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Efficient Lower Bounds and Heuristics for the Variable Cost and Size Bin
Packing Problem

Teodor Gabriel Crainicc,1,∗, Guido Perbolia,1, Walter Reic,1, Roberto Tadeia

aPolitecnico di Torino, Turin, Italy
bCIRRELT, Montreal, Canada

cSchool of Management, UQAM, Montreal, Canada

Abstract

We consider the Variable Cost and Size Bin Packing Problem, a generalization of the well-known bin packing problem,
where a set of items must be packed into a set of heterogeneous bins characterized by possibly different volumes and
fixed selection costs. The objective of the problem is to select bins to pack all items at minimum total bin-selection
cost. The paper introduces lower bounds and heuristics for the problem, the latter integrating lower and upper bound
techniques. Extensive numerical tests conducted on instances with up to 1000 items show the effectiveness of these
methods in terms of computational effort and solution quality. We also provide a systematic numerical analysis of
the impact on solution quality of the bin selection costs and the correlations between these and the bin volumes. The
results show that these correlations matter and that solution methods that are unbiased toward particular correlation
values perform better.

Keywords: Variable cost and size bin packing, Heuristics, Lower Bounds, Upper Bounds

1. Introduction

Bin packing problems aim to load a series of items into a number of bins, such that the packing of each bin is
feasible with respect to a number of restrictions, e.g., capacity limits or load balancing constraints, while optimizing
a given objective, such as the minimization of the total number of used bins [1, 2, 3].

Bin packing problems belong to the core of classical combinatorial optimization problems. They are also of great
practical interest to, e.g., planning of telecommunication, transportation, production, and logistics/supply-chain sys-
tems. Although a great body of work has been conducted on the topic [3], most developments ignored economic
considerations such as bin or item costs, focusing instead on the physical characteristics associated with such prob-
lems, e.g., packing constraints on multiple dimensions..

We aim to contribute to address this issue by focusing on a problem setting including both physical and economic
attributes. More precisely, we address bin packing problems where a finite set of items must be packed into a finite set
of heterogeneous bins, characterized by possibly different volumes (capacity) and selection fixed costs. The objective
is to select the bins to pack all items at minimum total bin selection cost.

The previous contributions to this problem setting were referred to in the literature as the Variable Size Bin Packing

Problem (VSBPP) [3].. It should be noted, however, that an important assumption was made in this literature regarding
the values of the bin fixed costs, which were defined as equal to the volumes of the corresponding bins or, at best, as
directly proportional to them. This is a serious limitation because, in practical applications, other than its volume, the
cost of a bin is influenced by many other external factors, as discussed in Section 2.

Our objective is to lift this hypothesis and address the problem in all generality by considering that fixed costs are
attributes associated with available bins that may, or may not, be correlated to their volumes. We refer to this version
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of the problem as the Variable Cost and Size Bin Packing Problem (VCSBPP) to better distinguish it from the special
case of the VSBPP.

Our contribution is twofold. First, we propose new and efficient heuristics for the VCSBPP. Most solution methods
in the literature rely either on decomposition techniques [4, 5, 6] or on reformulations solved using commercial MIP
software [7] and require significant computation times when applied to large instances. This computational effort
makes them difficult to use in practice, planning settings in particular, where efficient, i.e., fast and accurate, solution
methods are crucial to address the VCSBPP subproblems that must be solved repeatedly. The heuristic methods we
propose successfully tackle the challenge of efficiency by using lower and upper bound techniques to select bins and
pack items. Extensive numerical experiments were performed to support this claim, including on the special case of
the VSBPP, for which we compare on a large set of instances the results of the new heuristics we propose to those of
the best methods in the literature [7, 4]. This first numerical analysis indicates that the proposed heuristics find very
good solutions extremely fast, even when addressing instances with up to 1000 items.

The second contribution we make in this paper is to provide a systematic numerical analysis of the impact on
solution quality of the bin selection costs and of the correlations of these with the bin volumes. This analysis, initiated
in the first computational phase mentioned above, is completed by experiments with a new set of instances specifically
generated for the general VCSBPP setting. The results show that, indeed, these correlations matter and that the
solution methods we propose, which are unbiased toward particular correlation values, perform better.

The paper is organized as follows. Section 2 discusses the interest of the VCSBPP setting with respect to applica-
tions, presents the model formulation, and reviews the methods proposed in the literature to address it. Lower bounds
and the corresponding upper bound heuristics are introduced in Sections 3 and 4, respectively. Section 5 is dedicated
to the presentation and analysis of the computational results. We conclude in Section 6.

2. The Variable Cost and Size Bin Packing Problem

The first part of the section is dedicated to describing the general settings in which the VCSBPP is defined. We
provide examples that both illustrate the usefulness of the problem and show how fixed costs may help formulate
practical packing applications. We complete the section with the general formulation of the VCSBPP and the review
of related literature.

2.1. Problem setting

Costs are an important attribute to take into account when addressing packing problems in many practical settings.
Consider, for example, supply-chain management and the planning of the capacity required for the next cycle of
activities (e.g., a year) of a logistics network. Warehousing and transportation activities are major components of
such networks and the incorporation of packing formulations might significantly enhance their modeling, either in
estimating the required capacity and its assignment to various product classes or in selecting the providers of logistics
services and the types and quantities of vehicles (containers) to contract for with each of them. In all cases, the cost of
the “bin”, i.e., the unit of warehousing space or vehicle provided by each potential supplier, constitutes an important
element when establishing the capacity plan.

Several factors influence the costs associated to the selection of bins, of which volume is only one. Thus, for
example, the type of the “bin”, be it an actual container or a unit of warehousing space is a determining factor. Several
box types exist for each container size, from regular boxes and open tops to thermal containers and refrigerated ones.
Obviously, the costs are different, but most may be used for the same product groups, given appropriate circumstances
and substitution rules.

The availability of the space modeled by the bins is also an influencing factor. Turning again for illustration
purposes to containers for maritime transportation, availability may vary with the particular physical, operational, and
economic characteristics of the port of origin, as well as with the companies providing the containers and shipping
services from that port [8].

One should also consider whether the fixed costs are used to model the prices of renting the bins or those of buying
them. In the former case, the time period for which the container is to be used is an important factor that influences
costs. When, on the other hand, a company is looking to buy containers, then obviously the overall condition of
the units (new or used, in pristine condition or slightly damaged) becomes an important factor determining costs.
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Considering the selection/use fixed cost as a relatively independent attribute associated with a particular bin, that may
or may not be correlated to its volume, provides the means to address a much broader range of actual applications
compared to the case studied up to now in the literature..

2.2. Formulation and related work

Let I (|I| < ∞) be the set of items to be loaded. Each item i ∈ I has a volume vi. Let J (|J| < ∞) be the set of
available bins and let Vj and c j be the volume and cost of bin j ∈ J , respectively. Without any loss of generality, let
us assume that the volumes and costs associated with the bins and items are integers.

Define the bin-selection variables y = (y1, y2, . . . , y|J|), where y j = 1, if bin j is selected and y j = 0, otherwise,
and the item-to-bin assignment variables xi j, ∀i ∈ I, ∀ j ∈ J , where xi j = 1, if item i is loaded into bin j and xi j = 0,
otherwise. Then, the VCSBPP model can be formulated as:

min z(y) =
∑

j∈J c jy j (1)
s.t.

∑
j∈J xi j = 1, ∀i ∈ I, (2)∑

i∈I vixi j ≤ Vjy j, ∀ j ∈ J , (3)
xi j ∈ {0, 1}, ∀i ∈ I, ∀ j ∈ J , (4)
y j ∈ {0, 1}, ∀ j ∈ J . (5)

The objective function (1) minimizes the total fixed cost of the selected bins. Constraints (2) ensure that each item
i ∈ I is packed within exactly one bin, while constraints (3) make sure that the total volume of the items packed into
bin j ∈ J does not exceed its volume Vj. Relations (4) and (5) enforce the integrality requirements for all decision
variables.

A somewhat small number of studies have addressed the VCSBPP. In his Ph.D. thesis dedicated to packing and
scheduling problems, Monaci presents lower bounds, as well as heuristic and exact solution methods for the VSBPP,
i.e. the special case of the VCSBPP where the fixed costs of bins are equal to their volumes [4]. The methods presented
in [4] take advantage of this correlation between bin volume and cost, and need to be modified to address the VCSBPP.
Moreover, only aggregated results are presented. and private communications confirmed that the detailed ones are no
longer available.

Seiden et al. [9] consider the on-line version of the problem and propose upper and lower bounds. Kang and Park
[10] develop two greedy algorithms for the special case of the VCSBPP, where the cost of a unit of bin volume does
not increase as the bin volume increases, and analyze their performance on instances with divisibility constraints (on
both item and bin sizes, on only the bin sizes, and in the general case where no divisibility constraints are present). An
integer-linear formulation for the two-dimensional VCSBPP, with bin costs proportional to bin sizes, is proposed by
Pisinger and Sigurd [5], together with lower bounds based on Dantzig-Wolfe decomposition and an exact branch-and-
price algorithm. Alves and Valério de Carvalho [6] propose a series of strategies aimed at accelerating the column
generation approach for the same problem.

Correia et al. [7] address the VSBPP and introduce bin selection costs that are strongly correlated to the bin
volumes, while also displaying economies of scale. The authors discretize the formulation, propose valid inequalities
to improve the quality of the lower bounds obtained from the linear relaxation of the resulting model, and analyze
the quality of the lower bounds on a large set of instances (that we also use in the computational experiments of this
paper).

3. Lower Bounds for the VCSBPP

We present a series of lower bounds for the VCSBPP, which provide the means to measure the solution quality of
the various procedures and are also used as building blocks for the heuristics proposed in Section 4. The first set of
bounds is based on relaxations of the formulation (1)-(5) and knapsack optimization principles, while the last is based
on column-generation ideas.

Let y� = (y�1 , y
�
2 , . . . , y

�
|J|) stand for an optimal selection of bins yielded by the formulation (1)-(5), with z� the

associated optimal value of the objective function. Consider formulation (6)-(8) obtained by relaxing the integrality
constraints (4) on item-to-bin assignment variables xi j and aggregating the individual bin feasibility constraints (3).
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This relaxation, originally proposed for the special case of the VCSBPP with bin fixed costs equal to their volumes
[4], yields an optimal set of bins ŷ� = (ŷ�1 , ŷ

�
2 , . . . , ŷ

�
|J|) with total capacity sufficient for the items considered, but with

no guarantee of feasibility once individual bins are packed. Obviously, z(ŷ�) ≤ z�.

min z(ŷ) =
∑

j∈J c jŷ j (6)
s.t.

∑
j∈J Vjŷ j ≥

∑
i∈I vi, (7)

ŷ j ∈ {0, 1}, ∀ j ∈ J. (8)

The substitution (9)
ŷ j = 1 − u j, (9)

applied to formulation (6)-(8) yields

max z(u) =
∑

j∈J c ju j (10)
s.t.

∑
j∈J Vju j ≤

∑
j∈J Vj −

∑
i∈I vi, (11)

u j ∈ {0, 1},∀ j ∈ J , (12)

which corresponds to a 0/1 knapsack problem. Therefore, by applying (9), one can derive an optimal solution to (6)-
(8) by solving the knapsack problem (10)-(12) using any available exact method [1]. Furthermore, any lower bound
LB(z(u)) for problem (10)-(12) can also be used to produce a valid lower bound LB(z(ŷ)) =

∑
j∈J c j − LB(z(u)) for

problem (6)-(8). We note LB1, the lower bound obtained from the original model (6)-(8).
LB1 can be improved by considering that bins may be grouped according to the distinct values of their volumes [4].

Let K define the set of distinct bin types relative to the bin volumes, i.e., ∀k1, k2 ∈ K , Vk1 � Vk2 . Let Mk, k ∈ K be the
maximum (“best”) filling ratio for the bin type k given the set of items I, obtained by solving the knapsack problem
Mk = max

{∑
i∈I vixi |

∑
i∈I vixi ≤ Vk, xi ∈ {0, 1},∀i ∈ I

}
. Clearly, Mk ≤ Vk, ∀k ∈ K . Therefore, by replacing the bin

volumes by their associated maximum filling ratios in (10)-(12), one obtains an improved lower bound on (1)-(5) by
solving

min z(ỹ) =
∑

j∈J c jỹ j (13)
s.t.

∑
j∈J Mjỹ j ≥

∑
i∈I vi, (14)

ỹ j ∈ {0, 1},∀ j ∈ J. (15)

Once again, substitution (9) transforms the formulation (13)-(15) into a knapsack problem, which may be used to
compute lower bounds. We name LB2, the lower bound obtained from the formulation (13)-(15).

LB1 can be further improved by considering that each item must be loaded. Define Mik = max
{∑

j∈I\i vixi |∑
i∈I vixi ≤ Vk − vi, xi ∈ {0, 1},∀i ∈ I \ i

}
for each pair of item i and bin type k, corresponding to the maximum filling

of a bin of type k when item i is loaded into it. Then, ti = mink∈K{Vk − Mik} − vi represents the loss of volume due to
the loading item i, and a new lower bound can be computed by applying LB1 to the instance where the item volumes
are set to ṽi = vi + ti.

The task of computing the Mik indexes can be computationally heavy, requiring to solve a knapsack problem for
each item and bin type. We therefore use an approximation

M(p)ik =

{
Mik i f vi +

∑p

j=1 v j > Vk and vi +
∑p−1

j=1 v j ≤ Vk,

Vk − vi otherwise,
(16)

where items are ordered by non-decreasing values of their volumes vi. The idea of the M(p)ik approximation is that,
in the best case, one cannot load more than p items including a large item i into a bin of type k when 1) loading the
smallest p items together with item i overloads the bin, but 2) loading only the p− 1 smallest items together with item
i does not. Computing Mik in this case is then easy, since one has only to evaluate all the p-tuples containing item i,
which is O(np−1). Otherwise, we assume item i to be “small” and set the associate loss of space to null (ti = 0).

The use of M(p)ik is profitable when the value of p is small, e.g., p = 2 for the problems we tested (see Section
5). We refer to LB3, the lower bound obtained by applying LB1 to the instances where the item volumes are set to
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ṽi = vi+ti and ti is defined according to M(2)ik (notice that for any solution method, these indexes need to be computed
only once, during initialization, which makes LB3 suitable even for Branch & Bound algorithms).

Both LB2 and LB3 dominate LB1, but no dominance relationship can be defined for LB2 and LB3. Indeed, it is
quite easy to define instances where LB2 displays a better behavior than LB3 and vice versa (see the example in the
Annex). On the other hand, numerical experiments show that a new lower bound defined as L4 = max{LB2, LB3}
gives only marginal improvements compared to LB2 or LB3 separately.

We now apply to the general case of the VCSBPP the column generation lower bound introduced by Monaci [4]
for the particular case of bin selection costs equal to their volumes.

Let us group the bins in J into types t ∈ T , where two bins are defined to belong to the same type t if they have
the same cost c j and volume Vj. Define Ut as the number of available bins of type t. A feasible loading pattern for
a bin of type t corresponds to a set of items that may be loaded into the bin satisfying all accommodation rules. Let
Kt = {k} be the set of all feasible loading patterns for the bin type t, and K = ⋃t∈T Kt. A feasible loading pattern k is
described by a vector of indicator functions ai

k
, k ∈ Kt, t ∈ T , such that ai

k
= 1 if item i is accommodated by pattern

k of bin type t, 0 otherwise. The cost of a pattern is the cost of the bin type.
We define the bin loading pattern selection variables λk, equal to 1 if the pattern k ∈ Kt is used, 0 otherwise. The

set covering formulation of the VCSBPP may then be written as

min
∑
t∈T

∑
k∈Kt

ckλk (17)

Subject to
∑
t∈T

∑
k∈Kt

ai
kλk = 1 i ∈ I, (18)

∑
k∈Kt

λk ≤ Ut t ∈ T , (19)

λk ∈ {0, 1} k ∈ K . (20)

The lower bound is computed from the linear relaxation of formulation (17)-(20), which provides the means to
implicitly deal with the large number of variables in the model through a column generation approach [11]. The
procedure starts with a relatively small set of feasible patterns P, corresponding to a restricted VCSBPP that we
identify as RP, an then proceeds as follows:

1. Find an initial feasible solution to the VCSBPP and the corresponding set P;
2. Solve the linear relaxation of RP and let LRP be its optimal solution;
3. For each bin type t ∈ T

(a) Find the non-basic pattern variable λk of LRP, k ∈ Kt, with the smallest reduced cost rk among all non-basic
pattern variables for type t;

(b) If rk < 0, P = P ∪ {λk};
(c) Continue to the next bin type (go to 3a);

4. If rk ≥ 0 for all bin types t, then stop with LRP as the set covering lower bound for the VCSBPP;
Otherwise, go to 2.

The main issue is how to find new negative reduced cost feasible patterns. Consider the dual variables associated
to the constraints of the continuous relaxation of the RP set covering formulation, μi, for constraints (18), and αt ≤ 0,
for constraints (19). Let Ak be the column of a given pattern variable k for a bin of type t in model RP. Its reduced
cost rk is expressed as ck −

[
μ α
]T Ak, which becomes

rk = ct −
[
μT αT

]
Ak = ct −

∑
i∈I

ai
kμi − αt.

We now define a column generation subproblem which, given a bin of type t, finds the non-basic pattern with the
minimum reduced cost. Notice that the vector Ak defining a not yet generated pattern k of bin type t is not known,
but may be expressed in terms of item-to-bin assignment variables xi equal to 1 if item i belongs to the pattern, 0
otherwise (for simplicity of notation, we dropped the k index). Because the dual variables αt, as well as the bin cost ct,
are constant for a given type t, to find the column with the minimum reduced cost we can simply solve the following
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knapsack problem:

max
∑
i∈I
μi xi

Subject to:
∑
i∈I

wixi ≤ Wt t ∈ T

xi ∈ {0, 1} i ∈ I.

The procedure adds at most |T | columns to P at every iteration (in Step 3), one for each bin type yielding a
feasible loading pattern with negative rk. Any feasible solution of the VCSBPP may be used to initialize the procedure,
including the trivial solution obtained by loading each item into a different bin. More accurate heuristics are presented
in Section 4. In the following, we refer to the objective function value of the optimal solution of the final continuous
RP problem as LBCG.

4. Heuristics for the VCSBPP

The heuristics we propose for the VCSBPP combine information yielded by the lower bound computations and
extensions of a number of fundamental concepts in the bin packing and knapsack methodology.

We thus adapt the well-known Best First Decreasing (BFD) loading heuristic, which offers good performance for
the classical bin packing problem, and loads each item into the “best” bin, i.e., the bin with the maximum free space
(defined as the bin volume minus the sum of the volumes of the items loaded into it) once the item is loaded [1]. The
BFD we propose for the VCSBPP, named the Adapted BFD (A − BFD) heuristic, first sorts the items according to
the non-increasing order of their volumes and, then, loads them sequentially; Algorithm 1 displays the pseudocode.
For each item, one first attempts to load it into the “best” already-selected bin, that is, the bin maximizing the merit

function computing the free bin space as defined above. If the item cannot be loaded into an already-selected bin, a
new bin is selected and the item is loaded into it.

An issue particular to the VCSBPP, but irrelevant for the classical bin packing problem where bins are homoge-
neous, is how to choose a new bin, when required. Inspired by the item-selection rule for knapsack problems, we
select bins according to the non-increasing order of their unit cost / volume ratios, c j/Vj, and in the non-decreasing
order of their volumes when the unit costs are equal.

Considering the bins according to this order generally yields good solutions, but may falter when the last items are
considered. Indeed, when a new bin needs to be selected for an item toward the end of the list, the selected bin might
have a volume much larger than that of the item, even though its cost/volume ratio is good. Moreover, few items might
be left to take advantage of this volume. A bin with a worst ratio but an absolute smaller cost, might be appropriate
in this case, and we implement a post-processing procedure that attempts to improve the solution by evaluating such
possible bin swaps. The procedure iteratively examines each selected bin j ∈ J with its cost c j and loaded volume U j

defined as the sum of the volumes of the items assigned to it. Then, if an unused bin k ∈ J , k � j such that Vk ≥ U j

and ck < c j exists, the procedure transfers the items from bin j to bin k and discards the former.
Notice that any of the three lower bounds presented in Section 3 yields a set of bins with total cost equal to the

lower bound. We may use this information to initialize the set of bins used in the heuristic and thus obtain a variant
of A − BFD. More precisely, the LB-Based BFD (LB − BFD) heuristic works as follows:

• Consider the set of the bins given by the selected lower bound, generically denoted LB;
• Initialize the solution with a percentage p ∈ (0, 1] of these bins (bins are added empty);
• Order the remaining bins as described above and apply A − BFD to build a feasible solution.
A second variant of A − BFD also starts from the optimal solution associated to a lower bond LB in order to

choose the bins in the solution, but recomputes the bound when items cannot be loaded into already-selected bins.
The heuristic, denoted IT ER − BFD, iteratively adds a subset of the bins given by LB. Then, the new bins are loaded
by considering the items according to their non-increasing order of volumes. When an item cannot be loaded, a
partial instance is built out of the items not yet loaded and the bins still unused, and a new bound LB is computed.
The procedure stops when the item list is empty or, if after a maximum number of iterations k some items are still
unloaded, by applying the A − BFD heuristic.

6



Algorithm 1 A − BFD

Input I : Items to be accommodated into the bins
Input K : Bin groups types available to load the items
S : Set of selected bins (empty at the beginning)

Sort the items in I according to non-increasing order of their volume
Sort the bins in K according to non-increasing order of the ratio c j/Vj, and non-decreasing order of Vj when the
unit costs c j are equal
S = {∅}
for all i ∈ I do

if i can be accommodated into a bin in S then
Accommodate i into the best bin b ∈ S

else
S = S ∪ {b′}, where b′ is the first bin in the ordered list K
Accommodate i into b′

end if
end for
for all j ∈ S do

for all k ∈ K \ S do
U j =

∑
i loaded in j vi

if Vk ≥ U j and ck < c j then
Move all the items from j to k

S = S \ { j} ∪ {k}
end if

end for
end for

return S
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5. Computational Results

In this section, we present and analyze the results of the computational experiments. The first objective is to asses
the relative performance of the proposed lower and upper bounds. The second is to evaluate the efficiency of the
procedures we propose by comparing the best results we obtain to those of the best methods proposed in the literature.
Finally, we analyze the behavior of the methods in terms of efficiency and accuracy when problem attributes change,
in particular, the correlation between the costs and volumes of the bins, and the volume distribution of the items.

The new lower and upper bounds are implemented in C++. Experiments were performed on a Pentium IV 3GhZ
workstation. The knapsack instances generated by the LB1, LB2, and LBCG bounds were solved to optimality by
means of the algorithm presented in [12], while the column generation in LBCG was implemented in C++ by means
of the CPLEX 12.1 solver.

5.1. Instance sets

The following sets of problem instances were used in the experiments:
Set1. Instances from [7]. Five instances were randomly generated for each combination of the following parameters:

• Number of items in the set {100, 200, 500, 1000}.
• Item volumes randomly generated according to a (discrete) uniform distribution in the set {1, 2, ..., 20}.
• Five bin capacity cases: 1) all bins with the same capacity of 150; 2) three different capacities, 100, 200,

and 300; 3) six different capacities, 50 to 300 by increment of 50; 4) twelve different capacities, from 25
to 300 by increment of 25; 5) all bins with different capacity from 60 to 330 by increment of 5.

• Bin fixed cost set to 100
√

Vj for each bin j.
• Instances with D and D + 1 bins are built, where D stands for the minimum number of bins for each type

required to load all items.
Set2. Instances proposed in [4] and regenerated for [7], derived from classical bin packing instances for the item-

volume distribution and relations to the bin volume [13]. Ten instances were randomly generated for each
combination of the following parameters:
• Item volume: three types with volumes uniformly distributed in [1; 100], [20; 100], and [50; 100], respec-

tively.
• Number of bin types: 3 (capacities equal to 100, 120 and 150, respectively) and 5 (capacities equal to 60,

80, 100, 120 and 150, respectively).
• Number of items: 25, 50, 100, 200, and 500.

Set3. New instances created with the goal of providing the means to explore the impact of the correlation between
the selection fixed costs and the volumes of the bins. The new instances are thus characterized by various
correlation strengths, as well as different compositions of the item set. The parameters of the new instances
were also chosen to reflect city logistics and supply chain applications cases:
• Number of items in the set {100, 200, 500, 1000}.
• Bin capacity values in the set {50, 100, 120}. The values have been chosen to represent the typical volume

ratios of ISO containers (20, 40 and 53 feet).
• Bin selection costs generated according to the following three rules:

SC. As in [4], the costs of the bins are very strongly correlated to their volumes: they actually equal to
their volumes.

LC. The costs of the bins are loosely correlated with the volumes. In order to introduce an economy of
scale, and following [7], the cost is defined as

√
Vj.

R. For each bin volume, we generate three bin types. The first one has a cost of
√

Vj, the second√
Vj(1 + δ), where δ is randomly generated between 0.05 and 0.3, and the third

√
Vj(1 − γ), where

γ is randomly generated between 0.05 and 0.3. This cost-generation scheme simulates the situation
where different logistics operators are available. Thus, even though a basic price exists for each bin
size, there could be changes of the price of each operator due to external factors.

• Item volumes. Following [14], the items are grouped into sets and, then, the item types are mixed in order
to generate the item volume types. The items are grouped into three sets:
G1. Big-sized items with volumes randomly generated in the interval [20, 40].
G2. Medium-sized items with volumes randomly generated in the interval [15, 25].
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G3. Small=sized items with volumes randomly generated in the interval [5, 10].
Three item volume types are then generated mixing the item types in the following way:
T1. 80% of the items are in G2 and 20% in G3.
T2. 10% of the items are in G1, 75% in G2 and 15% in G3.
T3. 20% of the items are in G1, 70% in G2 and 10% in G3.
For each combination of the parameters, 10 instances are randomly generated.

5.2. Comparison of lower and upper bound versions

To compare the relative performance of the different versions of the upper bound procedures, we report results for
the LB − BFD and IT ER − BFD variants using LB1 only, because there was no difference in our final results when
one of the two other lower bounds was used. Moreover, we report the comparison results on instances of Set 2 only,
because both LB1 and the A − BFD heuristic solved to optimality all the instances of Set 1. We further discuss this
observation in the second part of the section.

Type/p 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0..50 0.55
1 1.2 1.17 1.3 1.42 1.45 1.39 1.5 1.63 1.81 1.85
2 2.5 2.57 2.61 2.61 2.61 2.68 2.83 3.04 3.33 3.94
3 1 0.97 1.07 1.24 1.43 1.55 1.64 2.03 2.66 3.12

Mean 1.6 1.57 1.66 1.76 1.83 1.87 1.99 2.23 2.6 2.97

Type/p 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1..00 Best
1 2.1 2.39 2.52 2.52 2.73 2.76 2.56 2.8 2.7 0.64
2 4.2 4.44 4.39 4.53 4.51 4.54 4.61 4.93 5.03 1.65
3 3.7 4.17 4.5 4.93 5.44 5.88 6.27 6.66 6.91 0.21

Mean 3.3 3.67 3.81 3.99 4.23 4.4 4.48 4.8 4.88 0.83

Table 1: Set 2: Mean optimality gaps (%) for the LB − BFD heuristic

Table 1 reports the optimality-gap performance of the LB − BFD heuristic while varying p, the percentage of
bins from the optimal solution of LB1 used to initialize the heuristic solution, from 10% to 100%. The first column
displays the item volume type, while Columns 2 to 19 report the mean percentage deviation of LB − BFD from the
optimal solutions for the various values of p. The best mean values appear to be obtained for 10% ≤ p ≤ 40%, but
no setting of this parameter seems to dominate the others. Computing A − BFD (or LB − BFD) requires less than
0.01 seconds CPU for the largest instances, however. In fact, computing LB1 together with all the solution obtained
by LB − BFD for the varying p requires less that 10−2 in the worst case (most of it is required to compute LB1). We
therefore computed a composite solution as the best solution among those with 10% ≤ p ≤ 40% and we report this
value in the last column. This composite implementation of the heuristic yields solutions that are less than 1% from
the optimum.

Type/k 2 3 4 5 6 7 8 9 10 Best
1 2.28 1.75 1.80 1.85 1.89 1.81 1.68 1.78 1.64 0.92
2 3.70 3.22 3.20 3.17 3.16 3.06 2.90 2.89 2.87 2.17
3 5.57 5.19 4.60 4.09 3.65 3.48 3.50 3.41 3.26 2.68

Mean 3.85 3.38 3.20 3.04 2.90 2.78 2.69 2.69 2.59 1.93

Table 2: Set 2: Mean optimality gaps (%) for the IT ER − BFD heuristic

Table 2 reports the mean optimality gaps obtained by the IT ER − BFD heuristic while varying the maximum
number of iterations k (Columns 2 to 10), as well as the composite solution (Column 12) built according to the same
idea described previously. The results indicate that IT ER−BFD has a worst behavior than LB−BFD, with an average
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optimality gap of about 2%. The computational time, although small (less than 0.1 seconds for the largest instances)
is also larger than for LB − BFD, due to the necessity to compute a knapsack problem at the end of each iteration.

Table 3 sums up the performance results of the lower and upper bound procedures introduced in this paper, together
with those of CompBFD, a composite heuristic selecting the best solution among those of the three upper bound
procedures. Columns 1 and 2 present the volume type and the number of items, respectively, while the following
columns display the mean optimality gaps for the seven procedures. The best settings, as reported in Tables 1 and 2,
were used for LB − BFD and IT ER − BFD, respectively.

The lower bound procedures are performing very well for instances of type 1 and 2, while the gap increases slightly
for instances of type 3. The latter are characterized by a peculiar item-to-bin volume relation, however. Indeed, the
minimum item volume is 50 and, thus, at most three items can be loaded into each bin type. The loading patterns for
each bin type are therefore polynomially limited, favoring column generation-based methods.

With respect to the upper bounds, the best mean results were obtained by the A − BFD and LB − BFD heuristics.
The most critical instances from the upper bound point of view are those of type 2, characterized by the presence of
medium-sized items (volumes in the interval 20 − 100). But, as often in numerical experiments, the means do not
tell the whole story. Thus, just considering the mean, IT ER − BFD is outperformed by the other two heuristics. An
instance-by-instance verification of the results shows, however, that IT ER− BFD performs better on the instances for
which A − BFD and LB − BFD yield their worst results. The upper bound procedures thus appear “complementary”
and, because their respective computational times are small, we propose to compute the three values and select the
best. The CompBFD computes this best result, and yields a mean optimality gap of 0.78% with a computation effort
of less than 0.1 seconds in the worst case.

Type n LB1 LB2 LB3 A − BFD LB − BFD IT ER − BFD CompBFD

25 0.21 0.21 0.21 1.41 1.41 1.88 1.28
50 0.02 0.02 0.02 0.95 0.95 1.50 0.93

1 100 0.00 0.00 0.00 0.49 0.49 0.60 0.45
200 0.00 0.00 0.00 0.32 0.27 0.39 0.25
500 0.00 0.00 0.00 0.10 0.10 0.25 0.09

Mean 0.05 0.05 0.05 0.66 0.64 0.92 0.60
25 1.14 1.08 1.08 2.13 1.92 2.66 1.64
50 0.29 0.29 0.29 1.93 1.81 2.45 1.76

2 100 0.05 0.05 0.05 1.84 1.78 1.79 1.59
200 0.00 0.00 0.00 1.51 1.51 1.94 1.43
500 0.00 0.00 0.00 1.47 1.26 2.03 1.24

Mean 0.30 0.28 0.28 1.78 1.65 2.17 1.53
25 3.08 1.81 1.65 0.14 0.14 1.10 0.14
50 1.86 1.43 1.39 0.28 0.28 1.54 0.27

3 100 1.57 1.44 1.44 0.20 0.20 3.05 0.20
200 0.87 0.86 0.86 0.33 0.33 3.72 0.33
500 0.85 0.85 0.85 0.09 0.09 3.99 0.09

Mean 1.64 1.28 1.23 0.21 0.21 2.68 0.2
Overall mean 0.66 0.54 0.52 0.88 0.83 1..93 0.78

Table 3: Set 2: Average optimality gaps (%) for the upper and lower bound procedures

5.3. Comparison of lower and upper bounds with state-of-the-art algorithms

In the second part of this computational analysis, we present a comparison between the results obtained by the
bounds we propose and the best results from the literature [4, 7]. The optimal solutions and the lower bound values
obtained by Correia et al. are taken from the literature [7], while the results of the the column generation of Monaci [4]
were obtained applying the proposed lower bound LCG, the VSBPP being a special case of the VCSBPP (the detailed
results of the original implementation are not available [4])
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The comparisons on the instances from Set 1 are not reported, because LB1 = A − BFD for all instances, i.e.,
all instances are solved to the optimum by using the proposed heuristic. We report in Table 4, however, the results
of the instances of Set 1 not solved to optimality in [7]. For each instance, we give in Columns 1-4, the instance
name, the number of bin types, the number of bins per type, and the number of items, respectively. The best-known
feasible solution reported in the literature is displayed in Column 5, while the values of LB1 and A−BFD are reported
in the last two columns. The results show that we obtained or improved (instance pbin 1000 2) all the best-known
solutions, which are now proved to be optimal. Notice that the column generation proposed by Monaci yielded a
mean optimality gap of 0.23% on the instances of this set [4]. The proposed lower and upper bound procedures are
thus performing very well on the instances introduced in [7], a conclusion even more impressive when one considers
that this performance is obtained in less than 0.01 CPU seconds in the worst case.

Instance m D n Best Known LB1 A − BFD

pbin 500 4 6 3 500 35313 35313 35313
pbin 500 4 6 3 500 35313 35313 35313
pbin 500 5 6 3 500 34089 34089 34089

pbin 1000 1 6 12 1000 68740 68740 68740
pbin 1000 2 6 7 1000 69345 68828 68828
pbin 1000 3 6 12 1000 69964 69964 69964
pbin 1000 4 6 7 1000 69121 69121 69121
pbin 1000 1 12 6 1000 72001 72001 72001
pbin 1000 2 12 6 1000 72160 72160 72160
pbin 1000 3 12 6 1000 73160 73160 73160

Table 4: Set 1: New optimal solutions

Table 5 summarizes the gaps (in %) from the optimal solutions yielded by the proposed lower bounds on instances
in Set 2. The first and second columns report the volume-generation type and the number of items, respectively. The
following columns report the mean gaps over ten instances obtained by the lower bounds LBM by Monaci [4], LBC by
Correia et al. [7], and LB1, LB2, and LB3 proposed in this paper. The last row of each instance type reports the mean
deviations from the optimal values over all instances of that type.

The best performance is offered by LBC , but the application of this procedure is limited by the size of the MIP
models involved. Thus, for example, it could not address instances with 500 items while, for the other instances, it
required 300 CPU seconds on average and up to 3000 CPU seconds for the largest instances (200 items) it addressed,
on a 2.4 GhZ Pentium IV workstation.

With respect to the other bounds, one observes that LB1, LB2, and LB3 performed better than LM on instances
of type 1, characterized by item volumes in a broad interval ([1; 100]), and on the larger instances of type 2. As
discussed earlier on, the particular item-to-bin volume relation characterizing the other instances, favors column
generation-based procedures and heavily penalizes the proposed lower bounds.

The column generation method of [4] is quite effective. Thus, an average of 2 CPU seconds were required for
instances with 500 items, for which an average of 45 columns were generated and, thus, 45 knapsack problems
(plus the corresponding LPs) were solved. A more in-depth analysis of the performances of LBM shows that this
approach achieves best results on instances of type 3, characterized by the presence of large items resulting in the
impossibility to load more than 2 items in the smallest bin. Moreover, the instances for which LBM performs best are
also characterized by a small number of items (25 and 50).. Consequently, such instances accept a small number of
feasible patterns, which makes column generation based lower bounds efficient and accurate. Such instances are not
representative of a large gamut of shipping and logistics applications, however, which makes LBM less interesting as
a general problem-solving tool.

The lower bound procedures we propose are the most effective, however, requiring to solve only one knapsack
instance for LB1 and at most 6 instances for LB2, with a worst case of 0.01 seconds. Actually, LB1 achieves a
performance of over 99%, compared to the other procedures, in a negligible computational time. This identifies it as
a good candidate to rapidly obtain very good solutions to problem instances in a broad range of situations, and for
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Type n LBC LBM LB1 LB2 LB3

25 0,00 0,38 0,21 0,21 0,21
50 0,00 0,19 0,02 0,02 0,02

1 100 0,00 0,08 0,00 0,00 0,00
200 0,00 0,05 0,00 0,00 0,00
500 N/A 0,02 0,00 0,00 0,00

Average 0,00 0,14 0,05 0,05 0,05
25 0,00 0,22 1,14 1,08 1,08
50 0,00 0,14 0,29 0,29 0,29

2 100 0,00 0,07 0,05 0,05 0,05
200 0,00 0,03 0,00 0,00 0,00
500 N/A 0,02 0,00 0,00 0,00

Average 0,00 0,09 0,30 0,28 0,28
25 0,00 0,09 3,08 1,81 1,65
50 0,00 0,10 1,86 1,43 1,39

3 100 0,00 0,05 1,57 1,44 1,44
200 0,00 0,03 0,87 0,86 0,86
500 N/A 5,02 0,85 0,85 0,85

Average 0,00 1,06 1,64 1,28 1,23

Table 5: Set 2: Lower bound optimality gap (%) comparison

use in more complex problem-solving settings, e.g., simulations and optimization frameworks, where the VCSBPP
appears as a subproblem in meta-heuristics or Branch & Bound schemes.

5.4. Analysis of the bin cost-volume relationships

The previous comparative analysis of the performance of the proposed lower and upper bounds demonstrated their
efficiency and accuracy on the instances of sets 1 and 2. These instances present particular characteristics in terms of
bin selection costs, which are very tightly correlated to the bin volumes. The goal of of this part of the computational
study is to investigate the impact on the behavior of the methods we propose of different problem characteristics, in
particular, the correlations between the costs and volumes of the bins.

IT BIN LB1 LBCG

T1 SC 0.33 0.44
LC 0.78 1.36
R 1.17 1.46

T2 SC 0.53 0.61
LC 0.58 1.29
R 1.35 1.61

T3 SC 0.51 0.60
LC 0.49 1.16
R 1.31 1.63

Table 6: Gaps (%) of LB1 and LBCG relative to CompBFD

Table 6 displays the comparative results of the lower bounds LB1 and LBCG relative to those of the CompBFD

heuristic. We do not report the results of bounds LB2 and LB3 because their gaps relative to LB1 are small and do not
change the results of the analysis. We report in Columns 1 and 2 the bin selection cost and the item distribution type.
Columns 3 and 4 display the mean gap between LB1 and LBCG with respect to CompBFD, respectively, computed
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as (UB − LB)/LB. Each cell gives the mean gap over the 40 instances characterized by the same bin cost - volume
combination.

The results show that LB1 displays the best performance for all groups of instances. This is not surprising, column
generation approaches being more effective when the number of possible equivalent columns (item loading patterns)
is somewhat limited, which holds true for Set 2, but not for the instances of Set 3 used in this experiment. The overall
mean gap is about 1% in the worst case. The instances with the highest gap are in set R, characterized by a low
correlation between volume and cost of the bins. No difference in solution quality can be noticed while changing the
item volume type. When the mix of the item sizes changes, the gap remains almost constant for the three distributions.

An interesting question is whether the gap is mainly given by the lower or the upper bounds. To address this issue,
and inspired by the studies in [15] on the instances of Set 2 where the column generation yielded the optimal patterns
for the majority of instances, we defined UBCG, an upper bound procedure that starts from the model (17)-(20) with
the patterns identified while computing LBCG. All the instances of Set 3 were thus solved to optimality using the
CPLEX 12.1 solver. We then computed the gaps of CompBFD and UBCG with respect to LB1.

We do not report the detailed results for CompBFD and UBCG in order not to overload the paper. Globally, however,
the solution found by UBCG is equal to that of CompBFD in 27 instances over 360, reducing the gap with respect to
LB1 from 0.60% to 0.59%. We thus infer that the results of CompBFD and UBCG are generally “close” and, thus, even
though no formal proof of the optimality of the solutions CompBFD was obtained, these comparisons suggest that the
gap is mainly due to the lower bound LB1.

IT BIN USED SAT
T1 SC 2.4 0.1

LC 1.8 0.3
R 4.5 1.7

T2 SC 2.3 0.2
LC 2.0 0.4
R 4.5 1.5

T3 SC 2.1 0.2
LC 1.9 0.3
R 4.6 1.9

Table 7: Number of bin types used and saturated

Another interesting issue is related to the number of bin types used in the final solution, relative to variations in
the correlation between the selection costs and the volumes of the bin types. Table 7 displays this characteristic of the
solutions produced by CompBFD. Columns 1 and 2 report the bin cost and the item distribution types, respectively,
while Columns 3 and 4 display the mean number of bin types used and saturated, where a bin type is considered
saturated if all the bins belonging to that type are used in the given solution. As indicated by these results, the number
of bin types used is affected by the bin cost distribution relative to the bin volume. Indeed, while the number of used
and saturated bin types is almost the same for types S C and LC, the mix changes a lot for the instances in R, when
several bin types are characterized by the same costs but different volumes. It is also noteworthy that the number
of saturated bin types increases with the variation in cost versus volume relation, indicating the capability of the
CompBFD procedure to select bins with a small cost per unit of volume.

Most previous analyzes were performed with respect to computing times and solution quality. In this respect,
LB1 displays an excellent behavior, its computational effort being determined by the resolution of a single Knapsack
instance. We may thus present a comparative analysis of LB1 and LBCG based on the number of columns the methods
generate, a measure that may be used to predict their behavior for larger problem instances. As indicated earlier on, the
generation of each column produced by LBCG requires solving a Knapsack instance, the overall computational effort
of the procedure being dominated by the resolution of these instances. According to our results, the main parameter
affecting the number of columns generated by LBCG is the number of items. Figure 1 thus reports the relationship
between the number of items and the number of columns generated by LBCG. It should be noticed that, already for
instances with 500 items, the procedure generates about 2000 columns, number that raises to about 7000 for 1000-
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Figure 1: Columns generated by LBCG with respect to the number of items

item instances. This implies a computational effort for LBCG three order of magnitude larger than that of LB1 and
points to the interest of the heuristics proposed in this paper to address large instances of the Variable Cost and Size
Bin Packing Problem.

It is revealing to analyze these results in the light of the very small number of columns, 46, needed by LBM for
the instances in Set 2. Recall that LBM is equivalent to the lower bound LBCG for the VSBPP problem. Recall also
that the instances of Set 2 are characterized by important proportions of large items, which reduces considerably the
number of feasible patterns and, thus, of generated columns, and makes them less representative of actual applications.
Focusing then on the results of the various procedures on the instances of Sets 1 and 3, one may conclude that the
proposed methodology, LB1 in particular, is both more efficient and more accurate than a column generation-based
approach, such as LBM and LBCG, for large-sized logistics applications.

6. Conclusion

We introduced the Variable Cost and Size Bin Packing Problem, an extension of the classical Variable Size Bin
Packing Problem, characterized by both physical and economical attributes, bin volumes (capacity) and selection fixed
costs, in particular. We proposed a solution methodology based on new upper and lower bounds for the VCSBPP.
These procedures proved to be extremely efficient on a large set of problem instances with up to 1000 items and
varying correlations between the bin volumes and selection costs. Indeed, compared to state-of-the-art methods, the
proposed methodology yielded solution with an accuracy of more than 99%, with a computational effort several order
of magnitude smaller.

We also presented, for the first time in the associated literature, a comprehensive study of the impact on the
solution-method performance of the correlation between the cost and volume of the bin types, as well as of how the
structure of the solutions changes with it. The results show that, indeed, this correlation matters and that the solution
methods we propose, which are unbiased toward particular correlation values, offer a better performance.
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Annex - Illustration of relationships between lower bounds

As stated in Section 3, no dominance relation may be defined between LB2 and LB3. This is an illustration of this
statement through two instances for which LB2 displays a better behavior than LB3 and vice versa, respectively.

Two bin types are defined for both instances: 12 bins with cost 1 and volume 100 for type 1 and 1 bin with cost 2
and volume 105 for type 2. The two instances have the same number of items but differ in the characteristics of some
of them. In instance I1, we have 10 items with volume 60, 10 items with volume 30, and 2 items with volume 50. The
mix for instance I2 is the same except for the last group where the items with volume 50 are replaced by items with
volume 45.

It is clear that, for both instances, bins of type 2 will not be included in the optimal solution or any lower bound,
as bins of type 1 are less costly and offer sufficient capacity to accommodate all the items.

In I1, LB2 is not able to decrease the best filling of bins of type 1, due to the presence of the two items with volume
50, while LB3 puts ti = 10 for all the items with volume equal to 60. Thus their volume changes from 60 to 70 and the
values of the lower bounds are LB2 = 10 and LB3 = 11. Performing the same computations for I2, we have that for
LB2 the best filling ratio of bins of type 1 decreases from 100 to 90, yielding LB2 = 11. In this case LB3 is not able
to improve LB1. In fact, for any item, we are able to find a combination with the remaining items that fills the bin of
type 2. Thus ti = 0 for all the items and LB3 = LB1 = 10.
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