2,256 research outputs found

    Predictive Duty Cycle Adaptation for Wireless Camera Networks

    Get PDF
    Wireless sensor networks (WSN) typically employ dynamic duty cycle schemes to efficiently handle different patterns of communication traffic in the network. However, existing duty cycling approaches are not suitable for event-driven WSN, in particular, camera-based networks designed to track humans and objects. A characteristic feature of such networks is the spatially-correlated bursty traffic that occurs in the vicinity of potentially highly mobile objects. In this paper, we propose a concept of indirect sensing in the MAC layer of a wireless camera network and an active duty cycle adaptation scheme based on Kalman filter that continuously predicts and updates the location of the object that triggers bursty communication traffic in the network. This prediction allows the camera nodes to alter their communication protocol parameters prior to the actual increase in the communication traffic. Our simulations demonstrate that our active adaptation strategy outperforms TMAC not only in terms of energy efficiency and communication latency, but also in terms of TIBPEA, a QoS metric for event-driven WSN

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A Review of Energy Conservation in Wireless Sensor Networks

    Get PDF
    In wireless sensor networks, energy efficiency plays a major role to determine the lifetime of the network. The network is usually powered by a battery which is hard to recharge. Hence, one major challenge in wireless sensor networks is the issue of how to extend the lifetime of sensors to improve the efficiency. In order to reduce the rate at which the network consumes energy, researchers have come up with energy conservation techniques, schemes and protocols to solve the problem. This paper presents a brief overview of wireless sensor networks, outlines some causes of its energy loss and some energy conservation schemes based on existing techniques used in solving the problem of power management. Keywords: Wireless sensor network, Energy conservation, Duty cycling and Energy efficiency

    A Learning-based Approach to Exploiting Sensing Diversity in Performance Critical Sensor Networks

    Get PDF
    Wireless sensor networks for human health monitoring, military surveillance, and disaster warning all have stringent accuracy requirements for detecting and classifying events while maximizing system lifetime. to meet high accuracy requirements and maximize system lifetime, we must address sensing diversity: sensing capability differences among both heterogeneous and homogeneous sensors in a specific deployment. Existing approaches either ignore sensing diversity entirely and assume all sensors have similar capabilities or attempt to overcome sensing diversity through calibration. Instead, we use machine learning to take advantage of sensing differences among heterogeneous sensors to provide high accuracy and energy savings for performance critical applications.;In this dissertation, we provide five major contributions that exploit the nuances of specific sensor deployments to increase application performance. First, we demonstrate that by using machine learning for event detection, we can explore the sensing capability of a specific deployment and use only the most capable sensors to meet user accuracy requirements. Second, we expand our diversity exploiting approach to detect multiple events using a distributed manner. Third, we address sensing diversity in body sensor networks, providing a practical, user friendly solution for activity recognition. Fourth, we further increase accuracy and energy savings in body sensor networks by sharing sensing resources among neighboring body sensor networks. Lastly, we provide a learning-based approach for forwarding event detection decisions to data sinks in an environment with mobile sensor nodes

    Predictive Duty Cycling of Radios and Cameras using Augmented Sensing in Wireless Camera Networks

    Get PDF
    Energy efficiency dominates practically every aspect of the design of wireless camera networks (WCNs), and duty cycling of radios and cameras is an important tool for achieving high energy efficiencies. However, duty cycling in WCNs is made complex by the camera nodes having to anticipate the arrival of the objects in their field-of-view. What adds to this complexity is the fact that radio duty cycling and camera duty cycling are tightly coupled notions in WCNs. Abstract In this dissertation, we present a predictive framework to provide camera nodes with an ability to anticipate the arrival of an object in the field-of-view of their cameras. This allows a predictive adaption of network parameters simultaneously in multiple layers. Such anticipatory approach is made possible by enabling each camera node in the network to track an object beyond its direct sensing range and to adapt network parameters in multiple layers before the arrival of the object in its sensing range. The proposed framework exploits a single spare bit in the MAC header of the 802.15.4 protocol for creating this beyond-the-sensing-rage capability for the camera nodes. In this manner, our proposed approach for notifying the nodes about the current state of the object location entails no additional communication overhead. Our experimental evaluations based on large-scale simulations as well as an Imote2-based wireless camera network demonstrate that the proposed predictive adaptation approach, while providing comparable application-level performance, significantly reduces energy consumption compared to the approaches addressing only a single layer adaptation or those with reactive adaptation
    • …
    corecore