9 research outputs found

    Efficient deterministic approximate counting for low-degree polynomial threshold functions

    Full text link
    We give a deterministic algorithm for approximately counting satisfying assignments of a degree-dd polynomial threshold function (PTF). Given a degree-dd input polynomial p(x1,,xn)p(x_1,\dots,x_n) over RnR^n and a parameter ϵ>0\epsilon> 0, our algorithm approximates Prx{1,1}n[p(x)0]\Pr_{x \sim \{-1,1\}^n}[p(x) \geq 0] to within an additive ±ϵ\pm \epsilon in time Od,ϵ(1)poly(nd)O_{d,\epsilon}(1)\cdot \mathop{poly}(n^d). (Any sort of efficient multiplicative approximation is impossible even for randomized algorithms assuming NPRPNP\not=RP.) Note that the running time of our algorithm (as a function of ndn^d, the number of coefficients of a degree-dd PTF) is a \emph{fixed} polynomial. The fastest previous algorithm for this problem (due to Kane), based on constructions of unconditional pseudorandom generators for degree-dd PTFs, runs in time nOd,c(1)ϵcn^{O_{d,c}(1) \cdot \epsilon^{-c}} for all c>0c > 0. The key novel contributions of this work are: A new multivariate central limit theorem, proved using tools from Malliavin calculus and Stein's Method. This new CLT shows that any collection of Gaussian polynomials with small eigenvalues must have a joint distribution which is very close to a multidimensional Gaussian distribution. A new decomposition of low-degree multilinear polynomials over Gaussian inputs. Roughly speaking we show that (up to some small error) any such polynomial can be decomposed into a bounded number of multilinear polynomials all of which have extremely small eigenvalues. We use these new ingredients to give a deterministic algorithm for a Gaussian-space version of the approximate counting problem, and then employ standard techniques for working with low-degree PTFs (invariance principles and regularity lemmas) to reduce the original approximate counting problem over the Boolean hypercube to the Gaussian version

    Deterministic search for CNF satisfying assignments in almost polynomial time

    Full text link
    We consider the fundamental derandomization problem of deterministically finding a satisfying assignment to a CNF formula that has many satisfying assignments. We give a deterministic algorithm which, given an nn-variable poly(n)\mathrm{poly}(n)-clause CNF formula FF that has at least ε2n\varepsilon 2^n satisfying assignments, runs in time nO~(loglogn)2 n^{\tilde{O}(\log\log n)^2} for ε1/polylog(n)\varepsilon \ge 1/\mathrm{polylog}(n) and outputs a satisfying assignment of FF. Prior to our work the fastest known algorithm for this problem was simply to enumerate over all seeds of a pseudorandom generator for CNFs; using the best known PRGs for CNFs [DETT10], this takes time nΩ~(logn)n^{\tilde{\Omega}(\log n)} even for constant ε\varepsilon. Our approach is based on a new general framework relating deterministic search and deterministic approximate counting, which we believe may find further applications

    Luby-Velickovic-Wigderson Revisited: Improved Correlation Bounds and Pseudorandom Generators for Depth-Two Circuits

    Get PDF
    We study correlation bounds and pseudorandom generators for depth-two circuits that consist of a SYM\mathsf{SYM}-gate (computing an arbitrary symmetric function) or THR\mathsf{THR}-gate (computing an arbitrary linear threshold function) that is fed by SS AND\mathsf{AND} gates. Such circuits were considered in early influential work on unconditional derandomization of Luby, Veli\v{c}kovi\'c, and Wigderson [LVW93], who gave the first non-trivial PRG with seed length 2O(log(S/ε))2^{O(\sqrt{\log(S/\varepsilon)})} that ε\varepsilon-fools these circuits. In this work we obtain the first strict improvement of [LVW93]'s seed length: we construct a PRG that ε\varepsilon-fools size-SS {SYM,THR}AND\{\mathsf{SYM},\mathsf{THR}\} \circ\mathsf{AND} circuits over {0,1}n\{0,1\}^n with seed length 2O(logS)+polylog(1/ε), 2^{O(\sqrt{\log S })} + \mathrm{polylog}(1/\varepsilon), an exponential (and near-optimal) improvement of the ε\varepsilon-dependence of [LVW93]. The above PRG is actually a special case of a more general PRG which we establish for constant-depth circuits containing multiple SYM\mathsf{SYM} or THR\mathsf{THR} gates, including as a special case {SYM,THR}AC0\{\mathsf{SYM},\mathsf{THR}\} \circ \mathsf{AC^0} circuits. These more general results strengthen previous results of Viola [Vio06] and essentially strengthen more recent results of Lovett and Srinivasan [LS11]. Our improved PRGs follow from improved correlation bounds, which are transformed into PRGs via the Nisan--Wigderson "hardness versus randomness" paradigm [NW94]. The key to our improved correlation bounds is the use of a recent powerful \emph{multi-switching} lemma due to H{\aa}stad [H{\aa}s14]

    Dimension Reduction for Polynomials over Gaussian Space and Applications

    Get PDF
    We introduce a new technique for reducing the dimension of the ambient space of low-degree polynomials in the Gaussian space while preserving their relative correlation structure. As an application, we obtain an explicit upper bound on the dimension of an epsilon-optimal noise-stable Gaussian partition. In fact, we address the more general problem of upper bounding the number of samples needed to epsilon-approximate any joint distribution that can be non-interactively simulated from a correlated Gaussian source. Our results significantly improve (from Ackermann-like to "merely" exponential) the upper bounds recently proved on the above problems by De, Mossel & Neeman [CCC 2017, SODA 2018 resp.] and imply decidability of the larger alphabet case of the gap non-interactive simulation problem posed by Ghazi, Kamath & Sudan [FOCS 2016]. Our technique of dimension reduction for low-degree polynomials is simple and can be seen as a generalization of the Johnson-Lindenstrauss lemma and could be of independent interest

    Noise stability is computable and approximately low-dimensional

    Get PDF
    Questions of noise stability play an important role in hardness of approximation in computer science as well as in the theory of voting. In many applications, the goal is to find an optimizer of noise stability among all possible partitions of R[superscript n] for n ≥ 1 to k parts with given Gaussian measures μ[superscript 1], . . . , μ[superscript k]. We call a partition ϵ-optimal, if its noise stability is optimal up to an additive ϵ. In this paper, we give an explicit, computable function n(ϵ) such that an ϵ-optimal partition exists in R[superscript n(ϵ)]. This result has implications for the computability of certain problems in non-interactive simulation, which are addressed in a subsequent work. Keywords: Gaussian noise stability; Plurality is stablest; Ornstein Uhlenbeck operatorNational Science Foundation (U.S.) (Award CCF 1320105)United States. Office of Naval Research (Grant N00014-16-1-2227

    Towards derandomising Markov chain Monte Carlo

    Full text link
    We present a new framework to derandomise certain Markov chain Monte Carlo (MCMC) algorithms. As in MCMC, we first reduce counting problems to sampling from a sequence of marginal distributions. For the latter task, we introduce a method called coupling towards the past that can, in logarithmic time, evaluate one or a constant number of variables from a stationary Markov chain state. Since there are at most logarithmic random choices, this leads to very simple derandomisation. We provide two applications of this framework, namely efficient deterministic approximate counting algorithms for hypergraph independent sets and hypergraph colourings, under local lemma type conditions matching, up to lower order factors, their state-of-the-art randomised counterparts.Comment: 57 page
    corecore