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Quantifying agent impacts 
on contact sequences in social 
interactions
Mark M. Dekker1,2*, Tessa F. Blanken3, Fabian Dablander3, Jiamin Ou1,4, Denny Borsboom3 & 
Debabrata Panja1,2

Human social behavior plays a crucial role in how pathogens like SARS-CoV-2 or fake news spread in 
a population. Social interactions determine the contact network among individuals, while spreading, 
requiring individual-to-individual transmission, takes place on top of the network. Studying the 
topological aspects of a contact network, therefore, not only has the potential of leading to valuable 
insights into how the behavior of individuals impacts spreading phenomena, but it may also open 
up possibilities for devising effective behavioral interventions. Because of the temporal nature of 
interactions—since the topology of the network, containing who is in contact with whom, when, for 
how long, and in which precise sequence, varies (rapidly) in time—analyzing them requires developing 
network methods and metrics that respect temporal variability, in contrast to those developed for 
static (i.e., time-invariant) networks. Here, by means of event mapping, we propose a method to 
quantify how quickly agents mingle by transforming temporal network data of agent contacts. We 
define a novel measure called contact sequence centrality, which quantifies the impact of an individual 
on the contact sequences, reflecting the individual’s behavioral potential for spreading. Comparing 
contact sequence centrality across agents allows for ranking the impact of agents and identifying 
potential ‘behavioral super-spreaders’. The method is applied to social interaction data collected at 
an art fair in Amsterdam. We relate the measure to the existing network metrics, both temporal and 
static, and find that (mostly at longer time scales) traditional metrics lose their resemblance to contact 
sequence centrality. Our work highlights the importance of accounting for the sequential nature of 
contacts when analyzing social interactions.

Human behavior plays a central role in generating patterns of interaction that allow for the spreading of a great 
variety of entities—from  rumors1 to  viruses2 to  memes3. Most recently, the importance of such patterns of 
interaction has been borne out by the COVID-19 crisis. A virus like SARS-CoV-2, which caused the COVID-
19 pandemic, spreads through physical contact, or through aerosols that have a finite range; for the virus to be 
transmitted, people will have to have make close contacts with each other. It is for this reason that behavioral 
interventions, aiming to break the chains of close human contacts, were our only weapon against COVID-19 for 
the better part of 2020 and remain so until vaccine coverage is sufficient.

As such, the pandemic underscored the need for better models and measures of human behavior and the 
contact patterns it generates. On the technological side, recording individual-level contacts through wearable 
sensor technology has recently seen considerable development that render the study of contact patterns scien-
tifically  feasible4–6. For example, albeit still imperfect, sensor accuracy is beginning to approach the level and 
scale needed to inform epidemiology and to model  interventions7–9. In contrast, on the methodological side, 
we still lack adequate tools to assess, represent, and model the myriad ways in which human behavior generates 
patterns of individual-level contacts. This limits progress in many disciplines that require such information, but 
especially hampers progress along the behavior-epidemiology interface that is so important in improving our 
preparedness to deal with the current and future pandemics. This paper develops methodologies that can begin 
to fill this gap, by exploiting connections among improved empirical assessments of contact patterns and novel 
quantitative metrics that are sufficiently advanced to analyze behavioral contact patterns. In particular, it focuses 
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on quantifying the role of each individual in the overall contact patterns, reflecting the agent’s impact on the 
potential of (e.g., epidemiological) spreading in a system.

To achieve these goals, we utilize a network approach in which patterns of contacts which are generated by 
individual behavior are mapped on to a contact network. In such a network, each individual corresponds to 
a node and a link between two nodes represents a contact between two individuals. The advantage of using a 
network approach is that a general spreading process of some entity (of which pathogen spreading in epide-
miology is one, where the concerned pathogen is the entity) can be analyzed by means of a two-level descrip-
tion—the “infrastructure”, and the process on top of it: (a) a contact network, borne out of people’s behavior in 
social interactions that constitutes the infrastructure, and (b) a pathogen spreading process occurring within 
a population, which then becomes a (dynamical) process that uses this infrastructure as pathways to transmit 
from an infected to a susceptible agent. From a network science perspective, it then becomes natural to expect 
that the topological properties of the interaction networks—the infrastructure—can be used to analyze the 
potential of spreading dynamics. In addition, this approach allows us to analyze the relative importance of dif-
ferent individuals’ potential of spreading by analyzing the effect that removing the individual would have on 
the network structure. Individuals who contribute greatly to the topological aspects of the network may then 
represent potential targets of intervention. (In contrast, social distancing is a non-pharmaceutical intervention 
measure against SARS-CoV-2 transmission by means of globally disrupting the infrastructure).

It is important to note, however, that spreading dynamics can take on many forms: infectious diseases will 
spread differently from rumors or political opinions, which are yet different from spreading of delays in net-
work  transport10. Nevertheless, the common element they all share is (deterministic or stochastic) transmission 
upon contact, and spreading is therefore dependent on the topology of the contact network: who interacts with 
whom, for how long and in which precise sequence. For example, if a person A spreads the rumor, a person B 
can only spread the rumor to person C if (s)he has been in contact with A before the contact with C. Tracking 
these sequences of interactions, therefore, provides the basis of any spreading phenomenon. While the work 
presented here was developed in the context of modeling behavior during the COVID-19 pandemic, the impor-
tance of better models for human behavior in generating contact networks should therefore be seen as generic.

Before a satisfactory analysis of this process can be found, however, several problems that arise in the cur-
rently used network analytic techniques (for evaluating the structure of contact networks and the role of different 
individuals in generating them) must be addressed. First and foremost, in reality, a contact network is dynamic, 
i.e., the topology of a contact network is changes over time. In Network Science such networks are called tem-
poral networks. Many existing methods that analyze contact networks, empirically obtained through wearable 
 sensors11, treat contact networks as static, since, for instance, recorded contacts may not be adequately logged 
or the analysis needs to be simplified by collapsing networks over the time domain. From a Network Science 
perspective, this is in fact reminiscent of one way to reduce the complexity of a temporal network by downscal-
ing it to a static one: a network with a time-invariant topology, obtained through aggregation of all edges over 
a certain time  interval6,7,12–14. However, information on who interacts with whom, for how long and in which 
precise sequence gets lost in such aggregations. Static representations therefore do not reflect the dynamic aspects 
of human behavior: changing interactions, structures and  sequences4,5,12,15–19 have been shown to have large 
impacts on various dynamical  processes16,20–22. Static representations miss a crucial opportunity to intervene 
at the contact network level, e.g., by targeting interventions at specific points in the time domain. Secondly, 
while there are static topological metrics available to quantify the impact of agents on spreading mechanisms, 
static network techniques cannot differentiate between agents whose contacts are structured in the same way 
but located at different time points. Examples of such topological metrics are degree, closeness or betweenness 
 centrality23,24, k-shell decomposition  algorithm25, methods based on clustering and the topology  potentials26, 
improved coreness centrality and eigenvector  centrality27, influential  individuals28.

More prudent (existing) approaches to deal with the complexity of temporal contact networks entail setting 
a threshold to filter out the non-essential edges or edges that exist only by chance: for example, Grabowicz et al. 
used a simple threshold based on the number of events (i.e., count of edges across time) between two  nodes29; 
Kobayashi defined a temporal null model to identify pairs of nodes having more interactions than expected given 
their  activities30; and in yet another thread of study, Mellor et al introduced the temporal event graph (TEG), 
which uses events (interactions between two individuals) as nodes and shared event attendees as edges in a 
directed  graph31,32. Some of these efforts focus on only part of the complexity of temporal networks and provide 
possible ways to identify  structures29,30,  communities4,22,33 and quantify  connectivity32,34,35. Other related papers 
on the topic discuss temporal  motifs36 and percolation in light of weighted temporal event  graphs37, or propose 
an event embedding technique to obtain a low-dimensional representation of temporal  networks35. However, 
in the context of spreading phenomena, these metrics are not meant for quantifying agent impacts on contact 
chains in human interactions (and thereby the spread of a concerned entity). We also use event mapping, which 
we explain in “Methods” section.

A more principled approach to unraveling behavioral heterogeneity and the impact of individual actors, 
which we develop in this paper, is to consider the full dynamics of people’s contacts in the form of a temporal 
network. Specifically, we provide a way forward by developing (a) a systematic methodology for representing 
people’s (dynamical) contact networks as event graphs, and (b) techniques to analyze the role that individuals 
play in generating these network structures. The latter information can be used to assess individuals’ impacts on 
the contact sequence while respecting (temporal) sequence of contacts.

This paper is structured as follows. We start by introducing the methodology to extract an individual’s impact 
on contact sequences in a system in “Methods” section, for which we need to introduce a reconstruction of the 
temporal graph using ‘event mapping’. In “Application to human interaction data” section, we apply the methodol-
ogy to data collected during an art fair in Amsterdam in August 2020, where we also provide experimental details 
and discuss the evolution of the most important metrics over time, as well as relate them to the existing network 
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metrics like contact degree. In “Discussion and conclusion” section, we discuss these findings and relate them to 
the broader discussion on spreading phenomena in networked systems and end with a few concluding remarks.

Methods
In this section, we introduce the mapping of temporal network data into an event graph in order to facilitate the 
identification of agent impacts on a sequence of contacts.

Event mapping of contact sequences. We track the contact sequences of the agents in the following 
manner. In Fig. 1a we show an example of a (randomly generated) temporal system with eight agents and four 
time steps t ∈ {0, 1, 2, 3} in three types of graphs. In the center, the temporal graph is shown where agents are 
denoted in squares. The contacts among the agents at every snapshot are denoted by black links, while the 
agents’ movements across snapshots are shown by gray links. To the left of the panel, we show the corresponding 
aggregated contact network over the entire time range, wherein two agents are connected by an edge if they have 
been in contact at any of the four time steps: the aggregated contact network therefore does not distinguish any 
sequence between the interactions.

To the right of Fig. 1a, we combine connected components within time snapshots into single circular nodes, 
which we refer to as events38, resulting in yet another graph: the event graph. We use a non-weighted version of 
event mapping, where links between events are not weighted by the number of crossing participants. Events 

Figure 1.  Illustration of the event mapping and an individual’s contact sequence centrality using a toy example. 
All throughout this figure, individual agents are in squares (and numbers), events are in circles. Panel (a): In 
a temporal network, the time evolution of the contact graph (middle) captured in a sequence of snapshots. 
Contact data over the four snapshots can be aggregated to obtain a static (and aggregated) contact network 
(left), but in doing so, the sequential information is lost. We term the connected network components within 
each snapshot ‘events’, they are seen as nodes in an event graph (right). In an event graph the event-to-event 
trajectories of agents are the links. Colors of circles and snapshots indicate time from blue to red. Panel (b): 
Example of a contact sequence when tracing all events and subsequent agents back to agent 5 at t = 0 . Starting 
time t, time elapsed �t , the percentage unique agents [P(5)], traceable to 5 and the average percentage of 
agents in the contact sequence P̄ are indicated. Panel (c): Same as (b), but after removal of agent 3, resulting 
in a ‘perturbed’ contact sequence of agent 5. The (now absent) links that were associated with agent 3 are in 
dashed green arrows, and the events that are consequentially not traceable to 5 anymore are colored green. The 
associated (lowered value of) P−3(5) is shown. Averaging over all agents provides P̄−3 , and allows us to calculate 
the Contact Sequence Centrality of agent 3: C(3) = P̄ − P̄−3 , which is clearly marked in the bottom panel. For 
abbreviation, we excluded the t and �t between brackets when showing values of P, P̄ and C.
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may consist of either single or more agents, as marked by the numbers indicated inside each node. The events 
are linked by the ‘re-usage’ of agents; this is exactly how every agent can act like a spreader between consecu-
tive events, which makes event mapping a natural choice for describing the dynamical evolution of a spreading 
phenomenon. For example, at t = 0 , agent 5 is interacting with agent 3. From there, they go their separate ways: 
at t = 1 agent 5 interacts with agent 8, and agent 3 interacts (in a larger group) with agents 1, 2 and 7. Indeed, 
the event (3, 5) at t = 0 links to both (5, 8) and (1, 2, 3, 7) at t = 1 . Using these events, one can convert the (tem-
poral) network snapshots to an event graph (directed in time), shown at the right of Fig. 1a. Not only does this 
event mapping collapse complex temporal network data into a single directed graph, but most importantly, it 
also preserves the sequences of contacts. [An important question is to what extent the information for spreading 
phenomena is already embedded in the static contact graph, and when it is important to do event mapping. This 
is a question we address multiple times in this paper, by comparing the results of our metrics (defined below) to 
properties of the static contact network.].

The event graph allows for an intuitive analysis of which (agent contacts in) events in later time steps are 
eventually traceable back to the an event in earlier time steps via both direct and indirect connections. An 
example of such a contact sequence is given in Fig. 1b. There, we track the events that are linked to agent 5 at 
t = 0 (colored red), over four sequential time snapshots. At t = 0 , only the event where agent 5 itself is involved 
is colored red [i.e., agents (3,5)]. Over time, ‘secondary’ events become colored red in the event graph, meaning 
that in due course of time, progressively more events, and the agents contained therein, can be traced backwards 
to agent 5 at t = 0 . In the end, for most applications, how many agents can be traced backwards to agent 5 at 
t = 0 is the most relevant quantity (rather than the number of events, i.e., the number of red dots). This prompts 
us to define P(j, t,�t):

where N is the total amount of agents. In other words, P(j, t,�t) is the fraction of unique agents at time t +�t 
that can ultimately be linked backwards to agent j at time t—clearly, P(j, t,�t) is a function of the starting time 
t and elapsed time �t . In Fig. 1b, we show P(5, 0,�t) for different values of �t , using agent 5 as ‘agent zero’: at 
�t = 0 , P(5, 0, 1) = 2

8 = 25% since at �t = 0 two (3 and 5 itself) out of eight agents are linked to 5 at t = 0 . 
Similarly, P(5, 0, 2) = 6

8 = 75% since there are six agents (1, 2, 3, 5, 7 and 8) that can be traced backwards to agent 
5 at t = 0 , and so on. Clearly, a high value of P(j, t,�t) for low �t would indicate fast mingling of the agents in 
the time interval (t, t +�t) , making the system highly prone to spreading phenomena from the perspective of 
starting with agent j at t = 0 . Conversely, a low value of P(j, t,�t) for high �t would imply the opposite. It is 
obvious that for fixed t, P(j, t,�t) is a monotonically increasing function of �t , while for fixed �t and a different 
initialization time t, P(j, t,�t) may vary and therefore possibly result in lower values with increasing t.

In panel (b), we use agent 5 as a mere example to illustrate the calculation of P(j = 5, t,�t) . A more repre-
sentative quantity is obtained by taking the average over all agents j:

the value of which is also indicated in Fig. 1b. The value of P̄ says something about the (unperturbed) contact 
sequences: high values indicate that spreading to many agents within ( t, t +�t ) is likely, and vice versa. We aim 
to identify the impact of each agent on the overall contact sequences. We measure this by looking at the P̄ value 
when we remove an agent—the intuition being that the resulting change in P̄ reflects the impact of the removed 
agent. Again, we start with the example of the contact sequence of agent 5 (i.e, P(5) instead of P̄ ). Now, to assess 
the impact of another agent—agent 3—on agent 5’s contact sequence, we remove this agent from the system and 
show what it does to agent 5’s contact sequence in Fig. 1c. The removal results in the absence of important links 
(denoted in green dashed lines) and, consequently, in limiting the contact sequence’s reach (i.e., excluding the 
green nodes). The proportion of agents in agent 5’s contact sequence is now written as P−3(5, t,�t) , where the 
subscript −i refers to the removal of agent i. In particular, we have P−3(5, 0, 2) =

2
8 = 25% , which is lower than 

P(5, 0, 2), since the large event comprised of agents 1, 2, 7 and the removed 3 cannot be traced back to agent 
5 at t = 0 anymore. More generally, for any agents i, j the relation P−i(j, t,�t) ≤ P(j, t,�t) holds, because the 
contact sequence is either equal or shrunk by the removal of agent i.

The impact of an agent on the contact sequence is naturally quantified by the difference in P̄ between the 
unperturbed [panel (b)] and the perturbed event graph. For the impact of agent 3, the latter is shown in panel 
(c). Averaging over the contact sequences of each agent j, we obtain an expression for the impact of an individual 
agent on the contact sequence which we refer to as contact sequence centrality:

A high C(i, t,�t) indicates that the removal of agent i decreases the fraction of agents in an average contact 
sequence sharply, which reflects an important role of i in connecting contact sequences. This way, C(i, t,�t) 
becomes an attribute of agent i. It might just reflect that agent i itself has had a lot of contacts in the interval 
(t, t +�t) (i.e., the degree of agent i in the aggregated contact graph is high), but that is not necessarily the case. 
It may also be that agent i serves as the intermediary between two larger ‘bubbles’ or temporal communities, 

(1)P(j, t,�t) =
Number of agents traceable to agent j at time t within time interval [t, t +�t]

N
,

(2)P̄(t,�t) =
1

N

N
∑

j

P(j, t,�t)

(3)
C(i, t,�t) =

1

N





�

j

P(j, t,�t)−
�

j

P−i(j, t,�t)





= P̄(t,�t)− P̄−i(t,�t).
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which will become disjointed if agent i is removed from the system. Example values of C(3, t,�t) are shown in 
Fig. 1c for the case of agent 3.

Other agent-based topological network metrics. It is important to assess whether the contact 
sequence centrality C merely reflects static properties of the network topology that could have been found more 
easily using traditional methods, or whether it provides us with new information regarding an agent’s role in the 
system. This prompts us to compare C values to various other agent-based metrics that have been around in the 
literature. Some of them are derived from the contact network like the one shown Fig. 1a on the left, obtained by 
aggregating all the temporal network snapshots into one single, unweighted, undirected contact network within 
a certain (or the whole) time interval. The degree of an agent i equals the amount of links this agents has, i.e. the 
amount of unique agents i had been interacting with. Similarly, the contact betweenness is the betweenness cen-
trality in the aggregated contact network; betweenness centrality is defined as the fraction of all shortest paths 
(i.e., between all unique pairs of agents in the aggregated network) that passes through an agent. As for event 
maps of temporal networks, the number of events at any time snapshot is the amount of events of sizes larger 
than 1 (i.e., ‘non-individual events’) the agent attends. The average event size determines the average amount of 
attendants of events in general.

Finally, for temporal networks, many non-static quantities have been developed, as variants of their static 
counterparts, in order to study the temporal structural properties of the  system39,40. While they have been devel-
oped for degree and closeness as  well41, we choose to compare �P̄ to two types of betweenness other than the 
aforementioned contact betweenness. To explain the difference, we refer to the graphs shown in Fig. 1a. On the 
left, we see the contact graph, in which the contact betweenness (already mentioned above) is defined. On the 
right, we see an event graph, where the nodes are events. The betweenness—i.e. fraction of shortest paths going 
through them—of nodes in this graph is computed, and when taking the average of all events where any agent 
i is participating, we obtain the value of what we refer to as the event betweenness of this agent. Likewise, we 
can focus on the network in the middle: the temporal graph. Nodes here are agents at a specific time snapshot. 
The betweenness in this graph is computed, and then we again average over all nodes in this graph belonging 
to each agent individually, which results in what we refer to as the temporal betweenness of an agent. The event 
betweenness and temporal betweenness are related, but not necessarily the same, as finer network structures 
within events are not incorporated in the event betweenness (while they are in temporal betweenness), and the 
event betweenness calculates shortest paths between pairs of events rather than pairs of agents.

Because of computational limitations, we choose to calculate temporal betweenness and event betweenness 
in time intervals smaller than the full data sets (i.e., we take ten subsequent 4-min time intervals). This results 
in multiple values per agent (each belonging to one of these intervals), of which the average is reported in later 
usage of these metrics.

Application to human interaction data
In this section, we perform event mapping and contact sequence calculations on human interaction data meas-
ured at an art fair in Amsterdam. After describing the experiment details in “Experiment and sensor data” sec-
tion, we discuss the resulting P̄ and C values in “Evolution of P̄ and C” section, and compare the latter to other 
metrics in “Relating C to existing network metrics” section.

Experiment and sensor data. In August 2020, after the first peak of COVID-19 infections was decaying 
in the Netherlands, right before the start of the second wave of infections, an art fair was organized in Amster-
dam with the goal of assessing the effectiveness of physical distancing interventions. For an illustration of the art 
fair, see Fig. 2. During this three-day art fair, different interventions to promote physical distancing were imple-
mented: walking directions, face masks, and a buzzer-notification (a buzzing sound when coming within 1.5m 
of another visitor). The three day art fair was split into eleven time slots and the aforementioned interventions 
varied across these time slots. Each visitor was asked to wear a sensor that recorded the distance to the sensors 
of other visitors within line of sight (max 30m) using ultra wide band technology. Whenever two sensors were 
within 1.5m of one another the opposing tag ID was registered and the contact was logged locally (at a 1-s reso-
lution), which was sent to a database via access points, placed near the entrance of the art fair. Researchers from 
the University of Amsterdam collected the questionnaire and sensor data and have published this in previous 
 work11,42. The ethics review board of the University of Amsterdam (2020-CP-12488) approved data collection, 
and all participants provided informed consent before participating. All personally identifiable information used 
to link the questionnaire and sensor data has been destroyed. All methods were performed in accordance with 
the relevant guidelines and regulations.

From time to time, in most experiments, the interaction registration was hampered by not synchronizing to 
the access points well, altering some of the time stamps. Because the time stamps are crucial to the analysis in 
this paper, we chose to limit the analysis to parts of the experiments that did not contain such gaps (see Appendix 
A for a supplementary figure on choosing the correct parts of the data).

Table 1 shows an overview of the experiments, their (filtered) duration, conditions and the resulting amount 
of agents. More details can be found in Ref.42.

Evolution of P̄ and C. In Fig.  3, in order to illustrate differences among the experiments, we show the 
time evolution of the system property P̄ and the contact sequence centrality C (for specified agents) in three of 
these experiments: 7, 9 and 11. The conditions behind these experiments are quite different as shown in Table 1: 
experiment 11 contained no interventions at all, while direction and buzzer feedback interventions are differ-
ently applied in experiments 7 and 9. Importantly, we use the experiments to highlight several aspects of P̄ and C.
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First, in the top row, we show the evolution of P̄(t,�t)—see definition in Eq. (3)—as a function of (the start-
ing time) t. A parameter that needs to be chosen is �t , modulating the time interval across which the tracing 
between agents is done (see Fig. 1b for an example). This choice requires special attention, because while some 
agents may have most impact in the short run, others may have more impact on the long run. In other words: 
the individual differences in impact on contact sequences, the main topic of this paper, are dependent on the 
‘time scale’ �t we are interested in (we will come back to this later). In Fig. 3a–c, we choose �t = 300 and 600 
s. For example, the black curve represents the average fraction of unique agents in the time interval (t, t + 300 

En
tr
an

ce

WC
Bar

Figure 2.  The art fair on Amsterdam on the first day with bidirectional walking directions (top) and schematic 
layout of the location (bottom). The art fair consisted of 28 stands, spanning 1080m2 . Visitors entered on the 
left of the plan in the bottom panel, where also the access point was placed. Figure adapted and reprinted with 
permission from Ref.42.

Table 1.  Details of the conditions and attributes of the experiments. In the second column (‘Duration’) we 
note the filtered window durations, rather than the full experiment times. Event amounts and link frequencies 
are determined using only events with sizes larger than 1. Number of agents may differ from that in Ref.42 
because we focus on only a part of each experiment (see Fig. A.1). The average degree and the average degree 
per agent have been calculated from the aggregated contact network, aggregated over the full valid duration of 
the experiments.

Exp Duration (min) Walking direction
Supplementary 
intervention SDS setting # Agents Avg. degree

Avg. degree per 
agent

Exp 2 19 Bidirectional Facemask No feedback 98 10.2 0.10

Exp 3 25 Bidirectional None No feedback 95 5.1 0.05

Exp 4 50 Bidirectional Buzzer Buzzer after 2 s 88 18.1 0.21

Exp 6 55 Unidirectional None No feedback 130 19.6 0.15

Exp 7 38 Unidirectional Buzzer Buzzer immedi-
ately stops after 2 s 88 7.9 0.09

Exp 9 85 No direction Buzzer Buzzer immedi-
ately stops after 2 s 109 17.3 0.16

Exp 10 42 No direction Buzzer
Buzzer imme-
diately persists 
after 2 s

120 11.7 0.10

Exp 11 44 No direction None No feedback 89 17.4 0.20
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s) in the contact sequence of any agent at time t. High values at time t (may) indicate that large and frequent 
events are taking place in the interval (t, t + 300 sec) , involving many unique mingling people, as opposed to 
mingling only within specific bubbles or clusters. Clearly, the grey curve ( �t = 600 ) is always above the black 
curve ( �t = 300 ), which is expected, as over a longer time span P̄ has more time to grow. Visual inspection of 
the panels (a)–(c) immediately reveals a number of differences in the evolution of P̄(t,�t) among the different 
experimental settings: while experiment 7 remains rather flat at low values, experiment 9 contains a build-up 
towards much higher values (up to 0.30 for �t = 300 sec), and experiment 11 lies in between the two and seems 
to be split in alternating phases of highs and lows. Without going into the specifics of these experiments, the 
shapes of the P̄ curves can be interpreted as follows. A constant, flat curve (like in experiment 7) indicates that 
the interaction configuration is such that the potential of any spreading phenomenon does not vary much in 
time: if a disease or rumor would start at the start of the time interval, or in the middle, it would spread with 
roughly equal speed. However, a lot of variation in P̄ (like in experiment 9) indicates that the structure of inter-
actions and the temporal graph itself is different when starting at different time points. Sometimes, it promotes 
tracing many agents through contact sequences (e.g., at 14:20, we have that P̄ = 40% in 10 minutes) by means 
of very frequent events with randomized attendees, which may imply that the system is vulnerable to spreading 
dynamics like disease transmissions and rumor spreading. In other cases, the temporal network structure only 
contains narrow contact sequences, tracing only few agents to each other (e.g., at 13:30, we have that P̄ = 5% in 
10 minutes), which is the case in a well-segregated agent population.

In Fig. 3a–c, to mark the effect of individual agents in the system, we also plot C after fictitiously removing 
the ‘most impactful agent’ at both levels of �t plotted here: 300 and 600 s, in red and blue, respectively. Note 
that there are different ways to define the ‘most impactful agent’, and the correct choice is depending on the 
application. In particular, the ranking of agents in terms of their impact on the contact sequences is in reality 
dependent on both t and �t , i.e., who is ‘most impactful agent’ varies over time. For illustration purposes we 
choose to average all C values over t and look at the agent with the highest value of C at fixed, chosen values of 
�t (in other panels we use the same procedure). In other words, our definition of ‘most impactful agent’ is the 
agent that at a chosen value of �t , has the highest value of C, averaged over the possible time starting points t. In 
the panels (a)–(c), the reduction in P̄ (marked by the red and blue areas) if we would remove these high-impact 
agents remains relatively invariant over time t in experiment 7, while in experiments 9 and 11, there are clear 
moments in time where the most impactful agents seem to have their highest impact: for experiment 9, this is 

Figure 3.  Evolutions of P̄ and C of experiments 7 (left column), 9 (middle column) and 11 (right column). 
Panels (a–c): Evolution of P̄(t,�t) over time t at �t =300 s (black/red) and �t =600 s (gray/blue). We also 
show P̄−i(t,�t) (red and blue curve, respectively) and C(i, t,�t) (red and blue area) for the most impactful 
agents i at these levels of �t . Panels (d–f): Evolution of P̄(t,�t) over elapsed time �t , averaging over t, for the 
same experiments 7, 9 and 11. For a few values of �t , we indicate the value of P̄(t,�t) . Panels (g–i): Evolution 
of C(i, t,�t) for each agent i (in gray). Specific agents are denoted in colors: the agents with the highest C at 
�t =300 (red) and 600 s (blue) as in panels (a–c), the agent with the highest C at a near-maximum �t (i.e., 90% 
of the maximum time elapsed) in green, and the agent with the highest static contact degree as a black dashed 
line. Note that in panel (g), the red, blue and green lines overlap (only green shows), and in panel (h), the red 
and blue overlap (only blue shows).
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near the peak, and for experiment 11, most impact is found either at the start, or around 17:27-17:37. The agents 
denoted in red and blue are not necessarily the same agent (see below).

While in the upper row, we see how P̄ evolves over time, indicating where contact sequences promoted any 
spreading dynamics most, we now look at how P̄ grows with �t in panels (d)–(f), which reflects how many people 
you can trace via contact sequences within a given time interval size �t . These are monotonically increasing 
curves: taking a larger time window allows the system reach equal or more agents, but never fewer. Cross-
experimental differences can be observed in the slope at which P̄ is increasing with �t : at �t = 10 minutes, 
while P̄ only reaches 8.7% in experiment 7, it reaches 14.4% in experiment 11, and even 21.7% in experiment 
9. These differences based in the topology of the respective temporal networks, but may have implications on 
potential dynamics on top. For example, the fact that the contact sequences in experiment 9 reach many more 
agents in the same time interval as experiment 7, implies that spreading phenomena like disease transmission 
or rumor spreading may be more fast-paced in the setting of experiment 9. There are several considerations to 
be made when concluding this, as discussed in 4.1. While the black lines show averages over t, the increase of 
P̄ with �t varies in time—sometimes this growth is faster than in other moments—which is shown in the grey 
shaded areas. Note that the variations around the black curve are much larger in experiments 9 and 11 than in 
experiment 7, also seen in panels (a)–(c).

Relating C to existing network metrics. The bottom panels (g)–(i) in Fig. 3 show C(i, t,�t) , which is 
the effect of the removal of agent i on the black curves shown in panels (d)–(f). The curves of all agents i are 
shown in gray, but we focus on four aspects: the agent with the highest C for �t = 300 in red, the same for 
�t = 600 in blue, the same for �t = 90 % of the total time in green, and the agent with the highest degree in the 
aggregated contact network in the interval (t, t +�t) in black dashed lines. Note that we scanned C based on a 
few chosen �t values to highlight particular agents (in red, blue and green), but then plotted these agents over 
the whole spectrum of �t values (on the horizontal axis)—‘their’ �t value is merely to label them and does not 
play any further role. We henceforth refer to these agents as the ‘red’, ‘blue’ and ‘green’ agents. The reason for plot-
ting the highest-degree agent (black dashed) is to assess whether having a high degree in the aggregated contact 
network is be related to the most impactful agents and the various time scales �t . The answer clearly depends 
on the experiments: in experiment 7, there is a single curve clearly above all others on all time scales �t , which 
means that the red, blue and green agents overlap. With a clear separation to the second and third places, the 
highest degree agent is not even close to having most impact on larger time scales (note that the vertical scale 
is logarithmic, which creates a natural convergence of high-impact curves to the right), albeit that this agent 
remains is in the top 10% of agents with highest C values. In experiment 9, the place for the highest C switches 
between agents. Up to values of �t of about 1300 s, a particular agent dominates C (overlapping blue and red), 
which also happens to be the agent with the highest degree. However, at �t = 1300 sec, the green agents takes 
over the dominance in C, who had a modest impact before that. Such separation reveals the dependency on time 
scale when assessing the impact of a specific agent on contact sequences. In particular, it confirms the hypoth-
esis that aggregated properties do contain most information for contact sequence centrality at small values of 
�t , while they lose their relevance at larger values of �t . This is highly pronounced in experiment 11. At short 
time scales, the red curve marks the highest-�P̄i individual, which also happens to be the highest-degree agent. 
Around �t ≈ 400 sec, this individual is surpassed by another (marked in blue), which dominates the spectrum 
of �P̄i at most time scales, but is caught up by yet another (in green) at the largest time scale, where the red/
highest-degree agent is clearly having a lower impact than many other agents.

Further, Fig. 4a–f show the relationships between C(i, t,�t) at a fixed value of �t (averaged over t)—denoted 
by C(i, tav ,�t)—and six existing network metrics. On the one hand, in panels (a)–(c) we show three such 
scatterplots: C(i, tav ,�t) versus the degree of the agent i in the aggregated network, obtained from the aggre-
gated contact network; the number of (non-individual) events the agent participates in; and the average size of 
the events (including those including only a single disconnected agent) in the time interval (t, t +�t) . Being 
obtained from the aggregated network, these are all ‘static’ network properties: they do not provide information 
on the sequences of interactions. For example, the degree is obtained from the static contact network and fre-
quency or sequences are not taken into account. Likewise, the number of non-individual events an agent has been 
participating in does not necessarily reflect a wide range of agents—all participated events may be containing 
only the same people, and the average event size reflects how often the people participates in individual events 
(i.e., isolated from the rest of the agents). All three metrics (especially the [fully aggregated] degree) correlate 
relatively well with C for smaller values of �t , across all three experiments (in colors). Still, there is quite some 
spread: agents with the highest C are not the ones with the highest network metrics. Also, while experiment 7 
has generally smaller degree, the scatter in the C values seems to be equal to the other two experiments. On the 
other hand, panels (d)–(f) describe three forms of betweenness: event, contact and temporal betweenness (see 
“Other agent-based topological network metrics” section). A clean relation between C and temporal or event 
betweenness is barely visible.

Also relevant to the art fair experiment are metadata obtained from questionnaires (for details, see Ref.42). 
We aggregated questions related to the attitudes of the individuals towards the interventions and dangers of the 
COVID-19 pandemic that was present during the time of the experiment (August 2020), involving questions 
like “Do you adhere to the 1.5 meter distance rule as issued by the Dutch government?”. Participants’ reply on a 
scale from 1 to 7, where a lower score indicates more skepticism on the pandemic and less strict following of the 
Government imposed COVID-19 rules, while a higher score means the opposite. The average over 22 of such 
questions is shown at the horizontal axis in panel Fig. 4g. Clearly, there are no significant differences between 
the experiments, and no relation is visible with C. In panel Fig. 4h, we also plot the age of these participants, also 
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yielding no significant relationship with the impact on spreading capability. Not all agents filled in the question-
naires however, resulting in less dots in the metadata panels than in panels (a–f).

Putting together Figs. 3g–i and  4a–f, several relations between network metrics and C can be inferred, but 
any such relation would be subject to the time scale �t : for small values of �t , the static degree may be well 
suited to describe an agent’s impact: having more unique direct contacts means that the agent, potentially, have 
been in contact with many other agents, which directly affects P̄ . In turn, therefore, removing that agent would 
result in a higher C. At higher time scales, however, the effect of sequences becomes more important. Agents with 
(potentially) smaller initial impact and contact degree may have a larger impact on larger time scales because 
they serve as conduits of contact for large bubbles or other more subtle temporal structures. This is visible in 
Fig. 3g–i. To explicitly test the effect of time scale on whether traditional network metrics are sufficient, we show 
the the Spearman’s rank correlation coefficient between the contact degree and C as a function of �t in Fig. 4i. 
The overall degree (independent from �t ) is also correlated to C, shown in dotted lines. A clear decay of this 
correlation with �t is visible, reflecting that for small �t , static metrics like the contact degree are sufficient, but 
for larger time scales, the sequential information becomes important, which motivates a more complex metric 
like contact sequence centrality C.

Discussion and conclusion
In this paper we have developed and demonstrated a methodology to quantify agent impact on contact sequences 
in social interactions from the perspective of spreading phenomena. Spreading phenomena are versatile in their 
nature and types; however, one common element they share is that they all require individual agents as carriers of 
the entity, and an agent in possession of the concerned entity can pass it on to others that do not have it, leading 
to the natural expectation that the temporal topology of agent interactions—who interacts with whom, when 
and in which sequence—will have a profound influence on the spreading dynamics.

Figure 4.  Panels (a–f): Relation between agent’s impact on C and various network properties. Different colors 
denote different experiments. Panels (g,h): Same as in panels (a–f), but for two metadata metrics: the inferred 
attitude of the agent with respect to COVID-19 measures based on questionnaire data, and the agent’s age. Panel 
(i): Spearman’s rank correlation coefficients between contact degree and Ci for different values of �t for each 
of the three experiments. Thick lines indicate the correlation coefficients when using the average degrees of the 
agents when looking at interval sizes �t (as marked by the horizontal axis), while the dotted lines use the overall 
degree, independent of �t . Per experiment, �t values of up to half of the experiment’s total time interval are 
used, to keep enough initialization times t to average over.
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In order to quantify this effect, we have proposed a new measure for individual differences in their impact on 
contact sequences. The measure is obtained by porting all contact information—while preserving the sequences 
of contacts—into an event graph, and tagging the connections between events by agents’ temporal paths. From the 
event graph, we determine the metric P̄(t,�t) , which is the average fraction of agents at time (t +�t) traceable 
from any agent at time t. Likewise, contact sequence centrality C(i, t,�t) represents an agent i’s impact on the 
contact sequence in terms of how strongly P̄ changes when all temporal links belonging to agent i are removed.

For event mapping, we have used the convention that at every (integer) snapshot the agents’ contact network 
within an event is a complete one. For example, for the agents’ contact network snapshot at time t, agents 1-and-2 
and 2-and-3 may have been recorded to directly interact, but not 1-and-3: in such a case event mapping intro-
duces a direct interaction between agents 1-and-3 that are not originally present in the empirical data. While 
this is a subtle issue discussed elsewhere in  detail38, we note the value of C is dependent on the choices made in 
this convention. This is not necessarily a drawback for the concept of contact sequence centrality that we have 
developed here, but may limits its applicability depending on the time-scale of transmission of a quantity of 
interest. For example, imagine that the time-scale for transmission is very short relative to the typical duration 
of an event. Then, in the above example event involving three agents 1, 2 and 3, it will not matter whether 1 and 
3 interact directly or not: agent 1 will effectively be in direct contact with agent 3.

Note also that we have calculated both P̄ and P̄−i forward in time. This is an obvious choice for spreading 
dynamics, but for other applications, calculating these quantities backward in time would be more appropriate. 
For example, when interested in the vulnerability of a specific vendor in a supply chain, the more time-backward 
dependence the vendor has, the more it will be vulnerable to random failure. In other words, the choice of the 
direction of time for calculating P̄ and P̄−i depends on the application. Note also that the removal of a specific 
agent in our calculations is merely a conceptual construct to assess its impact on the contact sequence—the 
actual removal of this agent may have unforeseen effects on the topology of the temporal network that cannot 
be captured in a conceptual framework.

Contact sequence centrality is a purely topological property, reflecting properties of connections. In other 
words, agents with high levels of C can be treated as what are colloquially referred to as (behavioral) super-
spreaders25,27,28, being more central to the contact sequences. Our work serves to highlight the fact that super-
spreaders are not necessarily those individuals that have most contacts: as shown in Fig. 3g–i, we see that the 
highest-degree agent starts losing its dominance in C when looking at larger time scales. In particular, increasing 
the time interval �t makes the degree less and less determinant for the C values, as shown in Fig. 4i. What sets 
our metric apart from aggregated (and static) and various temporal metrics is that the exact sequence of the 
interactions matter: in the example of Fig. 1c, removing agent 3 removes an edge early on in the time series, 
which has cumulative effects later on. Moreover, reversing the direction of time would yield the same values 
of all static metrics like degree, and also for temporal betweenness for the aggregated networks, even though it 
would fundamentally change the values C. Note that our approach had a specific focus on identifying an agent’s 
spreading potential, while many other related approaches exist, each with own scope and (dis)advantages39. For 
example, Yu et al. (2020) combines network embedding with machine learning to assess a node’s importance in 
terms of spreading as evaluated by a SIR-model, which contrasts with our approach relying only on  topology43.

Finally, it is important to realize that topology of the contact sequences alone is not enough for the behavior-
epidemiology interface, or for that matter for any dynamical process playing out on top of the temporal network; 
the process itself may have its own inherent time-scale parameters. Let us elaborate a bit on this point using 
an example like pathogen spreading, which comes with its own time-scales, such as incubation period, or the 
time required for an infected agent can itself be infectious. On a given school day, all students in a school may 
be sequentially traceable to each other as measured by our metrics: Pi = 1 for all students i, and �t = 1 day. 
However, the disease may only spread to students directly linked to a patient zero i0 , simply because secondary 
contacts do not matter because of the incubation time of COVID-19: the direct contacts were not infectious yet. 
Given this, it is natural to expect that the eventual dynamics of pathogen spreading will be a combination all 
time-scales involved, including event frequency in the temporal network.

Indeed, to make the current approach relevant for epidemiology, the observation period of contacts among 
the agents needs to be sufficiently longer than the incubation period, and the time-lag between being infected 
and being infectious, bringing us to an issue of practicality. While the event mapping is a relatively quick process 
to compute, depending on the amount of time steps T, the calculation of P̄ scales with an extra factor N because 
the contact sequence tracking [e.g., as in Fig. 1b] has to be done for every agent. However, when computing 
the C for every agent i, yet another factor N is brought in, as all calculations have to be done fully over when 
removing i. Hence, the computational complexity of C is of the order O(TN2) . This means, given that the contact 
networks of the agents are sampled at 1-s interval, that for making the current method applicable for COVID-19 
epidemiology (with an incubation time of about 5.2  days44 and infectiousness starting time of 12.3  days45), fur-
ther course-graining methods to preprocess the network in the the temporal domain will need to be developed.

In the current paper, we have analyzed an application inspired by the COVID-19 pandemic, as the structure 
and dynamics of contact networks have proved pivotal to forge a conceptual link between human behavior and 
virus spread. However, our understanding of human behavior is still limited by a lack of adequate measurement 
techniques and modeling frameworks. The work presented in this paper showcases an extension of approaches 
to data analysis, in which experimental manipulations can be tracked to a level of detail that was not previously 
available. As is the case for any data analytic method, the approach requires existing high-resolution data. Cur-
rently, this limits the possibility of applying these calculations to country-wide scales, typically associated with 
spreading processes such as epidemics. The contribution of this work primarily lies in the characterization of 
local environments such as supermarkets and museums—it reveals system properties rather than laying out the 
full spreading infrastructure.
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On the basis of the growing number of experimental studies on the topic, this system-characterizing meth-
odology may become available in many situations, which may allow for policy making through the anticipation 
of spreading vulnerability in future situations. Potentially, the methodology is also used in simulation software 
that one could use to run through different possible floor plans of an event such as the art fair described in this 
paper. Policymakers would be in a position to assess different scenarios while planning events. While such tech-
niques are not yet available, we hope that detailed insights into human behavior as obtained through the current 
analysis may contribute to their development.

In our view, further development of technology and methodology to obtain and analyze direct measures of 
behavioral contact networks is essential to advance our understanding of human behavior, and to improve the 
resilience of society in dealing with pandemics.

Data availability
The code for calculating the contact sequence centrality will be made available upon publication. Details about 
the data of the art fair experiments can be found in Ref.42.
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