19 research outputs found

    Bin Packing Problem with uncertainty on item availability: an application to Capacity Planning in Logistics

    Get PDF
    Most modern companies are part of international economic networks, where goods are produced under different strategies, then transported over long distances and stored for variable periods of time at different locations along the considered network. These activities are often performed by first consolidating goods in appropriate bins, which are then stored at warehouses and shipped using multiple vehicles through various transportation modes. Companies thus face the problem of planning for sufficient capacity, e.g., negotiating it with third party logistic firms (3PLs) that specify both the capacity to be used and the logistical services to be performed. Given the time lag that usually exists between the capacity-planning decisions and the operational decisions that define how the planned capacity is used, the common assumption that all information concerning the parameters of the model is known is unlikely to be observed. We therefore propose a new stochastic problem, named the Variable Cost and Size Bin Packing Problem with Stochastic Items. The problem considers a company making a tactical capacity plan by choosing a set of appropriate bins, which are defined according to their specific volume and fixed cost. Bins included in the capacity plan are chosen in advance without the exact knowledge of what items will be available for the dispatching. When, during the operational phase, the planned capacity is not sufficient, extra capacity must be purchased. An extensive experimental plan is used to analyze the impact that diversity in instance structure has on the capacity planning and the effect of considering different levels of variability and correlation of the stochastic parameters related to items

    Asymptotic results for the Generalized Bin Packing Problem

    Get PDF
    We present a worst case analysis for the Generalized Bin Packing Problem, a novel packing problem arising in many Transportation and Logistics settings and characterized by multiple item and bin attributes and by the joint presence of both compulsory and non-compulsory items. As a preliminary worst case analysis has recently been proposed in the literature, we extend this study by proposing semi-online and offline algorithms, extending the well known First Fit Decreasing and Best Fit Decreasing heuristics for the Bin Packing Problem. In particular, we show that knowing part of the instance or the whole instance is not enough for computing worst case ratio bounds

    The multi-handler knapsack problem under uncertainty

    Get PDF
    The Multi-Handler Knapsack Problem under Uncertainty is a new stochastic knapsack problem where, given a set of items, characterized by volume and random profit, and a set of potential handlers, we want to find a subset of items which maximizes the expected total profit. The item profit is given by the sum of a deterministic profit plus a stochastic profit due to the random handling costs of the handlers. On the contrary of other stochastic problems in the literature, the probability distribution of the stochastic profit is unknown. By using the asymptotic theory of extreme values, a deterministic approximation for the stochastic problem is derived. The accuracy of such a deterministic approximation is tested against the two-stage with fixed recourse formulation of the problem. Very promising results are obtained on a large set of instances in negligible computing time

    New heuristics for the stochastic tactical railway maintenance problem

    Get PDF
    Efficient methods have been proposed in the literature for the management of a set of railway maintenance operations. However, these methods consider maintenance operations as deterministic and known a priori. In the stochastic tactical railway maintenance problem (STRMP), maintenance operations are not known in advance. In fact, since future track conditions can only be predicted, maintenance operations become stochastic. STRMP is based on a rolling horizon. For each month of the rolling horizon, an adaptive plan must be addressed. Each adaptive plan becomes deterministic, since it consists of a particular subproblem of the whole STRMP. Nevertheless, an exact resolution of each plan along the rolling horizon would be too time-consuming. Therefore, a heuristic approach that can provide efficient solutions within a reasonable computational time is required. Although STRMP has already been introduced in the literature, little work has been done in terms of solution methods and computational results. The main contributions of this paper include new methodology developments, a linear model for the deterministic subproblem, three efficient heuristics for the fast and effective resolution of each deterministic subproblem, and extensive computational results

    The Generalized Bin Packing Problem

    Get PDF
    In the Generalized Bin Packing Problem a set of items characterized by volume and profit and a set of bins of different types characterized by volume and cost are given. The goal consists in selecting those items and bins which optimize an objective function which combines the cost of the used bins and the profit of the selected items. We propose two methods to tackle the problem: branch-and-price as an exact method and beam search as a heuristics, derived from the branch-and-price. Our branch-and-price method is characterized by a two level branching strategy. At the first level the branching is performed on the number of available bins for each bin type. At the second level it consists on pairs of items which can or cannot be loaded together. Exploiting the branch-and-price skeleton, we then present a variegated beam search heuristics, characterized by different beam sizes. We finally present extensive computational results which show a high accuracy of the exact method and a very good efficiency of the proposed heuristics
    corecore