constraints read

000 = Jcpq̇qq, oẋxxt−T
r = Jrq̇qq,

ϕ̇ϕϕ
t−T − ε ≤ Jϕ q̇qq ≤ ϕ̇ϕϕ

t−T + ε,
(8.13)

where Jcp ∈ ℜ3p×n denotes the Jacobian from the world origin to the wheel-ground contact
points; it represents the Jacobian of the robot non-sliding, pure-rolling constraints (Sec-
tion 3.2.2). The robot world posture is marked with oẋxxr ∈ ℜ6, and Jr ∈ ℜ6×n denotes the
corresponding Jacobian as described in Section 7.2.2. Wheels camber angles state and Jaco-
bian are denoted by ϕϕϕ ∈ ℜp and Jϕ ∈ ℜp×n, respectively, see Section 7.2.3 for details. To
extend the search space of the feasible support polygons, a small tolerance (ε = 1e−5rad/s)
on the camber angle task has been adopted.

138 Reactive Support Polygon Adaptation

Robot legs are assumed massless, in (8.5). However, for the CENTAURO robot each leg
constitute over 11% of its mass, and thus, the leg position considerably affects the system
CoM. To account for this effect, in (8.9), the hip and CoM motions in (8.2) and (8.4) are
considered directly in (8.10), (8.11). As a result, both approaches discussed in Section 8.1 to
balance the robot are implemented in (8.9). Furthermore, (8.13) provides an approximation
for the next step CoM motion through the constraint on the robot world posture. As this
motion is considered in the optimisation process, the task (8.9) tries to see one step ahead,
when the constraints will be violated, and to react beforehand.

8.3.1 Integration with the Lower-Level Inverse Kinematics

Here, integration of (8.9) with the lower-level IK scheme introduced in Section 7.2.2 is
outlined. After an optimal solution for (8.9)-(8.13) has been found, desired SPVs are
computed, and a component along the wheel rolling motion is applied into the first-order IK
control Section 7.2.2. It reads

xxxSPV ,des = xxxt−T
SPV ,des + xxxsxxxT

s JSPV Jω q̇qqqpT, (8.14)

where q̇qqqp ∈ ℜn stands for the solution from (8.9)-(8.13). The vector of desired wheel
orientations around the ground normal (βββ des ∈ ℜp) is computed from

βββ des = βββ
t−T
des +Jβ q̇qqqpT, (8.15)

where Jβ ∈ ℜp×n represents the Jacobian for derivative of (7.13). Fig. 8.3 outlines a infor-
mation flow in the system and the integration with the IK scheme proposed in Section 7.2.

Figure 8.3 Block diagram of the reactive support polygon adaptation scheme.

8.4 Experimental Results 139

q̇qqmax/min ±1 rad/s T 2 ms

τττmax/min ρρρSPV 10−6

ankle yaw, wheel ±23 Nm ρρρω 10−7

ankle pitch ±98 Nm wwwmax 0.65 m

other ±200 Nm WWW – SPSM 50

side SPSM: A/B & C/D 0.215/0.27/0.2 m WWW – workspace

front SPSM: A/B & C/D 0.40/0.45/0.45 m A 80

back SPSM: A/B & C/D 0.40/0.60/0.45 m B, C, D 100

Table 8.1 Experimental parameters.

8.4 Experimental Results

The proposed scheme has been verified in four experiments with the CENTAURO robot.
The experiment ’A’ has been designed to test the controller long-term response and to
check the validity of the generated support polygons. Experiments ’B’ and ’C’ tested the
controller response to unknown motion/push disturbance, and the experiments ’D’ checked
the controller response to a disturbance generated by an unknown weight added to the robot
arms.

All joint’s velocities have been limited to 1 rad/s, and torques have been limited to 23 Nm
for ankle yaw and wheel, 98 Nm for ankle pitch, and 200 Nm for the remaining joints. The
controller was running in the real-time with the 2 ms time step3. Diagonal elements in ρρρSPV

are equal 10−6 and 10−7 in ρρρω . These are the smallest values that prevented the matrix QQQ

from degenerating. The cost gain in WWW was 50 for the safety margin. For the workspace
limits, the cost was set up to 80 in the experiment ’A’; it was then increased to 100 for the
remaining experiments. In all experiments, the maximum virtual leg length has been set-up
to 0.65 m, and thus in the squared form (8.3) the workspace soft limits, for all legs, read
0.652 m2 = 0.4225 m2. An offset from the fully extended CENTAURO robot leg (0.81 m)
has been adopted to account for the camber angle/rolling motion constraints, and to provide
the controller with sufficient time and space to react before the physical limits are reached.
An overview of the experimental parameters is given in Table 8.1.

3on COM Express conga-TS170 embedded computer with Intel Core i7-6820EQ CPU; lower-level middle-
ware required free 0.5 ms.

140 Reactive Support Polygon Adaptation

Figure 8.4 Controlled base motion experiment: desired/executed base motion.

Figure 8.5 Snap-shots from the experiment with the controlled base motion.

8.4.1 Experiment with Controlled Base Motion

In the experiment ’A’, the robot base preformed a set of controlled lateral motions with an
operator sending constant velocity references of 0.02 m/s for ∼7 s directly to the floating base
regulation task in the lower-level IK (Fig. 8.3); the position reference and executed motion are
shown at Fig. 8.4. The support polygon reference has been designed independently through
(8.9)–(8.13) based on the system feedback and without any information about the expected
base motion. Fig. 8.5 shows a few snap-shots from the experiment.4

The safety margins have been set-up to 0.215 m for the two support polygon edges
described by the left/right robot legs. These support polygon edges are referred to as ’side’
edges in this work. The safety margins for the support polygon edges described by the front
and rear robot legs have been set-up to 0.40 m. These support polygon edges are referred to
as the ’front’ and ’back’ edge, respectively. These safety margins have been set-up based on
the robot kinematics, controller dynamics, confidence in the robot model, and to reduce the
risk of self-collisions.

4A video recording from this experiment can be seen at https://youtu.be/vUyrIt6A8_I

https://youtu.be/vUyrIt6A8_I

8.4 Experimental Results 141

Figure 8.6 Snap-shots from the experiment with the CoM modulation using the upper-body.

8.4.2 Experiment with COM modulation using the Upper-Body

In the experiment ’B’, a human operator back-drove the robot upper-body affecting its CoM.
The system adapted its support polygon to the unknown motion so that the designed safety
margins have been maintained.5

The proposed controller adjusts the support polygon when the violation of the safety
margins/workspace limits has been detected. At the end of the disturbance/motion, when
the robot base retrieves the original state, the system holds on to the new, adjusted support
polygon. It does not restore the original pose. As the upper-body has limited capability
to modify the robot CoM, a position that satisfies the safety margin and workspace limits
regardless of the upper-body configuration can be found quickly. To test the controller in
more challenging conditions, more conservative safety margins of 0.27/0.45/0.60 m for the
side/front/back support polygon edges have been applied in this experiment.

8.4.3 Experiment with Unknown Push Disturbance

In the ’C’ experiment, the robot has been controlled in the impedance mode with feed-forward
online gravity compensation.6 The medium joint stiffness gains of 350-800 Nm/rad and
damping of 15-20 Nms/rad have been used. A set of unknown push disturbances has been
applied to the robot moving its CoM relative to the support polygon. The same restrictive

5A video recording from this experiment can be seen at https://youtu.be/ZQzOd0xhtgc
6A video recording from this experiment can be seen at https://youtu.be/ib06UKrcEsw

https://youtu.be/ZQzOd0xhtgc
https://youtu.be/ib06UKrcEsw

142 Reactive Support Polygon Adaptation

Figure 8.7 Snap-shots from the experiment with the unknown push disturbance applied to
the system with medium stiffness impedance control.

safety margins as in the ’B’ experiment has been applied to test the controller reaction with
disturbance of different magnitude/direction.

8.4.4 Centre of Pressure Experiment

The last two experiments were performed using the centre of pressure (CoP) in place of
the CoM as a measure to compute the SPSMs (8.1). The CoP is characterised by faster
dynamics and higher sensitivity to the modelling errors than the CoM . To avoid support
polygon adaptation on the controller initialisation triggered when the conservative safety
margins (experiments B and C) are used, new safety margins of 0.20/0.45/0.45 m for the
side/front/back support polygon edges have been chosen.

In the experiment ’D’, the weights of an increasing mass of 2, 4, 6 and 8 kg (from ∼2
to 8% of the robot mass) were added to the robot arms.7 Fig. 8.9 on the left the difference
between the estimated CoM and CoP is shown to visualise the effect of these masses. In
this experiment, each mass imposed a small support polygon modification. To generate a
bigger support polygon adjustment in response to the CoP motion, an additional experiment
has been performed with the the 10 kg mass added directly to the unloaded end-effector.8

7A video recording from this experiment can be seen at https://youtu.be/KHpB7Rrzjh0
8A video recording from this experiment can be seen at https://youtu.be/z5eEbWc-0YY

https://youtu.be/KHpB7Rrzjh0
https://youtu.be/z5eEbWc-0YY

8.4 Experimental Results 143

Figure 8.8 Snap-shots from the experiment with the added weights and CoP used to measure
the system balance.

Figure 8.9 CoP tracking experiment: difference between the CoM and CoP. The incremental
mass change on the left, and the 10 kg mass on the right.

Fig. 8.9 on the right the difference between the estimated CoM and CoP is shown to visualise
the effect of these masses.

8.4.5 Results and Discussion

The proposed controller modulates the support polygons to ensure the desired safety margins
while respecting the robot workspace/joint limits even for long-lasting disturbances. In all
experiments, the SPSMs and virtual leg lengths overall stay within the designed limits, while
some temporary violations occurred during the motion. These can be seen in the results in the
SPSMs and adopted virtual leg lengths shown at Fig. 8.10 for the A experiment, at Fig. 8.11
for the B experiment, at Fig. 8.12 for the C experiment, and at Fig. 8.13 and Fig. 8.14 for
the incremental and 10 kg CoP experiments, respectively. In these figures the SPSMs are
expected to stay above and virtual legs lengths below the limits. These small violations of the
soft constraints are expected as due to the control design and to avoid instability sufficiently
large offsets to the physical limits have to be applied.

144 Reactive Support Polygon Adaptation

Figure 8.10 Experimental results for the controlled base motion. On the left: Adopted
SPSMs for front (green line), back (blue), and side (yellow/red) support polygon edges with
the designed safety margins (dashed black) for the side edges 0.215 m, and the front/back
edge 0.40/0.40 m. On the right: Adopted virtual leg lengths (solid lines), and their limit of
0.4225 m2 (dashed black) plotted in the squared form (8.3).

Figure 8.11 Experimental results for the back-driven upper-body. On the left: Adopted
SPSMs for front (green line), back (blue), and side (yellow/red) support polygon edges with
the designed safety margins (dashed black) for the side edges 0.2 m, and the front/back
edge 0.45/0.45 m. On the right: Adopted virtual leg lengths (solid lines), and their limit of
0.4225 m2 (dashed black) plotted in the squared form (8.3).

8.4 Experimental Results 145

Figure 8.12 Experimental results for the unknown push disturbance. On the left: Adopted
SPSMs for front (green line), back (blue), and side (yellow/red) support polygon edges with
the designed safety margins (dashed black) for the side edges 0.27 m, and the front/back
edge 0.45/0.60 m. On the right: Adopted virtual leg lengths (solid lines), and their limit of
0.4225 m2 (dashed black) plotted in the squared form (8.3).

Figure 8.13 Experimental results for the CoP tracking with incremental mass change. On
the left: Adopted SPSMs for front (green line), back (blue), and side (yellow/red) support
polygon edges with the designed safety margins (dashed black) for the side edges 0.27 m),
and the front/back edge 0.45/0.60 m. On the right: Adopted virtual leg lengths (solid lines),
and their limit of 0.4225 m2 (dashed black) plotted in the squared form (8.3).

146 Reactive Support Polygon Adaptation

time [s]

0.2

0.4

0.6

sa
fe

ty
m

ar
gi

n
[m

]

time [s]

0.35

0.40

w
or

ks
pa

ce
2

[m
2]

Figure 8.14 Experimental results for the CoP tracking with 10 kg mass. On the left: Adopted
SPSMs for front (green line), back (blue), and side (yellow/red) support polygon edges with
the designed safety margins (dashed black) for the side edges 0.27 m), and the front/back
edge 0.45/0.60 m. On the right: Adopted virtual leg lengths (solid lines), and their limit of
0.4225 m2 (dashed black) plotted in the squared form (8.3).

Figure 8.15 The upper-body modulation experiment – front left leg. Kernel density estimate
for the joint-space position/velocity on the left/right limited by the minimum/maximum
registered value. Lower/upper limits are marked with the dashed black lines; no wheel
position limit.

8.5 Conclusion 147

Since the CoM motion is modelled in the joint-space task, the controller tries to see one
step ahead when the safety margins will be violated. It then attempts to react just before
it would have happened. However, with the unpredictable nature of the disturbance, the
constraints may be violated. If the violation arises due to the disturbance being too fast for
the assumed velocity/torque limits to satisfy the control requirements within a time step,
the support polygon will be pushed towards the more stable position up to the designed
joint-space velocity/torque limits. With adopted conservative velocity limits of 1 rad/s, unless
a minor disturbance occurred, the optimisation stops on the limits. At Fig. 8.15 the kernel
density estimates for the front left leg joint-space DoFs have been shown for the experiment
with the back-driven upper-body. The estimates have been cut-off on the minimum/maximum
registered value to visualise that the inequality constraints are respected. Fig. 8.15 shows that
the ankle yaw and wheel velocity limits are frequently reached during the experiment as well
as the ankle yaw position limit.

With the conservative safety margins applied in experiments ’B’ and ’C’, the controller
frequently operates near the designed maximum virtual leg length (Fig. 8.11 and Fig. 8.12).
If within the designed joint-space limits there exists no SPVs arrangement that satisfies both
the safety margin and workspace limits, the system looks for a solution with the minimal
cost of the slack variables (i.e., violation of the soft constraints); e.g., the workspace limit is
violated for a few seconds in the experiment A (red line, Fig. 8.10, top right, ∼50 s) due to
the ankle yaw position limit. In this case, any CoM motion can trigger the change to the new
SP that optimises the violation of the soft constraints.

Variation of around 0.3-1 Hz in the results for the C experiment (Fig. 8.12) indicate the
disturbance applied to the robot. These disturbances modified the robot CoM and the base
position relative to the SPVs, and thus changed the virtual leg length and safety margins. If
the same/similar disturbance is applied to the robot consecutively, the controller reaction
is triggered only at the first application. In response, a balanced position is adopted and
no adjustment is executed after the disturbance is removed. However, a reaction may be
triggered if a disturbance of different magnitude/direction is applied. The corresponding x
and y-coordinates of the SPVs are given at Fig. 8.16 to show that no SPV motion is triggered
until a soft inequality limit is violated.

8.5 Conclusion

In this chapter, a reactive control scheme has been proposed to improve the stability of the
CENTAURO robot with the introduction of an active support polygon adaptation task. To

148 Reactive Support Polygon Adaptation

Figure 8.16 SPV x/y-coordinates (left/right side) – unknown push disturbance experiment:
front left/right (blue/yellow) and rear left/right (green/red) legs.

take into account the joint-space hardware limits the mixed velocity/acceleration model for
the support polygon acceleration developed in Section 6.4 has been used. While the proposed
joint-space controller can be applied to any hybrid legged-wheeled robot, its significance
arises with the platforms permitting the wheel rotation along the ground normal.

The proposed scheme was implemented and verified on the CENTAURO robot under
disturbances of various duration and magnitude. It has been shown that the support polygon
that respects the designed safety margins and workspace limits is effectively generated and
executed on the robot. Even if no solution exists within the assumed joint limits, the proposed
control method designs the SP that improves the robot balance within the robot motion space.

The controller proposed in this chapter is a first step towards the reactive support polygon
adaptation in the CENTAURO robot permitting the continuous support polygon motion on
the whole ground space. The proposed controller can be directly used when the robot is
operating on 3 legs, and when some of the robot legs have lost contact with the ground due to
the momentum introduced by the push disturbance. In the latter case, the robot would adopt
the SP that ensures a balanced pose after regaining the contact with the ground. However,
the controller would not push the robot leg towards the ground to restore the point of contact.
If the robot operates on two legs, a more dynamic balancing approaches will be definitely
needed.

As a further work, one could implement the proposed scheme at the second-order IK
level to improve the controller dynamics. The short-term predictive planning approach
could be used to improve the controller search space, avoid local minima and to incorporate
stepping. On the other hand, trajectory planning methods require more computation time,
which would decrease the controller responsiveness. Moreover, optimisation of the SPVs

8.5 Conclusion 149

over a time horizon introduces a non-linearity, while consideration of the steering limits is
not trivial in the operational-space. Finally, the practicality of the proposed scheme would
be improved with integration of the locomotion scheme. While the desired base motion can
be considered directly with the addition of the desired SPV motion into the cost function, a
more challenging task would be to restore the original higher-level position, and to decide
when such action should initiate.

Chapter 9

Conclusion

In this thesis, the kinematics and control of the hybrid legged-wheeled robots has been
studied, and the locomotion framework for the CENTAURO robot has been developed and
experimentally verified. The main contributions consit of the novel model for the support
polygon vertex of the hybrid legged-wheeled robots, the robust omnidirectional driving
scheme, and a reactive support polygon adaptation control scheme. To test the designed
controllers, the CENTAURO robot simulator and the software framework for the locomotion
research have been developed.

In Chapter 6, novel support polygon vertex model for a general hybrid legged-wheeled
robot has been developed and computed at the velocity and acceleration levels without any
assumptions on the robot kinematic arrangement or a wheel camber angle. The proposed
model describes the support polygon of a general HLW platform as a function of the wheel
angular velocities, and thus the robot kinematic constraints are expressed by a set of wheel
angular velocities the robot can exert. The proposed model provides a new inside to the
mobility of the hybrid legged-wheeled robots, and it has been used to study mobility of the
HLW platforms.

Based on the analysis of the developed support polygon model, an omnidirectional driving
scheme has been designed in Chapter 7. A continuous wheel motion has been resolved
through the IK scheme, which generates robot motion compliant with the NSPR condition.
It tracks world posture of the robot, its SPVs, camber and steering angles. A higher-level
scheme resolving a steering motion to comply with the non-holonomic constraint has been
proposed, and the damping scheme has been developed to tackle the structural singularity.

The proposed control scheme has been implemented and verified on the CENTAURO
robot in the set of experiments designed to evaluate motion control scheme robustness to a
non-smooth base trajectory, its performance near the structural singularity, and its ability

152 Conclusion

to change a support polygon type during the whole-body motion. Presented experimental
results show that the proposed control scheme produces a stable motion and correct tracking
of a given world posture reference and the SPVs positions. The system remains stable in
presence of a non-smooth reference, and it generates continuous steering reference near the
structural singularity. Furthermore, presented results verify the controller ability to support 3
and 4 leg configurations, as well as its capability to modify a support polygon configuration
during the whole-body motion of the robot.

To improve the CENTAURO robot response to the unpredicted disturbances, an inverse
kinematics scheme developed in Chapter 7 has been extend in Chapter 8 with a new reactive
control scheme. The developed support polygon adaptation control takes advantage of the
CENTAURO robot six DoFs legged-wheeled structure that allows for the continuous support
polygon regulation in the entire 2-D space of the ground plane. To this end, a novel quadratic
programming task has been designed to push the system SPVs away from the robot CoM,
while respecting the leg workspace limits. To take into account the hardware limits the mixed
velocity/acceleration model for the support polygon acceleration developed in Chapter 6 has
been used to express the proposed task in the joint-space. While the proposed joint-space
controller can be applied to any hybrid legged-wheeled robot, its significance arises with the
platforms permitting the wheel rotation along the ground normal.

The proposed scheme has been tested on the CENTAURO robot under disturbances of
various duration and magnitude. It has been shown that the support polygon that respects
the designed safety margins and workspace limits is effectively generated and executed on
the robot. Even if no solution within the assumed joint limits exists, the proposed control
generates the support polygon that improves the robot stability within the designed robot
motion space.

The experiments presented in this thesis has been performed with the Simplifying Op-
erations in Locomotion - Framework for Efficient Research (SOL-FER), a software for the
locomotion research introduced in Chapter 5. SOL-FER has been designed to provide a way
to quickly try out ideas by maximizing the flexibility and reconfigurability of the developed
modules. Finally, the simulator framework for the SEA actuated CENTAURO robot that
models the actuation dynamics has been developed with the ROS middleware and Gazebo
simulator as presented in Chapter 4.

The further work could consist of the more challenging experiments for the proposed
omnidirectional driving scheme to verify its performance in the scenarios that more closely
resemble the real-world applications; e.g., uneven and more compliant grounds. To that end,
the estimator for the ground normal would be required. Furthermore, an integration of the

153

proposed reactive control scheme with the omnidirectional driving scheme would greatly
improve practicality of the proposed framework, and integration of the algorithm to restore
the original higher-level reference after the disturbance has finished would provide a valuable
contribution to the control framework presented in this thesis.

The proposed models and controllers as well as the CENTAURO robot simulation
framework have been presented in the published/submitted publications as given in the
remainder of this chapter. Furthermore, list of the attended PhD courses have been attached
at the end of this chapter. All of the presented work has been a part of the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 644839
(CENTAURO).

Publications

[1] Malgorzata Kamedula and Nikos G Tsagarakis. “Reactive Support Polygon Adap-
tation for the Hybrid Legged-Wheeled CENTAURO robot”. In: IEEE Robotics and

Automation Letters (2020 (accepted)).

[2] Malgorzata Kamedula, Navvab Kashiri, and Nikos G Tsagarakis. “Wheeled Motion
Kinematics and Control of a Hybrid Mobility CENTAURO robot”. In: Robotics and

Autonomous Systems (2019 (in revision)).

[3] Navvab Kashiri, Lorenzo Baccelliere, Luca Muratore, Arturo Laurenzi, Zeyu Ren,
Enrico Mingo Hoffman, Malgorzata Kamedula, et al. “CENTAURO: A Hybrid
Locomotion and High Power Resilient Manipulation Platform”. In: IEEE Robotics

and Automation Letters 4.2 (2019), pp. 1595–1602.

[4] Malgorzata Kamedula, Navvab Kashiri, and Nikos G Tsagarakis. “On the kine-
matics of wheeled motion control of a hybrid wheeled-legged centauro robot”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2018,
pp. 2426–2433.

[5] Lorenzo Baccelliere, Navvab Kashiri, Luca Muratore, Arturo Laurenzi, Malgorzata
Kamedula, Alessio Margan, Stefano Cordasco, et al. “Development of a human size
and strength compliant bi-manual platform for realistic heavy manipulation tasks”.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE.
2017, pp. 5594–5601.

[6] Malgorzata Kamedula, Navvab Kashiri, Darwin G Caldwell, and Nikos G Tsagarakis.
“A Compliant Actuation Dynamics Gazebo-ROS Plugin for Effective Simulation
of Soft Robotics Systems: Application to CENTAURO Robot.” In: International

Conference on Informatics in Control, Automation and Robotics. 2016, pp. 485–491.

Publications 157

Training Related to the PhD Programme

• An Introduction to Spatial (6D) Vectors and Their Use in Robot Dynamics

Instructor(s): Roy Featherstone

When/where: March 2017, IIT, Via Morego 30, Bolzaneto, Genova, Italy

Credits awarded: 5

Final grade/approval: Passed

• An introduction to dynamic optimization and optimal control: models, solutions, and
approximations

Instructor(s): Giorgio Gnecco

When/where: March, 2017, DIBRIS, Via Dodecaneso 35, Genova, Italy

Credits awarded: 6

Final grade/approval: Passed

• Italian course for PhD students

Instructor(s): Elena Firpo

When/where: February–May 2017, DAFIST, Via Balbi 2, Genova, Italy

Credits awarded: 2

Final grade/approval: Passed

• Human-Robot Interaction

Instructor(s): Francesco Rea, Alessandra Sciutti

When/where: Oct 2017, IIT, via Morego 30, Genova, Italy

Credits awarded: 5

Final grade/approval: Passed

• Computational Robot Dynamics

Instructor(s): Roy Featherstone

When/where: Mar 2018, IIT, via Morego 30, Genova, Italy

Credits awarded: 3

Final grade/approval: Passed

158 Publications

• Science Writing and Presentation Skills

Instructor(s): Alberto Diaspro, Antonio Sgorbissa

When/where: Mar - May 2018, DIBRIS, Villa Bonino, Genova, Italy

Credits awarded: 4

Final grade/approval: Passed

• Data Acquisition and Data Analysis Methods

Instructor(s): Carlo Canali, Alessandro Pistone

When/where: Apr-May 2018, IIT, via Morego 30, Genova, Italy

Credits awarded: 5

Final grade/approval: Passed

• Ethical, Bioethical and Legal Issues in Bioengineering and Robotics

Instructor(s): Linda Battistuzzi, Valentina Di Gregorio

When/where: February 20 –March 8 2019, DIBRIS, Villa Bonino, Genova, Italy

Credits awarded: 5

Final grade/approval: Passed

• Robot programming with ROS

Instructor(s): Carmine Tommaso Recchiuto,

When/where: June 5th – June 26th 2019, DIBRIS, Via All’Opera Pia 13, Genova, Italy

Credits awarded: 5

Final grade/approval: Passed

References

[1] Navvab Kashiri et al. “CENTAURO: A Hybrid Locomotion and High Power Resilient
Manipulation Platform”. In: IEEE Robotics and Automation Letters 4.2 (2019),
pp. 1595–1602.

[2] Paul Hebert et al. “Mobile manipulation and mobility as manipulation—design
and algorithms of RoboSimian”. In: Journal of Field Robotics 32.2 (2015). 00025,
pp. 255–274. (Visited on 05/25/2016).

[3] Marko Bjelonic et al. “Keep Rollin’-Whole-Body Motion Control and Planning for
Wheeled Quadrupedal Robots”. In: IEEE Robotics and Automation Letters (2019).

[4] Max Schwarz et al. “NimbRo Rescue: Solving disaster-response tasks with the
mobile manipulation robot Momaro”. In: Journal of Field Robotics 34.2 (2017),
pp. 400–425.

[5] M. Lauria et al. “Elastic locomotion of a four steered mobile robot”. In: 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2008, pp. 2721–
2722.

[6] T. Tanaka and S. Hirose. “Development of leg-wheel hybrid quadruped AirHopper;
design of powerful light-weight leg with wheel”. In: 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2008, pp. 3890–3895.

[7] D. Lu et al. “Design and development of a leg-wheel hybrid robot #x201C;HyTRo-I
#x201D;” in: 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2013, pp. 6031–6036.

[8] S. C. Chen et al. “Quattroped: A Leg–Wheel Transformable Robot”. In: IEEE/ASME
Transactions on Mechatronics 19.2 (2014), pp. 730–742.

[9] G. Endo and S. Hirose. “Study on Roller-Walker (system integration and basic
experiments)”. In: 1999 IEEE International Conference on Robotics and Automation,
1999. Proceedings. Vol. 3. 1999, 2032–2037 vol.3.

[10] Tom Erez, Yuval Tassa, and Emanuel Todorov. “Simulation tools for model-based
robotics: Comparison of bullet, havok, mujoco, ode and physx”. In: Robotics and
Automation (ICRA), 2015 IEEE International Conference on. IEEE, 2015, pp. 4397–
4404. (Visited on 03/24/2016).

[11] Russel Smith. “ODE: Open dynamics engine”. In: Online at: http://www. ode. org
(2003).

[12] Rosen Diankov and James Kuffner. “Openrave: A planning architecture for au-
tonomous robotics”. In: Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-
08-34 79 (2008). (Visited on 03/23/2016).

160 References

[13] Michael Sherman and P. Eastman. “Simbody”. In: Online at: simtk.org/home/simbody
(2015).

[14] Emo Todorov. “MuJoCo physics engine.” In: Online at: www.mujoco.org (2015).
[15] Erwin Coumans. “Bullet physics engine. Open Source Software: http://bulletphysics.

org”. In: Open Source Software: http://bulletphysics. org 1 (2010).
[16] S. Carpin et al. “USARSim: a robot simulator for research and education”. In: 2007

IEEE International Conference on Robotics and Automation. 2007, pp. 1400–1405.
[17] T. Hirano, T. Sueyoshi, and A. Kawamura. “Development of ROCOS (Robot Control

Simulator)-Jump of human-type biped robot by the adaptive impedance control”. In:
2000, pp. 606–611. ISBN: 978-0-7803-5976-5. (Visited on 03/22/2016).

[18] Open Source Robotics Foundation. “Gazebo”. In: Online at: http://gazebosim.org/
(2016).

[19] Olivier Michel. “Webots: Symbiosis between virtual and real mobile robots”. In:
Virtual Worlds. 1998, pp. 254–263. (Visited on 03/23/2016).

[20] Gregor Jochmann et al. “The Virtual Space Robotics Testbed: Comprehensive
Means for the Development and Evaluation of Components for Robotic Explo-
ration Missions”. en. In: KI - Künstliche Intelligenz 28.2 (2014), pp. 85–92. (Visited
on 03/24/2016).

[21] E. Rohmer, S. P. N. Singh, and M. Freese. “CoppeliaSim (formerly V-REP): a
Versatile and Scalable Robot Simulation Framework”. In: Proc. of The International
Conference on Intelligent Robots and Systems (IROS). www.coppeliarobotics.com.
2013.

[22] Serena Ivaldi, Vincent Padois, and Francesco Nori. “Tools for dynamics simulation
of robots: a survey based on user feedback”. In: arXiv:1402.7050 [cs] (2014). arXiv:
1402.7050. (Visited on 03/22/2016).

[23] Toni Petrinić, Edouard Ivanjko, and Ivan Petrović. “AMORsim - A Mobile Robot
Simulator for Matlab”. English. In: 2006. (Visited on 03/23/2016).

[24] Nicolas Bredeche et al. “Roborobo! a Fast Robot Simulator for Swarm and Col-
lective Robotics”. In: arXiv:1304.2888 [cs] (2013). arXiv: 1304.2888. (Visited on
03/23/2016).

[25] C. Pinciroli et al. “ARGoS: A modular, multi-engine simulator for heterogeneous
swarm robotics”. In: 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2011, pp. 5027–5034.

[26] Paavo Heiskanen. Development of a dynamic simulator of a mobile robot for as-
tronaut assistance. ENG. Master Thesis, Continuation Courses. 2008. (Visited on
03/22/2016).

[27] Vadim Tikhanoff et al. “An open-source simulator for cognitive robotics research:
the prototype of the iCub humanoid robot simulator”. In: Proceedings of the 8th
workshop on performance metrics for intelligent systems. ACM, 2008, pp. 57–61.
(Visited on 03/24/2016).

[28] Timothée Habra, Paul Fisette, Renaud Ronsse, et al. “Robotran-Yarp interface: a
framework for real-time controller development based on multibody dynamics sim-
ulation”. In: ECCOMAS Thematic Conference Multibody Dynamics 2015. 2015.
(Visited on 03/23/2016).

References 161

[29] I. Ha et al. “Development of open humanoid platform DARwIn-OP”. In: 2011
Proceedings of SICE Annual Conference (SICE). 2011, pp. 2178–2181.

[30] Philipp Allgeuer et al. “A ROS-based software framework for the NimbRo-OP
humanoid open platform”. In: Proceedings of 8th Workshop on Humanoid Soc-
cer Robots, IEEE-RAS Int. Conference on Humanoid Robots, Atlanta, USA. 2013.
(Visited on 03/23/2016).

[31] T. Asfour et al. “ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor
Control”. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots.
2006, pp. 169–175.

[32] Xu Guan, Haojun Zheng, and Xiuli Zhang. “Biologically inspired quadruped robot
biosbot: modeling, simulation and experiment”. In: 2nd International Conference on
Autonomous Robots and Agents. Citeseer, 2004, pp. 261–266. (Visited on 03/24/2016).

[33] H. Song et al. “The Design and Implementation of Quadruped Robot Gait Simulation
System”. In: 2010 International Conference on Manufacturing Automation (ICMA).
2010, pp. 232–238.

[34] Xuewen Rong et al. “Design and simulation for a hydraulic actuated quadruped
robot”. en. In: Journal of Mechanical Science and Technology 26.4 (2012), pp. 1171–
1177. (Visited on 03/24/2016).

[35] P. S. Freeman and D. E. Orin. “Efficient Dynamic Simulation of a Quadruped Using
a Decoupled Tree-Structure Approach”. en. In: The International Journal of Robotics
Research 10.6 (1991), pp. 619–627. (Visited on 03/24/2016).

[36] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA
workshop on open source software. Vol. 3. 2009, p. 5. (Visited on 03/23/2016).

[37] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. “YARP: yet another robot
platform”. In: International Journal on Advanced Robotics Systems 3.1 (2006),
pp. 43–48. (Visited on 03/23/2016).

[38] Matthias Kranz et al. “A player/stage system for context-aware intelligent environ-
ments”. In: Proceedings of UbiSys 6 (2006), pp. 17–21. (Visited on 03/23/2016).

[39] Jean-Christophe Baillie. “Design principles for a universal robotic software platform
and application to urbi”. In: 2nd National Workshop on Control Architectures of
Robots (CAR’07), Paris, France. 2007, pp. 150–155. (Visited on 03/23/2016).

[40] E. Einhorn et al. “MIRA - middleware for robotic applications”. In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2012, pp. 2591–
2598.

[41] Herman Bruyninckx. “Open robot control software: the OROCOS project”. In:
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Con-
ference on. Vol. 3. IEEE, 2001, pp. 2523–2528. (Visited on 03/23/2016).

[42] Ayssam Elkady and Tarek Sobh. “Robotics Middleware: A Comprehensive Literature
Survey and Attribute-Based Bibliography”. en. In: Journal of Robotics 2012 (2012),
e959013. (Visited on 03/22/2016).

[43] Paul Fitzpatrick et al. “A middle way for robotics middleware”. en. In: Journal of
Software Engineering for Robotics 5.2 (2014), pp. 42–49. (Visited on 03/23/2016).

162 References

[44] Leonardo Leottau Forero, José Miguel Yáñez, and Javier Ruiz-del-Solar. “Integration
of the ROS Framework in Soccer Robotics: The NAO Case”. en. In: RoboCup 2013:
Robot World Cup XVII. Ed. by Sven Behnke et al. Lecture Notes in Computer Sci-
ence 8371. DOI: 10.1007/978-3-662-44468-9_63. Springer Berlin Heidelberg, 2013,
pp. 664–671. ISBN: 978-3-662-44467-2 978-3-662-44468-9. (Visited on 03/23/2016).

[45] Calder Phillips-Grafflin et al. “Toward a user-guided manipulation framework for
high-DOF robots with limited communication”. en. In: Intelligent Service Robotics
7.3 (2014), pp. 121–131. (Visited on 03/22/2016).

[46] Giorgio Metta et al. “The iCub humanoid robot: an open platform for research in
embodied cognition”. In: Proceedings of the 8th workshop on performance metrics
for intelligent systems. ACM, 2008, pp. 50–56. (Visited on 03/23/2016).

[47] Olivier Michel, Yvan Bourquin, and Jean-Christophe Baillie. “Robotstadium: Online
humanoid robot soccer simulation competition”. In: RoboCup 2008: Robot soccer
world cup XII. Springer, 2008, pp. 580–590. (Visited on 03/23/2016).

[48] J. A. Smith, I. Sharf, and M. Trentini. “PAW: a hybrid wheeled-leg robot”. In:
Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006. 2006, pp. 4043–4048.

[49] James Andrew Smith et al. “Bounding with active wheels and liftoff angle velocity
adjustment”. In: The International Journal of Robotics Research (2009). (Visited on
05/24/2016).

[50] G. Endo and S. Hirose. “Study on Roller-Walker (multi-mode steering control and
self-contained locomotion)”. In: IEEE International Conference on Robotics and
Automation, 2000. Proceedings. ICRA ’00. Vol. 3. 2000, 2808–2814 vol.3.

[51] Nam-Su Yuk and Dong-Soo Kwon. “Realization of expressive body motion using
leg-wheel hybrid mobile robot: KaMERo1”. In: International Conference on Control,
Automation and Systems, 2008. ICCAS 2008. 2008, pp. 2350–2355.

[52] Roland Siegwart et al. “Innovative design for wheeled locomotion in rough terrain”.
In: Robotics and Autonomous Systems. Intelligent Autonomous Systems - IAS -6
40.2 (2002), pp. 151–162. (Visited on 06/29/2017).

[53] B. Beckman, M. Trentini, and J. Pieper. “Control algorithms for stable range-of-
motion behaviours of a multi degree-of-freedom robot”. In: 2010 International
Conference on Autonomous and Intelligent Systems, AIS 2010. 2010, pp. 1–6.

[54] P. Tomei. “A simple PD controller for robots with elastic joints”. In: IEEE Transac-
tions on Automatic Control 36.10 (1991). 00360, pp. 1208–1213.

[55] O. Khatib. “A unified approach for motion and force control of robot manipulators:
The operational space formulation”. In: IEEE Journal on Robotics and Automation
3.1 (1987), pp. 43–53.

[56] Marco Hutter et al. “Quadrupedal locomotion using hierarchical operational space
control”. en. In: The International Journal of Robotics Research (2014). (Visited on
07/22/2017).

[57] A. Shkolnik and R. Tedrake. “Inverse Kinematics for a Point-Foot Quadruped Robot
with Dynamic Redundancy Resolution”. In: Proceedings 2007 IEEE International
Conference on Robotics and Automation. 2007, pp. 4331–4336.

References 163

[58] Yvain de Viragh et al. “Trajectory optimization for wheeled-legged quadrupedal
robots using linearized zmp constraints”. In: IEEE-RAL (2019).

[59] Sung-Hee Lee and Ambarish Goswami. “A momentum-based balance controller for
humanoid robots on non-level and non-stationary ground”. en. In: Auton Robot 33.4
(2012). 00075, pp. 399–414. (Visited on 04/06/2016).

[60] A. Herzog et al. “Balancing experiments on a torque-controlled humanoid with
hierarchical inverse dynamics”. In: 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014). 00042. 2014, pp. 981–988.

[61] S. H. Hyon, R. Osu, and Y. Otaka. “Integration of multi-level postural balancing on
humanoid robots”. In: IEEE International Conference on Robotics and Automation,
2009. ICRA ’09. 00037. 2009, pp. 1549–1556.

[62] S. h Hyon and G. Cheng. “Passivity-Based Full-Body Force Control for Humanoids
and Application to Dynamic Balancing and Locomotion”. In: 2006 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. 2006, pp. 4915–4922.

[63] M. de Lasa and M. Buehler. “Dynamic compliant quadruped walking”. In: IEEE
International Conference on Robotics and Automation, 2001. Proceedings 2001
ICRA. Vol. 3. 2001, 3153–3158 vol.3.

[64] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng. “A control architecture for quadruped
locomotion over rough terrain”. In: IEEE International Conference on Robotics and
Automation, 2008. ICRA 2008. 00116. 2008, pp. 811–818.

[65] S. i An, Y. Oh, and D. S. Kwon. “Zero-moment point based balance control of
leg-wheel hybrid structures with inequality constraints of dynamic behavior”. In:
2012 IEEE International Conference on Robotics and Automation (ICRA). 2012,
pp. 2365–2370.

[66] S. i An, Y. Oh, and D. S. Kwon. “Zero-moment point based balance control of
leg-wheel hybrid structures with inequality constraints of kinodynamic behavior”. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 00001.
2012, pp. 2471–2477.

[67] A. Suzumura and Y. Fujimoto. “Real-Time Motion Generation and Control Sys-
tems for High Wheel-Legged Robot Mobility”. In: IEEE Transactions on Industrial
Electronics 61.7 (2014), pp. 3648–3659.

[68] Patrick F. Muir and Charles P. Neuman. “Kinematic modeling of wheeled mobile
robots”. en. In: J. Robotic Syst. 4.2 (1987), pp. 281–340. (Visited on 02/03/2018).

[69] C. P. Connette et al. “Control of an pseudo-omnidirectional, non-holonomic, mobile
robot based on an ICM representation in spherical coordinates”. In: 2008 47th IEEE
Conference on Decision and Control. 2008, pp. 4976–4983.

[70] M. F. Selekwa and J. R. Nistler. “Path tracking control of four wheel independently
steered ground robotic vehicles”. In: 2011 50th IEEE Conference on Decision and
Control and European Control Conference. 2011, pp. 6355–6360.

[71] M. Sorour et al. “Motion Discontinuity-Robust Controller for Steerable Mobile
Robots”. In: IEEE Robotics and Automation Letters 2.2 (2017), pp. 452–459.

[72] C. P. Connette et al. “Singularity avoidance for over-actuated, pseudo-omnidirectional,
wheeled mobile robots”. In: 2009 IEEE International Conference on Robotics and
Automation. 2009, pp. 4124–4130.

164 References

[73] U. Schwesinger, C. Pradalier, and R. Siegwart. “A novel approach for steering wheel
synchronization with velocity/acceleration limits and mechanical constraints”. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012,
pp. 5360–5366.

[74] C. Stöger, A. Müller, and H. Gattringer. “Kinematic analysis and singularity robust
path control of a non-holonomic mobile platform with several steerable driving
wheels”. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2015, pp. 4140–4145.

[75] M. Sorour et al. “Kinematic modeling and singularity treatment of steerable wheeled
mobile robots with joint acceleration limits”. In: 2016 IEEE International Conference
on Robotics and Automation (ICRA). 2016, pp. 2110–2115.

[76] Christophe Grand et al. “Stability and traction optimization of a reconfigurable wheel-
legged robot”. In: The International Journal of Robotics Research 23.10-11 (2004).
00132, pp. 1041–1058. (Visited on 05/17/2016).

[77] Christophe Grand, Faiz Benamar, and Frédéric Plumet. “Motion kinematics analysis
of wheeled–legged rover over 3D surface with posture adaptation”. In: Mechanism
and Machine Theory 45.3 (2010), pp. 477–495. (Visited on 05/17/2016).

[78] P. R. Giordano et al. “On the kinematic modeling and control of a mobile platform
equipped with steering wheels and movable legs”. In: 2009 IEEE International
Conference on Robotics and Automation. 2009, pp. 4080–4087.

[79] A. Dietrich et al. “Singularity avoidance for nonholonomic, omnidirectional wheeled
mobile platforms with variable footprint”. In: 2011 IEEE International Conference
on Robotics and Automation. 2011, pp. 6136–6142.

[80] A. Suzumura and Y. Fujimoto. “Workspace control of a wheel-legged mobile robot
for gyrating locomotion with movable leg”. In: 2013 IEEE International Conference
on Mechatronics (ICM). 2013, pp. 641–647.

[81] K. Nagano and Y. Fujimoto. “A control method of low speed wheeled locomotion
for a wheel-legged mobile robot”. In: 2014 IEEE 13th International Workshop on
Advanced Motion Control (AMC). 2014, pp. 332–337.

[82] K. Nagano and Y. Fujimoto. “The stable wheeled locomotion in low speed region for
a wheel-legged mobile robot”. In: 2015 IEEE International Conference on Mecha-
tronics (ICM). 2015, pp. 404–409.

[83] Sang-ik An, Yonghwan Oh, and Dong-Soo Kwon. “Zero-moment point based balance
control of leg-wheel hybrid structures with inequality constraints of kinodynamic
behavior”. In: IROS. 2012.

[84] Pierre Jarrault, Christophe Grand, and Philippe Bidaud. “Robust obstacle cross-
ing of a wheel-legged mobile robot using minimax force distribution and self-
reconfiguration”. In: IROS. IEEE. 2011.

[85] Guiyang Xin et al. “A model-based hierarchical controller for legged systems subject
to external disturbances”. In: ICRA. 2018.

[86] C Dario Bellicoso et al. “Dynamic locomotion through online nonlinear motion
optimization for quadrupedal robots”. In: IEEE-RAL (2018).

References 165

[87] Gerardo Bledt, Patrick M Wensing, and Sangbae Kim. “Policy-regularized model
predictive control to stabilize diverse quadrupedal gaits for the MIT cheetah”. In:
IROS. IEEE. 2017.

[88] Jared Di Carlo et al. “Dynamic locomotion in the MIT Cheetah 3 through convex
model-predictive control”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. 2018.

[89] Zhijun Li et al. “Dynamic balance optimization and control of quadruped robot sys-
tems with flexible joints”. In: IEEE Transactions on Systems, Man, and Cybernetics:
Systems (2015).

[90] Alexander W Winkler, Carlos Mastalli, Ioannis Havoutis, et al. “Planning and execu-
tion of dynamic whole-body locomotion for a hydraulic quadruped on challenging
terrain”. In: ICRA. 2015.

[91] Victor Barasuol, Jonas Buchli, et al. “A reactive controller framework for quadrupedal
locomotion on challenging terrain”. In: ICRA. 2013.

[92] Ting-Yung Wen John. “Control of Nonholonomic Systems”. In: The Control Hand-
book (three volume set). Ed. by William S Levine. CRC press, 2018. Chap. 76.3,
pp. 1359–1368.

[93] Reza N Jazar. “Theory of applied robotics: kinematics, dynamics, and control”. In:
Springer Science & Business Media, 2010. Chap. Velocity Kinematics.

[94] Reza N Jazar. “Theory of applied robotics: kinematics, dynamics, and control”. In:
Springer Science & Business Media, 2010. Chap. Acceleration Kinematics.

[95] Chung Woojin and Iagnemma Karl. “Wheeled Robots”. In: Springer handbook of
robotics. Ed. by Bruno Siciliano and Oussama Khatib. Springer, 2016. Chap. 24,
pp. 575–594.

[96] Wieber Pierre-Brice, Tedrake Russ, and Kuindersma Scott. “Modeling and Control
of Legged Robots”. In: Springer handbook of robotics. Ed. by Bruno Siciliano and
Oussama Khatib. Springer, 2016. Chap. 48, pp. 1203–1234.

[97] Marko B. Popovic, Ambarish Goswami, and Hugh Herr. “Ground reference points in
legged locomotion: Definitions, biological trajectories and control implications”. In:
The International Journal of Robotics Research 24.12 (2005). 00241, pp. 1013–1032.
(Visited on 04/06/2016).

[98] Alin Albu-Schäffer and Antonio Bicchi. “Actuators for Soft Robots”. In: Springer
handbook of robotics. Ed. by Bruno Siciliano and Oussama Khatib. Springer, 2016.
Chap. 21, pp. 500–530.

[99] Guanfeng Liu and Zexiang Li. “A unified geometric approach to modeling and
control of constrained mechanical systems”. In: IEEE Transactions on Robotics and
Automation 18.4 (2002), pp. 574–587.

[100] F. Aghili. “Inverse and direct dynamics of constrained multibody systems based
on orthogonal decomposition of generalized force”. In: 2003 IEEE International
Conference on Robotics and Automation (Cat. No.03CH37422). Vol. 3. 2003, 4035–
4041 vol.3.

[101] F. Aghili. “A unified approach for inverse and direct dynamics of constrained multi-
body systems based on linear projection operator: applications to control and simula-
tion”. In: IEEE Transactions on Robotics 21.5 (2005), pp. 834–849.

166 References

[102] M. Mistry, J. Buchli, and S. Schaal. “Inverse dynamics control of floating base
systems using orthogonal decomposition”. In: 2010 IEEE International Conference
on Robotics and Automation. 2010, pp. 3406–3412.

[103] Chiaverini Stefano, Oriolo Giuseppe, and Maciejewski Anthony A. “Redundant
Robots”. In: Springer handbook of robotics. Ed. by Bruno Siciliano and Oussama
Khatib. Springer, 2016. Chap. 10, pp. 221–242.

[104] Bruno Siciliano and Jean-Jacques Slotine. “A general framework for managing
multiple tasks in highly redundant robotic systems”. In: Advanced Robotics (1991),
pp. 1211–1216.

[105] JS Yuan. “Closed-loop manipulator control using quaternion feedback”. In: IEEE
Journal on Robotics and Automation 4.4 (1988), pp. 434–440.

[106] Przemysław Dobrowolski. “Swing-twist decomposition in Clifford algebra”. In:
arXiv preprint arXiv:1506.05481 (2015).

[107] Navvab Kashiri, Jörn Malzahn, and Nikos G Tsagarakis. “On the sensor design of
torque controlled actuators: A comparison study of strain gauge and encoder-based
principles”. In: IEEE Robotics and Automation Letters 2.2 (2017), pp. 1186–1194.

[108] Manuel G Catalano et al. “Adaptive synergies for the design and control of the
Pisa/IIT SoftHand”. In: The International Journal of Robotics Research 33.5 (2014),
pp. 768–782.

[109] Zeyu Ren et al. “HERI II: A robust and flexible robotic hand based on modular finger
design and under actuation principles”. In: 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 1449–1455.

[110] N. Kashiri et al. “Enhanced physical interaction performance for compliant joint
manipulators using proxy-based Sliding Mode Control”. In: 2014 11th International
Conference on Informatics in Control, Automation and Robotics (ICINCO). Vol. 02.
2014, pp. 175–183.

[111] Martin L. Felis. “RBDL: an efficient rigid-body dynamics library using recursive
algorithms”. In: Autonomous Robots (2016), pp. 1–17.

[112] I. Kao, K. Lynch, and J. Burdick. “Contact Modeling and Manipulation”. In: Springer
handbook of robotics. Ed. by B. Siciliano and O. Khatib. Springer, 20016. Chap. 37,
pp. 931–954.

[113] Malgorzata Kamedula, Navvab Kashiri, and Nikos G Tsagarakis. “On the kinematics
of wheeled motion control of a hybrid wheeled-legged centauro robot”. In: IEEE/RSJ
Int. Conf. Intell. Robot. and Syst. IEEE. 2018, pp. 2426–2433.

Appendix A

State Estimation

In order to test the proposed controllers, simple state estimators for the robot world posture and the

ground reaction forces have been implemented in this work. This chapter is dedicated to these state

estimation algorithms: in Section A.1 estimation of the robot world posture from the encoders and

IMU readings have been described at the geometric (Section A.1.1) and kinematic (Section A.1.2)

levels, and an algorithm for the estimation of the ground reaction forces based on the inverse dynamics

approach have been given in Section A.2. Finally, in Section A.3 the summary is given.

A.1 Odometry

To compute the robot world posture, the link-side encoders and Inertial Measurement Unit (IMU)

readings have been used. Due to the drift in the IMU readings on the rotation around the gravity

vector, this rotation has been removed from the IMU measurements and included into the estimation

variable. To that end, the twist-swing decomposition (Section 3.4) has been used to compute the robot

orientation without its heading, and the null-space projection matrix with respect to the gravity vector

has been applied to the IMU velocity readings,

ρ̂ρρb|Pg = ρρρ IMU |Pg, ω̂ωωb|Pg = ω̂ωω IMU |Pg. (A.1)

The current twist is estimated using the estimation of the angular velocity computed in the previous

time step,

ρ̂b|g|t += ω̂b|g|t−T T. (A.2)

168 State Estimation

A.1.1 Twist and Position Estimation

The motion of the ith wheel centre is estimated assuming the rolling assumption (3.5), that reads

x̂xxw,i += xxxs,iqw,ir, (A.3)

where x̂xxw,i ∈ ℜ3 symbolises the estimated value, qw,i ∈ ℜ1 stands for the encoder reading for the wheel

rolling DoF, r ∈ ℜ1 refers to the wheel radius, and xxxs,i ∈ ℜ3 denotes the wheel rolling direction that

is orthogonal to the ground normal and the wheel axis; ||xxxs,i||= 1. To estimate the base position, the

distance from the robot base to the ith wheel centre is computed from the robot forward kinematics

xxx∗w,i = xxxw,i(qqqm), (A.4)

where xxx∗w,i ∈ ℜ3 stands for the estimated value, xxxw,i() ∈ ℜ3 symbolises the wheel centre forward

kinematics function, qqqm ∈ ℜn is a robot state based on the encoders and IMU readings with the

estimated twist. Finally, the estimated base position (x̂xxb,i ∈ ℜ3) is computed, for each of the robot

legs in the ground contact, with

x̂xxb,i = x̂xxw,i − xxx∗w,i. (A.5)

Standard method to fuse different measurements is to use the Kalman filter that is an optimal state

estimator for the linear systems. However, it is not robust to the outliers. When the estimator input

consists of the many points and the percentage of outliers remains below a certain threshold, and

various robust Kalman filter and outlier detection methods can be used.

In the considered case of the world posture of the CENTAURO robot, only four new estimations

are available each step, and thus any outlier point constitutes at least 25% of measurements. The

main sources of uncertainties are the IMU and encoders noises, where the former is used directly

in all the estimation points, and the latter – unless the sensor malfunctioned – should have only a

minor influence on the estimation points. Therefore, a main source of the outliers in the robot world

posture estimations is the wheel slippage. To improve robustness of the estimation with minimal

computational load, distance between the points has been chosen as a simple measure of the reliability

A.1 Odometry 169

of the estimation. It reads

if ||K||= 1,

x̂xxb = x̂xxi,b where i ∈K;

if ||K||= 2,

x̂xxb = 0.5
(
x̂xxi,b + x̂xx j,b

)
where i, j ∈K, i ̸= j;

if ||K||= 3,

x̂xxb = min
i∈K ∑

j∈K−{i}
||x̂xxi,b − x̂xx j,b||;

if ||K||> 3,

K=K−{i : max
i∈K ∑

j∈K−{i}
||x̂xxi,b − x̂xx j,b||}.

(A.6)

where K is initialized as a set of all legs in the ground contact. If only one estimation point is available,

it is chosen as the final estimation. On the other hand, if two estimation points are available, the

average value is used. In case three legs are in the ground contact, the point ’in the middle’, i.e., the

point closest to the other estimation points, is chosen. Finally, if more than three points are available,

the point furthest away from other estimation points is removed from the set, and the algorithm is

rerun with the less number of considered points. After choosing the final estimation point, the new

estimations for the wheel centres are computed with the forward kinematics considering the estimated

robot world posture and encoder readings for the actuated DoFs

x̂xxw,i = xxxw,i(q̂qqb,qqqa). (A.7)

Despite providing a simple approach to select the final estimation point, this algorithm provides a

reliable short-term proprioceptive state estimation with the robustness up to 50% of measurements

points. To achieve higher robustness to the wheel slippage, a dedicated slippage detection algorithm

would be required. However, for the long-term state estimation, a more complex algorithm that would

account for the drift on the robot twist and wheel centre positions would be required.

A.1.2 Kinematics

To estimate the robot base linear velocity and the angular velocity along the gravity vector, note that

the position of the ith wheel centre xxxw,i ∈ ℜ3 reads

xxxw,i = xxxb +
bxxxw,i, (A.8)

170 State Estimation

where xxxb is the position of the robot reference point, and bxxxw,i ∈ ℜ3 is the vector from the robot

reference point to the wheel centre. The wheel centre velocity, analogous to (3.3), reads

ẋxxw,i = ẋxxb +ωωω
b × bxxxw,i +

bẋxxw,i, (A.9)

where ωωωb × bxxxw,i represents the point velocity induced by the motion of the robot reference frame,

and bẋxxw,i denotes the point velocity in the robot reference frame. Taking into account the rolling

assumption, (A.9) reads

ωωωw,i ×nnnr = ẋxxb +ωωωb × bxxxw,i +
bẋxxw,i. (A.10)

That can be further decomposed into

(ωωωb|g +ωωωb|Pg +
b
ωωωw,i)×nnnr = ẋxxb +(ωωωb|g +ωωωb|Pg)× bxxxw,i +

bẋxxw,i (A.11)

where ωωωb|g ∈ ℜ3 stands for the base angular velocity along the gravity direction, ωωωb|Pg ∈ ℜ3 refers

to the base angular velocity in the gravity direction null-space, and bωωωw,i ∈ ℜ3 symbolises a wheel

angular velocity generated be the robot actuated DoFs. Then (A.11) can be expressed as

− ẋxxb +(bxxxw,i −nnnr)×ωωωb|g =−(ωωωb|Pg +
b
ωωωw,i)×nnnr+ωωωb|Pg × bxxxw,i +

bẋxxw,i. (A.12)

(A.12) is a linear equation with respect to the estimation variable, i.e., robot base linear/angular

velocities

Jb,i

 ˙̂xxxb,i

ω̂b|g,i

= aaab,i. (A.13)

An estimation of the robot base velocity can be obtained solvingJb,i

Jb, j

 ˙̂xxxb,i, j

ω̂b|g,i, j

=

aaab,i

aaab, j

 where i, j ∈K, i ̸= j (A.14)

for any two wheel points in the contact with the ground that do not belong to the same wheel. At

least, two legs on the ground are required to find four estimation variables. However, if there are more

contact points, more than one estimation can be computed with (A.14). To consider the wheel slippage,

algorithm (A.6) has been adopted to the chose the estimated linear velocity and, independently, the

angular velocity. The set K at the algorithm initialization consists of estimates for all i, j pairs of legs

in the ground contact.

A.2 Ground Reaction Forces 171

A.2 Ground Reaction Forces

The robot ground reaction forces are estimated using the rigid-body inverse dynamics with the contact

point assumptions; that reads (3.22)

M(q̄qq)q̈qq+ ccc(q̄qq, q̇qq)+FFFg(q̄qq) = ST
τττ t(qqqa, q̇qqa)+JT

c (q̄qq)λλλ ,

ẍxxc = Jc(q̄qq)q̈qq+ J̇c(q̄qq, q̇qq)q̇qq,
(A.15)

where ẍxxc ∈ ℜk corresponds to the accelerations of the constrained directions that are uniquely defined

by the contact point assumptions, and Jc ∈ ℜk×n represents the corresponding contact points Jacobian.

From (3.22), the estimated reaction forces read

λ̂λλ = ΛΛΛ
−1
c
(
ẍxxc − J̇c(q̄qq, q̇qq)q̇qq+Jc(q̄qq)M−1 (q̄qq)(ccc(q̄qq, q̇qq)+FFFg(q̄qq)−ST

τττ t(qqqa, q̇qqa)
))

,

where ΛΛΛc = Jc(q̄qq)M−1(q̄qq)JT
c (q̄qq) and λ̂λλ ∈ ℜk symbolises the vector of the estimated reaction forces.

Note that in this method the number, placement and type of the contacts have to be known a priori for

the obtained result to be reliable. If the contact point assumption is violated, e.g., a contact point is

sliding, and thus

ẍxxc(t) ̸= ẍxx∗c ,

where ẍxxc(t) ∈ ℜk are the real contact points accelerations at time t, and ẍxx∗c ∈ ℜk denotes the assumed

contact point acceleration at time t, the estimated external forces will include a difference between

expected and executed accelerations

λ̂λλ = λλλ −ΛΛΛ
−1
c (ẍxxc − ẍxx∗c) ,

where λλλ ∈ ℜk represents the vector of real reaction forces.

A.3 Summary

In this chapter, state estimation algorithms implemented in this work have been described. It includes

a robot world posture and velocity estimation robust to the wheel slippage. To achieve higher

robustness to the wheel slippage, a dedicated slippage detection algorithm would be required. Proposed

algorithms provide a reliable short-term estimation; however, they may be susceptible to the drift in

the wheel position estimation and the IMU readings. Thus, for the long-term state estimation, a more

complex algorithm that would account for this drift would be required. Furthermore, an algorithm

for the estimation of the ground reaction forces based on the contact point assumptions and the robot

dynamic model has been described. The algorithms introduced in this chapter have been implemented

on the CENTAURO robot and used in the experiments described in Chapter 7 and Chapter 8.

Appendix B

SOL-FER - code listings

1 mapping: # load mappings
2 RBDL_LOWER: # mapping name
3 loading: model # use the RBDL model
4 urdf: /robot_lower_body # from ROS parameter server
5 RBDL_UPPER: # mapping name
6 loading: model # use the RBDL model
7 urdf: # from file
8 path: *config
9 file: mwoibn/urdf/centauro_upper_body.urdf

Listing B.1 Example of the predefined Bidirectional Map from external URDF file.

174 SOL-FER - code listings

1 protected: // variables declaration
2 // Handler of Robot Points to keep all the Robot Points
3 Handler<RobotPoint> _points;
4

5 public:
6 // memory allocation, create the Norm Points
7 function init(){
8 // create the basic Linear Points for the rigid body points
9 _points.add(LinearPoint("LeftHand"));

10 _points.add(LinearPoint("RightHand"));
11 _points.add(LinearPoint("Base"));
12 // create the point that computes the difference between the

"LeftHand" and "Base"↪→

13 _points.add(Minus(_points[0],_points[2]);
14 // create the point that computes the difference between the

"RightHand" and "Base"↪→

15 _points.add(Minus(_points[1],_points[2]);
16 // create the point that computes norm of the penultimate

point in the Handler↪→

17 _points.add(Norm(_points.end(1));
18 // create the point that computes norm of the penultimate

point in the Handler↪→

19 _points.add(Norm(_points.end(1));
20 // set an offset between the "LeftHand" frame origin and the

tracked point given in the "LeftHand" frame↪→

21 _points[0].point.position.setFixed(Vector(0,0,-0.15));
22 // set an offset between the "RightHand" frame origin and the

tracked point given in the "RightHand" frame↪→

23 _points[1].point.position.setFixed(Vector(0,0,-0.15));
24 }
25

26 function update(){ // main loop
27 // compute the norms
28 _points.update(false); // do not update the jacobians
29 // print the results
30 std::cout << "Right Hand distance from the Base is " <<

_points.end(1).getState().transpose() << "." << std::endl;↪→

31 std::cout << "Left Hand distance from the Base is " <<
_points.end(0).getState().transpose() << "." << std::endl;↪→

32 }

Listing B.2 Pseudo-code to compute the distances between the end-effectors and the reference
point when the tracked points do not coincide with the frames origins.

175

1 virtual void compute() = 0;
2 virtual void computeJacobian() = 0;
3

4 virtual void update(bool jacobian = true);
5

6 const mwoibn::Matrix& jacobian() const;
7 const mwoibn::VectorN& point() const;
8

9 int size();
10 int rows();
11 int cols();
12

13 Point& operator=(const Point& other);
14 Point& operator+(const Point& other);
15 Point& operator-(const Point& other);
16 Point& operator+=(const Point& other);
17 Point& operator-=(const Point& other);

Listing B.3 The Robot Points Interface.

1 link_side_online: # name of the communicating pipe
2 space: JOINT # pipe space
3 dofs: # which DoFs are considered
4 chain: all # which part of the robot should be used
5 type: actuated # which type of DoFs is considered
6 mapping: PYTHON # which mapping should be used
7 interface: # which interfaces are active
8 position: true
9 velocity: true

10 effort: true
11 function: state # which State it is attached to

Listing B.4 Example of the pipe configuration in the joint-space.

176 SOL-FER - code listings

1 floating_base:
2 space: OPERATIONAL
3 convention:
4 orientation:
5 type: QUATERNION
6 convention: HAMILTONIAN
7 position:
8 type: FULL
9 dofs:

10 chain: all
11 type: body
12 name: pelvis
13 mapping: RBDL
14 interface:
15 position: true
16 velocity: false
17 effort: false

Listing B.5 Example of the pipe configuration for the robot rigid-body.

1 ros:
2 feedback:
3 whole_body:
4 source: desired_state
5 message: custom_messages::CustomCmnd
6 initialize: false
7 controller:
8 whole_body:
9 sink: desired_state

10 xbot:
11 feedback:
12 whole_body:
13 layer: NRT
14 source: desired_state
15 controller:
16 whole_body:
17 layer: NRT
18 sink: desired_state

Listing B.6 Example of the middleware specific pipe configuration.

177

1 modules:
2 joint_online: # plugin name/configuration id
3 layer: NRT # layer the plugins runs at
4 robot: joint_space # which robot configuration should be

loaded↪→

5 controller: direct # which controllers should be loaded
6 mode: full # if 'full' all controllers are loaded, if

'idle' the desired states are not send to the
lower-level controller

↪→

↪→

7 kinematics: false # does it require kinematic update
8 dynamics: false # does it require dynamic update
9 model_change: false # does it modify the robot state

internally↪→

Listing B.7 Example of the plugin configuration for the joint-space controller.

1 robot: # robot configurations
2 online: # configuration id
3 feedback: # which feedbacks should be loaded
4 layer: online # read a predefined set-up
5 actuators: # if the actuation model should be loaded
6 read: true
7 contacts: # does it need contacts
8 read: true
9 offline:

10 feedback:
11 list: [whole_body, reference] # read given

list↪→

12 actuators:
13 read: false
14 contacts:
15 read: true

Listing B.8 Example of the predefined Robot configurations for the online and offline plugins.
The ’reference’ and ’whole-body’ feedbacks in Code B.8 are both position/velocity feedbacks
of the full robot state, where the former subscribes to the robot current state (function: state
in the pipe configuration) and the latter subscribes to the desired state (function: reference in
the pipe configuration).

178 SOL-FER - code listings

1 feedbacks: # predefined feedback set-ups
2 online: [link_side_online, odometry, reference]
3 offline: [whole_body]
4 controllers: # predefined controller set-ups
5 direct:
6 list: [position_controller, velocity_controller]

Listing B.9 Example of the predefined pipeline set-ups.

1 config_name:
2 secondary_file: # if present, use secondary file
3 path: *support # specify path to the file
4 file: upper_body.yaml # file name with file extension

Listing B.10 Example of the predefined pipeline set-ups.

1 mwoibn:
2 ros: # cheange the urdf to the upper-body
3 source:
4 urdf: "/robot_upper_body"
5 xbot:
6 source:
7 urdf:
8 file: mwoibn/urdf/centauro_upper_body.
9 feedbacks:

10 online: [link_side_online] # remove the state
estimation from the deafult feedbacks, upper-body
is a static model

↪→

↪→

Listing B.11 An example secondary configuration file for the manipulation plugin. This
file changes the robot URDF to the fixed base upper-body model, and it removes the state
estimation from the default feedback.

179

1 mwoibn:
2 controller:
3 position_controller: # control only the robot

lower-body↪→

4 dofs:
5 chain: base
6 type: unactuated
7 mapping: PYTHON
8 ros: # change the robot urdf source to the lower-body urdf
9 source:

10 urdf: "/robot_lower_body"
11 xbot: # change the robot urdf source to the lower-body urdf
12 source:
13 urdf:
14 file:

"mwoibn/urdf/centauro_lower_body.urdf"↪→

Listing B.12 An example secondary configuration file for the odometry plugin. In this file,
the default whole-body robot URDF is changed to the lower-body model, and the default
position controller configuration is modified to control only the robot floating base, i.e. only
unactuated DoFs in the ’base’ chain.

180 SOL-FER - code listings

1 public:
2 Base(mwoibn::robot_class::Robot& robot);
3

4 virtual ~Base() {}
5

6 virtual void init() = 0; // runs at the robot initalization
7 virtual void update() = 0; // runs at each update loop
8 virtual void send() = 0; // runs the outputs communication layer
9 virtual void stop() = 0; // runs when the module is stoped

10 virtual void close() = 0; // runs on the module shut down
11 virtual void setRate(double rate); // update the module update

frequency↪→

12

13 virtual void startLog(mwoibn::common::Logger& logger); // initialize
the logger↪→

14 virtual void log(mwoibn::common::Logger& logger, double time) = 0; //
write the log loop↪→

15

16 mwoibn::robot_class::Robot& model(){return _robot;}; // provides acces
to the Robot object↪→

17

18 mwoibn::common::Flag kinematics; // does the kinematic update is
required?↪→

19 mwoibn::common::Flag dynamics; // does the dynamic update is required?
20 mwoibn::common::Flag modify; // does the module modifes the robot

current state?↪→

21

22 const std::string& name(){return _name;} // name of the module

Listing B.13 Public interface of the module interface.

181

1 #include "mgnss/plugins/generator.h" // the plugin template
2 #include "mgnss/ros_callbacks/joint_states.h" // the higher-level

communication↪→

3 #include "mgnss/controllers/joint_states.h" // component - joint-space
controller↪→

4 #include <custom_services/jointStateCmnd.h> // ros topic
5

6 template<typename Subscriber, typename Service, typename Node,
typename Publisher>↪→

7 class JointStates : public mgnss::plugins::Generator<Subscriber,
Service, Node, Publisher>↪→

8 {
9 typedef mgnss::plugins::Generator<Subscriber, Service, Node,

Publisher> Generator_;↪→

10

11 public:
12 JointStates() : Generator_("joint_states"){ }
13

14 virtual ~JointStates(){}
15

16 protected:
17

18 // specify component to be loaded
19 virtual void _resetPrt(YAML::Node config){
20 Generator_::controller_ptr.reset(new

mgnss::controllers::JointStates(↪→

21 *Generator_::_robot_ptr.begin()->second, config));
22 }
23

24 // initialize the higher-level communication
25 virtual void _initCallbacks(YAML::Node config){
26 Generator_::_srv.push_back(Generator_::n->template

advertiseService<custom_services::jointStateCmnd::Request,
custom_services::jointStateCmnd::Response>(
Generator_::controller_ptr->name() + "/trajectory",

↪→

↪→

↪→

27 boost::bind(
28 &mgnss::ros_callbacks::joint_states::referenceHandler,_1, _2,

static_cast<mgnss::controllers::JointStates*>(↪→

29 Generator_::controller_ptr.get()))));
30

31 }
32 };

Listing B.14 Plugin template specialization for the joint-space controller Component.

182 SOL-FER - code listings

1 shared:
2 layer: NRT
3 plugins: [UpperBodyIK::upper_body_ik, odometry3::odometry,

ground_forces, gravity_compensation,
NwheelsZMPII::wheeled_motion]

↪→

↪→

Listing B.15 A configuration of the shared plugin to load 5 Components/Plugins.

	Table of contents
	List of figures
	List of tables
	List of acronyms
	1 Introduction
	2 Literature Review
	2.1 Dynamic Simulation of a Robotic System
	2.2 Software Arichtecture
	2.3 Control of the Hybrid Legged-Wheeled Robots
	2.4 Reactive Control
	2.5 Summary

	3 Background
	3.1 Non-holonomic robotic system
	3.2 Modelling
	3.2.1 Point on the Rigid-Body
	3.2.2 Wheeled Robots
	3.2.3 Standard Wheeled Mobile Robot
	3.2.4 Non-holonomic constraint in the SWMR.
	3.2.5 Hybrid legged-wheeled robots
	3.2.6 Legged Robots
	3.2.7 Series Elastic Actuators

	3.3 Motion Control
	3.3.1 Gravity Compensation for Compliant Joint Legged Robots
	3.3.2 Impedance Control
	3.3.3 Inverse Kinematics Control
	3.3.4 Second-order Inverse Kinematics

	3.4 Twist-Swing Decomposition
	3.5 CENTAURO robot
	3.5.1 Kinematics Analysis of CENTAURO Robot

	3.6 Conclusion

	4 Simulation of the CENTAURO robot
	4.1 Simulator Design
	4.1.1 URDF Model
	4.1.2 Control Plugin

	4.2 Results
	4.2.1 Comparison with Matlab
	4.2.2 Whole-body Simulation

	4.3 Conclusion

	5 Simplifying Operations in Locomotion - Framework for Efficient Research
	5.1 Core components
	5.1.1 Robot Structure
	5.1.2 Dynamic Model
	5.1.3 Robot Points
	5.1.4 Handler

	5.2 Plugins
	5.2.1 Configuration File
	5.2.2 Examples
	5.2.3 Shared plugin

	5.3 Summary

	6 Model of a Support Polygon Vertex in the Hybrid Legged-Wheeled Robots
	6.1 Wheel-ground contact model
	6.2 Derivative of the SPV
	6.2.1 Non-sliding Pure Rolling Constraint
	6.2.2 Constraint SPV

	6.3 Result Analysis
	6.3.1 Non-holonomy of legged-wheeled and all-steerable mobile robots
	6.3.2 Support polygon analysis for standard wheeled mobile robots

	6.4 Acceleration of the Support Polygon Vertex
	6.4.1 Properties of the SPV acceleration

	6.5 Conclusion

	7 Robust Omnidirectional Driving Scheme
	7.1 SPV Velocity Shaping
	7.2 Inverse Kinematics Whole-Body Control
	7.2.1 Inverse Kinematics Scheme
	7.2.2 World Posture Task
	7.2.3 Support Polygon Regulation
	7.2.4 Tasks Arrangement
	7.2.5 Wheeled-Legged Motion Control

	7.3 Steering Strategy
	7.3.1 Position Reference
	7.3.2 Velocity Reference
	7.3.3 Steering in all-steerable platforms
	7.3.4 Combined Methods
	7.3.5 Structural Singularity of the Non-Holonomic Constraint
	7.3.6 Evolution of the steering scheme

	7.4 Results
	7.4.1 Steering strategy robustness
	7.4.2 Variable contact polygon type
	7.4.3 Experiment with a non-zero camber angle
	7.4.4 Evaluation of the combined steering approach

	7.5 Conclusion

	8 Reactive Support Polygon Adaptation
	8.1 Support polygon adaptation task
	8.1.1 Support Polygon Stability Margin
	8.1.2 Workspace Boundaries
	8.1.3 Support Polygon Adaptation Task in the Cartesian-Space

	8.2 Joint-space model
	8.3 Support Polygon Adaptation in the Joint-Space
	8.3.1 Integration with the Lower-Level Inverse Kinematics

	8.4 Experimental Results
	8.4.1 Experiment with Controlled Base Motion
	8.4.2 Experiment with COM modulation using the Upper-Body
	8.4.3 Experiment with Unknown Push Disturbance
	8.4.4 Centre of Pressure Experiment
	8.4.5 Results and Discussion

	8.5 Conclusion

	9 Conclusion
	References
	Appendix A State Estimation
	A.1 Odometry
	A.1.1 Twist and Position Estimation
	A.1.2 Kinematics

	A.2 Ground Reaction Forces
	A.3 Summary

	Appendix B SOL-FER - code listings

