6 research outputs found

    Trajectories through temporal networks

    Get PDF
    What do football passes and financial transactions have in common? Both are networked walk processes that we can observe, where records take the form of timestamped events that move something tangible from one node to another. Here we propose an approach to analyze this type of data that extracts the actual trajectories taken by the tangible items involved. The main advantage of analyzing the resulting trajectories compared to using, e.g., existing temporal network analysis techniques, is that sequential, temporal, and domain-specific aspects of the process are respected and retained. As a result, the approach lets us produce contextually-relevant insights. Demonstrating the usefulness of this technique, we consider passing play within association football matches (an unweighted process) and e-money transacted within a mobile money system (a weighted process). Proponents and providers of mobile money care to know how these systems are used-using trajectory extraction we find that 73% of e-money was used for stand-alone tasks and only 21.7% of account holders built up substantial savings at some point during a 6-month period. Coaches of football teams and sports analysts are interested in strategies of play that are advantageous. Trajectory extraction allows us to replicate classic results from sports science on data from the 2018 FIFA World Cup. Moreover, we are able to distinguish teams that consistently exhibited complex, multi-player dynamics of play during the 2017-2018 club season using ball passing trajectories, coincidentally identifying the winners of the five most competitive first-tier domestic leagues in Europe.Algorithms and the Foundations of Software technolog

    Efficient limited-time reachability estimation in temporal networks

    No full text
    Time-limited states characterize many dynamical processes on networks: disease-infected individuals recover after some time, people forget news spreading on social networks, or passengers may not wait forever for a connection. These dynamics can be described as limited-waiting-time processes, and they are particularly important for systems modeled as temporal networks. These processes have been studied via simulations, which is equivalent to repeatedly finding all limited-waiting-time temporal paths from a source node and time. We propose a method yielding an orders-of-magnitude more efficient way of tracking the reachability of such temporal paths. Our method gives simultaneous estimates of the in- or out-reachability (with any chosen waiting-time limit) from every possible starting point and time. It works on very large temporal networks with hundreds of millions of events on current commodity computing hardware. This opens up the possibility to analyze reachability and dynamics of spreading processes on large temporal networks in completely new ways. For example, one can now compute centralities based on global reachability for all events or can find with high probability the infected node and time, which would lead to the largest epidemic outbreak.Peer reviewe
    corecore