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Abstract 

We present a worst case analysis for the Generalized Bin Packing Problem, a novel packing problem arising in many 

Transportation and Logistics settings and characterized by multiple item and bin attributes and by the joint presence of both 

compulsory and non-compulsory items. As a preliminary worst case analysis has recently been proposed in the literature, we 

extend this study by proposing semi-online and offline algorithms, extending the well known First Fit Decreasing and Best Fit 

Decreasing heuristics for the Bin Packing Problem. In particular, we show that knowing part of the instance or the whole 

instance is not enough for computing worst case ratio bounds. 
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1. Introduction 

Packing problems in Transportation and Logistics are often more complex than the ones traditionally present 

in the literature. In particular, it is quite normal to face situations where the nature of the problem cannot be 

reduced to a single packing problem. For this reason, in recent years the research community started to think to 

new multi-attribute and multidimensional extensions of packing problems, as already done in the VRP field 

(Crainic et al. 2008). One of the latest attempts in the direction of the generalization of packing problems is the so 

called Generalized Bin Packing Problem (GBPP). Given a set of containers, different in cost and volume, and a 

set of items, characterized by volume, profit and the compulsory attribute, i.e. the attribute stating if the model is 

obliged to load an item or whether it can decide according to an economic criterion, the GBPP aims to find the 

subset of bins and the subset of non-compulsory items such that all the items (all the compulsory and the chosen 

non-compulsory ones) are accommodated into the bins and the overall cost, given by the cost for using the bins 

minus the profit associated to the items is minimized. 

As shown in Baldi et al. (2012a), the GBPP is able to describe new operational settings in Transportation and 

Logistics characterized by the joint optimization of company revenues and transportation costs and by the 

presence of different 3PL or container types. Moreover, in multi-modal and cross-continental transportation, 

freight is not shipped directly from origins to destinations but calls at intermediate platforms named 

transshipment facilities. At these facilities freight consolidation and handling operations are performed and, 

usually, freight is moved to another transportation vector. However, a portion of the freight might wait to proceed 

its journey to destination, depending on the overall trade-off between freight profits and shipping costs. The 

GBPP is the first packing problem able to model this setting. Additionally, the GBPP copes with the majority of 

the traditional packing problems, ranging from Knapsack to Bin Packing and to different variants of Multiple 

Knapsack and Cutting Stock problems.  

Baldi et al. (2012a, b) proposed both bounds and exact and approximate methodologies in order to address this 

problem. Moreover, a preliminary worst case analysis has recently been proposed (Baldi et al., 2013). The GBPP 

is rooted on  earlier bin packing problems which are the eldest Bin Packing Problem (BPP), the Variable Sized 

Bin Packing Problem (VSBPP), and the most recent Variable Cost and Size Bin Packing Problem (VCSBPP). 

We briefly recall here these problems. 

The BPP was first investigated by Ullman, J. D. (1971) and Garey et al. (1972). Johnson (1973) proposed the 

Next Fit (NF) algorithm and proved that its performance ratio is 2. Johnson et al. (1974) showed that the First Fit 

(FF) and the Best Fit (BF) algorithms have both performance ratios of 17/10. Moreover, they computed a worst 

case ratio bound for the First Fit Decreasing (FFD) and Best Fit Decreasing (BFD) bound equal to 11/9. de la 

Vega, W. F. & Lueker, G. S. (1981) presented a polynomial time approximation scheme, Seiden (2002) studied 

the online variant, and Crainic et al. (2007a, b) introduced fast lower bounds and conducted an asymptotic worst-

case analysis on BPP lower bounds. Li & Chen (2006) studied the variant where all bins have the same capacity 

but are characterized by a non-decreasing concave cost function of the bin utilization. The VSBPP was 

introduced by Friesen & Langston (1986). The authors provided one online and two offline algorithms and 

proved that their worst-case ratios are 2, 3/2, and 4/3, respectively. Murgolo (1987) presented an approximation 

scheme and Kang & Park (2003) provided two offline algorithms and showed that their asymptotic worst-case 

ratio is equal to 3/2. Crainic et al. (2011) proposed accurate bounds for the VCSBPP. For this problem, Epstein, 

L. & Levin, A. (2008, 2012) provided an APTAS and an AFPTAS. 

Although Baldi et al. (2013) performed a worst case analysis for the GBPP, this study is not complete because 

only online algorithms were considered. In this paper, we extend the work of Baldi et al. (2013) by also 

considering semi-online and offline settings. These two settings often arise in Transportation and Logistics where 

orders (i.e., the items) are not known a priori but arrive along time to a shipping company. In many 

circumstances, shipping companies do not immediately ship the already received freight (coming from customers 

and leading to final destinations) but decide to wait in order to receive more freight to dispatch with a unique 
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shipment.  The semi-online setting of the GBPP also arises in freight transportation where freight is shipped 

through means of transport with cadenced departure times. 

We show that, being the GBPP a richer setting due to the presence of multiple attributes and both compulsory 

and non-compulsory items, it is impossible to guarantee a worst case ratio. 

This paper is organized as follows. In Section 2, we present in a  more formal way the problem and the 

nomenclature. In Section 3, we present our worst case analysis results, while conclusions and future 

developments are discussed in Section 4. 

2. Problem setting 

In the GBPP, a set of items with volume and profit has to be loaded into proper bins characterized by capacity 

and cost. Moreover, items can be compulsory and non-compulsory. Whilst compulsory items must be taken, non-

compulsory items might not be loaded if this is beneficial. Aim of the GBPP is to minimize the overall cost, 

given by the difference between the costs of the selected bins and the profits of the taken non-compulsory items. 

We name I the set of items and J the set of bins. We also name I
C
 and I

NC
 the set of compulsory and non-

compulsory items respectively. Clearly, I
C I

NC
 = I and I

C I
NC

 = . Let wi and pi be respectively the volume 

and the profit of item i  I and Wj and Cj respectively the capacity and the cost of bin j  J. As for the VCSBPP, 

bins are classified into bin types i.e., bins belonging to the same bin type have the same capacity and cost. We 

name T the set of bin types and Wt and Ct the capacity and the cost of bins belonging to bin type t  T. Finally, 

the indicator function : J  T reveals the type (j)  T of bin j  J. 

3. Worst case results 

Let   be a minimization problem, ɪ    be an instance of the problem , A be an algorithm, A(ɪ) the value of 

the solution yielded by the algorithm A when applied to instance ɪ  , and OPT(ɪ) be the optimum of instance ɪ 

 , then the asymptotic worst-case ratio is the smallest positive R such that for any instance ɪ of problem   we 

have that 

 

A(ɪ) ≤ R OPT(ɪ) + O(1)    (1) 

 

Similarly, the absolute worst-case ratio is the smallest positive  such that the for any instance ɪ of problem  

we have that 

 

A(ɪ) ≤   OPT(ɪ)   (2) 

 

We prove a lemma to which we will refer within the proofs of the following theorems. In particular, we show 

that, due to the presence of non-compulsory items, there are instances where the optimum and the value yielded 

by an algorithm differ by a linear term which, in principle, can be arbitrarily large. In Lemma 1, we show that it 

is impossible to guarantee both an absolute and an asymptotic worst case ratio in these circumstances. 

 

 

Lemma 1 

Given a minimization problem P and an algorithm A, let ɪ(m, n) P be an instance of the problem with m and 

n non-negative integers such that A(ɪ(m, n)) = αm and OPT(ɪ(m, n)) = βm - γn, with α, β, γ > 0. Then, it is 

impossible to compute the asymptotic and the absolute worst case ratio for algorithm A. 

 

Proof 
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If there exists an asymptotic worst case ratio then, according to (1), we have to find proper R and O(1) such 

that  

 

αm ≤ R(βm - γn) + O(1).     (3) 

If we consider the particular instance ɪ(0, n), then (3) becomes 

 

0 ≤ -Rγn + O(1).  (4) 

 

Since n can be arbitrarily large and γ > 0, then, independently of the constant O(1), it must be R ≤ 0. Vice 

versa, considering instance ɪ(m, 0), (3) becomes 

 

αm ≤ Rβm + O(1).     (5) 

 

Since m can be arbitrarily large and β > 0, then, independently of the constant O(1), it must be R ≥ α/β. Since, 

by hypothesis, both α and β are positive, then their ratio is a positive number. Hence, requiring R ≥ α/β 

contradicts the previous requirement that R ≤ 0. Therefore, it is impossible to compute the asymptotic worst case 

ratio. Since such a result holds independently of constant O(1) and according to (2) the absolute worst case ratio 

is the particular case when O(1) = 0, then it is also impossible to compute the absolute worst case ratio. 

 

Lemma 1 will be used in Theorem 1 to prove that no worst case ratio can be computed for the offline FFD and 

BFD algorithms. These are well known heuristics, initially conceived for the BPP (Garey, 1972) and recently 

adapted to the GBPP by Baldi et al. (2012). To make this article self contained, we briefly recall here the FFD 

and the BFD heuristics adapted by Baldi et al. (2012) to the GBPP. Their pseudo-code is reported in Table 1. 

Both heuristics work with three lists: the Sorted Items List (SIL), the Sorted Bins List (SBL), and the list of 

selected bins (S). The SIL and the SBL lists are built according to a given sorting criterion. Baldi et al. (2012) 

defined four sorting criteria. For each of them, the compulsory items are sorted at the top of the SIL list by non-

increasing volume. The four strategies are: 

 

 Sorting 1. Bins: Non-decreasing C(j)/ W(j) and non-decreasing volumes W(j); Non-compulsory items: Non-

increasing pi/wi and non-increasing volumes wi 

 

 Sorting 2. Bins: Non-decreasing C(j)/ W(j) and non-decreasing volumes W(j); Non-compulsory items: Non-

increasing volumes wi  and non-increasing pi/wi 

 

 Sorting 3. Bins: Non-decreasing C(j)/ W(j) and non-increasing volumes W(j); Non-compulsory items: Non-

increasing pi/wi and non-increasing volumes wi 

 

 Sorting 4. Bins: Non-decreasing C(j)/ W(j) and non-increasing volumes W(j); Non-compulsory items: Non-

increasing volumes wi and non-increasing pi/wi. 

 

Finally, S is the list of the selected bins making up the solution yielded by the heuristics. Initially, all the items 

in SIL are unpacked and the list must be scanned. For each item i encountered when scanning SIL, both heuristics 

try to accommodate i into the already selected bins in S. The differences between the two heuristics is how such a 

bin, if exists, is determined. The FFD heuristics assigns item i to the first bin (if exists) among those in S able to 

accommodate it. The BFD heuristics assigns item i to the best bin (if exists) among those in S able to 

accommodate it. The best bin is the one with the least residual space after placing item i. If item i cannot be 

placed among the already selected bins in S (and this happens when none of them has enough residual space to 
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accommodate the item), then a new bin b must be selected from the list of available bins SBL and added to S. If i 

is a compulsory item, then b is the first bin in SBL\S able to contain it. Once bin b has been selected from list SBL 

and added to list S, the compulsory item i is loaded into bin b. If item i is a non-compulsory item, then it is loaded 

into a new bin only if it is profitable, that is, if there exists, among the bins in SBL\S, a bin b such that the profit 

of item i plus the profits of the succeeding non-compulsory items in SIL able to be accommodated into bin b 

together with item i is greater than the cost of bin b. The search of bin b is performed by the PROFITABLE function, 

which pseudo-code is reported in Table 2. If there exists a profitable bin b for the non-compulsory item i, then 

bin b is added to the list of the selected bins S and item i is loaded into bin b. After the whole SIL list has been 

scanned, the POST-OPTIMIZATION function (which pseudo-code is reported in Table 3) checks whether, for any 

selected bin j  S making up the final solution, there exists, among the non-selected bins in SBL\S, a more 

convenient bin k. This happens when bin k can accommodate all the items which have been loaded into bin j and 

its cost is less than the cost of bin j. If such a swap is possible, then items into bin j are moved to bin k, with a 

loss (recall that we are dealing with a minimization problem) of C(j) - C(k). 

Table 1. Main procedure of FFD and BFD heuristics 

S:=  

for all i SIL do 

Identify the bin b S into which item i can be loaded 

 FFD: the first bin with enough empty volume to accommodate item i 

 BFD: the bin with the minimum free volume after loading item i 

if b exists then 

Load item i into bin b 

else 

if i IC then 

Identify the first bin b  SBL\S such that wi ≤ W(b) 

Load item i into bin b 

S:= S  {b} 

else 

Identify the bin b  SBL\S such that PROFITABLE(i, b) returns TRUE 

if b exists then 

Load item i into bin b 

S:= S  {b} 

else 

reject item i 

POST-OPTIMIZATION 

 

Table 2. PROFITABLE(i, b) 

SILi: sublist of SIL starting from the item i 

Load item i into bin b and initialize the bin profit Pb := pi 

for all l  SILi do 
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if item l can be loaded into bin b then 

Load item l into bin b and update the bin profit Pb := Pb + pl 

if Pb > C(b) then 

return TRUE 

else 

return FALSE 

 

Table 3. POST-OPTIMIZATION 

for all j  S do 

for all k  SBL\S do 

Uj:= ∑i loaded into j wi 

if W(k) ≥ Uj and C(k) < C(j) then 

Move all the items from j to k 

S:= S\{j}  {k}  

 

In Theorem 1, we prove a very strong result: it is impossible to guarantee asymptotic and absolute worst case 

ratios for the  FFD and BFD heuristics when applied to the GBPP. 

 

Theorem 1  

It is impossible to compute the asymptotic and the absolute worst case ratios for the FFD and BFD heuristics 

when applied to the GBPP. 

 

Proof 

Consider instance ɪ(m, n) consisting of two bin types (T = {1, 2}) with W1 = W, C1 = C, W2 = 72/75 W, C2 = 

49/50 C, and the set of items I is split into four subsets, A, B, C, and D, with |A| = m, |B| = 4n,  |C| = 6n, and |D| 

= 2n. An item which belongs to subset X  {A, B, C, D} is called a type X item. Let type A items be compulsory 

with wA = 72/75 W, type B items be non-compulsory with wB = 18/75 W, pB = 22/100 C, and type C items be non-

compulsory with  wC = 25/75 W, pC = 32/100 C, and let type D items be non-compulsory with wD = 39/75 W and 

pD = 57/100 C. It is easy to verify that the optimal solution consists of m type 2 bins each containing one type A 

compulsory item, and 2n  type 1 bins each containing two type B non-compulsory items and one type D non-

compulsory item: 

 

OPT(ɪ(m, n)) = mC2 + 2n(C1 – 2pB - pD) = 49/50 mC – 1/50 nC     (6) 

Applying any among the four sorting rules listed before, FFD and BFD use type 1 bins and pack first all the 

type A compulsory items, then all the type D non-compulsory items, all the type C non-compulsory items, and 

finally all the type B non-compulsory items. After packing all the type A compulsory items, each into type 1 bin, 

type D items must be accommodated. Since only one type D item can be accommodated into one type 1 bin, the 

PROFITABLE procedure scans the succeeding items: those of type C. Only one type C item can be accommodated 

with one type D item into one type 1 bin, say b. The level of bin b is wC + wD = 64/75 W and its residual space is 

not enough to load any type B item. The overall profit of bin b is Pb = pC + pD = 89/100 C < C1. Therefore, all 

type D items will be rejected from algorithms FFD and BFD. When scanning type C items, at most three of them 

can be accommodated into one type 1 bin because 3wC = W = W1 but 3pC = 96/100 C < C1; therefore the 
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PROFITABLE procedure rejects all the type C items in the list SIL with two type C succeeding items. In fact, this is 

not the case for the next to last and for the last type C items in the list SIL. More precisely, when the next to last 

type C compulsory item must be accommodated, the PROFITABLE procedure computes the overall profit Pb taking 

into account that there are two more type C items and then type B items follow in the list. Loading two type C 

items into one type 1 bin, there is room only for one more type B item (because 2wC + wB = 68/75 W < W1, but 

2wC + 2 wB = 86/75 W > W1). The overall profit Pb is then 2pC + pB = 86/100 C < C1; therefore even the next to 

last type C bin will be discarded. Even the last type C item will be discarded by the PROFITABLE procedure 

because it can be loaded with at most two type B items, but pC + 2pB = 76/100 C < C1. Finally, all the type B 

items will be discarded because at most 4 of them can be loaded into one type 1 bin but 4pB = 88/100 C < C1. 

Therefore, 

 

FFD(ɪ(m, n)) = BFD(ɪ(m, n)) = mC1 = mC   (7) 

 

The theorem holds applying Lemma 1 with α = C, β = 49/50 C, and γ = C/50. 

 

 

We propose two semi-online settings where items arriving online are not directly packed into bins but are 

placed into a buffer. In the first setting, the buffer has a capacity of k > 1 items. When the buffer is full, the items 

in the buffer are loaded into the already open bins or, if necessary, into new bins. For this setting, we propose two 

semi-online algorithms named First Fit with Buffer and Rejections (FFBR) and Best Fit with Buffer and 

Rejections (BFBR). In the FFBR, each item is accommodated according to its arrival order and to a First Fit 

policy, i.e., it is loaded (if possible) into the first open bin able to contain it, otherwise a new bin is selected from 

a list of bins sorted according to a given criterion. In the BFBR, each item is accommodated according to its 

arrival order and to a Best Fit policy, i.e., it is loaded (if possible) into the best open bin able to contain it, 

otherwise a new bin is selected from a list of bins sorted according to a given criterion. As for the aforementioned 

BFD algorithm, the best bin is that bin with the least residual space after placing an item. At the end of the 

process, bins with an overall profit less than their cost will be rejected. In Theorem 2, we prove that even 

retaining some items into a buffer is not enough to guarantee an asymptotic and an absolute worst case ratio. In 

the second setting, the buffer has a time capacity of . When a time interval of length  has elapsed, the items 

arrived within this interval are loaded into the already open bins or, if necessary, into new bins. At the end of the 

process, bins with an overall profit less than their cost will be rejected. We name First Fit with Time Buffer and 

Rejections (FFTBR) and Best Fit with Time Buffer and Rejections (BFTBR) the natural extension of algorithms 

FFBR and BFBR to this setting. 

In Theorem 3, we prove that even for algorithms FFTBR and BFTBR it is impossible to guarantee asymptotic 

and absolute worst case ratios. 

 

Theorem 2 

It is impossible to compute the asymptotic and absolute worst case ratio for algorithms FFBR and BFBR when 

applied to the GBPP. 

 

Proof 

Given the size k > 1 of the buffer, consider instance ɪ
 k
(m, n) consisting of one bin type with capacity W and 

cost C, and where the set of items I is split into three subsets, A, B, and C, with |A| = 2mk, |B| = 2nk, and |C| = 

2nk(k - 1). Let type A items be compulsory with wA = W, let type B items be non-compulsory with wB = W/k, pB = 

C/k + , and let type C items be non-compulsory with wC = W/k, and pC = C/k - 2/(k – 1), with  > 0 small 

enough, and C > 2k. Note that at most k type B items can be accommodated into one bin. Also, at most k type C 

items can be accommodated into one bin. We have that kpB = C + k > C and kpC = C - 2k/(k – 1) < C. 
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Consequently, the optimum consists of 2mk bins each containing one type A compulsory item and 2n bins each 

containing k type B non-compulsory items: 

 

OPT(ɪ
 k
(m, n)) = 2mkC + 2n(C - kpB) = 2mkC - 2nk   (8) 

 

Consider the following sequence of items of instance ɪ
k
(m, n) for algorithm FFBR: 

 

  







  







 times2

 times1 times1

 times2

 times times

nk

kk

m

kk

iiiiiiiiii



CCBCCBAAAA   (9) 

 

Then, applying FFBR or BFBR to sequence (9), we have 2mk bins each containing one type A compulsory 

item and 2nk bins each containing one type B non-compulsory item and k - 1 type C non-compulsory items. 

However, bins containing non-compulsory items will be rejected because pB + (k - 1)pC =  C -  < C = C1. 

Therefore we have: 

 

FFBR(ɪ
 k
(m, n)) = BFBR(ɪ

 k
(m, n)) = 2mkC      (9) 

 

and the theorem holds applying Lemma 1 with α = 2kC, β = 2kC, and γ = 2k 

 

In Theorem 3, we prove that the same conclusion holds even for algorithm FFTBR and BFTBR. 

 

Theorem 3 

It is impossible to compute the asymptotic and absolute worst case ratio for algorithms FFTBR and BFTBR 

when applied to the GBPP. 

 

Proof 

The theorem trivially holds considering instance ɪ
 k
(m, n) in Theorem 2 where k items fall within each time-

slot of length . 

 

4. Conclusion 

We presented a worst case analysis for the Generalized Bin Packing Problem (GBPP), a novel packing 

problem providing contributions in Transportation and Logistics thanks to multiple bin and item attributes and to 

the joint presence of compulsory and non-compulsory items. We proposed offline and semi-online algorithms 

and we showed that, being the GBPP a much richer setting than the previous bin packing problems, it is 

impossible to compute worst case performance ratios. 
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