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Abstract
We introduce a new technique for reducing the dimension of the ambient space of low-degree
polynomials in the Gaussian space while preserving their relative correlation structure. As an
application, we obtain an explicit upper bound on the dimension of an ε-optimal noise-stable
Gaussian partition. In fact, we address the more general problem of upper bounding the number
of samples needed to ε-approximate any joint distribution that can be non-interactively simulated
from a correlated Gaussian source. Our results significantly improve (from Ackermann-like to
“merely” exponential) the upper bounds recently proved on the above problems by De, Mossel &
Neeman [CCC 2017, SODA 2018 resp.] and imply decidability of the larger alphabet case of the
gap non-interactive simulation problem posed by Ghazi, Kamath & Sudan [FOCS 2016].

Our technique of dimension reduction for low-degree polynomials is simple and can be seen
as a generalization of the Johnson-Lindenstrauss lemma and could be of independent interest.
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1 Introduction

1.1 Gaussian Isoperimetry & Noise Stability
Isoperimetric problems over the Gaussian space have become central in various areas of
theoretical computer science such as hardness of approximation and learning theory. In
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its simplest and classic form, the central question in isoperimetry is to determine what is
the smallest possible surface area for a body of a given volume. Alternately, isoperimetric
problems can also be formulated in terms of the notion of Noise stability.

Fix a real number ρ ∈ [0, 1] and let f : Rn → {0, 1} denote the indicator function of a
subset (say Af ) of the n-dimensional Gaussian space (Rn with the Gaussian measure γn given
by the density function dγn/dX = exp(−‖X‖22/2)/(2π)n/2). The noise stability Stabρ(f) is
the probability that two ρ-correlated Gaussians X, Y both fall inside or outside Af . More
generally, the Gaussian “noise operator” Uρ (also known as the Ornstein-Uhlenbeck operator),
defined for each ρ ∈ [0, 1], acts on any f : Rn → [0, 1] as

(Uρf)(X) := E
Z∼γn

[
f
(
ρX +

√
1− ρ2 ·Z

)]
.

The noise stability is then defined as

Stab
ρ

(f) := E
X∼γn

[f(X) · Uρf(X) + (1− f(X)) · (1− Uρf(X))]

Reformulated in terms of noise stability, the isoperimetric problem is to determine the
largest possible value of Stabρ(f) for a function f : Rn → [0, 1] with a given expectation
E[f ] = α. The seminal isoperimetric theorem of Borell [10] shows that indicator functions
of halfspaces are the most noise-stable among all functions f : Rn → [0, 1] with a given
expectation over the Gaussian measure. Borell’s theorem (along with the invariance principle
[44, 42]) has had fundamental applications in theoretical computer science, e.g., in the
hardness of approximation for Max-Cut under the Unique Games conjecture [39] and in
voting theory [42].

In this work, we are interested in analogues of Borell’s theorem for partitions of the
Gaussian space into more than two subsets, or equivalently noise stability of functions f
taking values over [k] := {1, . . . , k}. Towards stating these analogues, let’s state Borell’s
theorem formally in a more general notation. Let ∆k be the probability simplex in Rk (i.e.,
convex hull of the basis vectors {e1, . . . , ek}). The Ornstein-Uhlenbeck operator naturally
extends to vector valued functions f : Rn → Rk as Uρf := (Uρf1, . . . , Uρfk) where f =
(f1, . . . , fk). The noise stability of functions f : Rn → ∆k is now defined as Stabρ(f) :=
EX∼γn [〈f(X), Uρf(X)〉] where 〈·, ·〉 denotes the inner product over Rk. We can similarly
define the noise stability of a function f : Rn → [k] by embedding [k] in ∆k, i.e., identifying
coordinate i ∈ [k] with the standard basis vector ei ∈ ∆k. Borell’s theorem can be formally
stated in this notation as follows:

Borell’s Theorem [10]. For any f : Rn → ∆2, consider the halfspace function h = (h1, h2) :
Rn → ∆2 given by h1(X) = 1{〈a,X〉 ≥ b} and h2(X) = 1 − h1(X), for suitable a ∈ Rn,
b ∈ R such that E[f ] = E[h]. Then, Stabρ(f) ≤ Stabρ(h).

While Borell’s theorem deals with the case of k = 2, it is natural to consider the question of
maximal noise stability for k > 2, stated as follows.

Question 1. [Maximum Noise Stability (MNS)] Given a positive integer k ≥ 2 and α ∈ ∆k,
what is the maximum noise stability of a function f : Rn → ∆k satisfying E[f ] = α?

Question 1 remains open even for k = 3. In the particular case where α = ( 1
k , . . . ,

1
k ),

the Standard Simplex Conjecture posits that the maximum noise stability is achieved by a
“standard simplex partition” (this is equivalent to the Plurality is Stablest conjecture) [39, 35].
Even in the special case when k = 3 and α = ( 1

3 ,
1
3 ,

1
3 ), the answer is still tantalizingly open.
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(a)

f(x) = 1

f(x) = 2

(b)

f(x) = 1

f(x) = 2

f(x) = 3

Figure 1 (a) Borell’s Theorem: Halfspaces are most noise stable (b) Standard Simplex Partition
for k = 3 conjectured to be most noise stable (also known as the “Peace Sign Conjecture”).

In fact, a suprising result of [32] shows that when the αi’s are not all equal, the standard
simplex partition (and any variant thereof) does not achieve the maximum noise stability.
This indicates that the case k ≥ 3 is fundamentally different than the case of k = 2. On the
positive side, if we consider 0 < ρ < ρ0(k, n) (for some ρ0(k, n) that goes to 0 for large n),
then the Standard Simplex Conjecture has been shown to hold [31]. However, this result is
not applicable in the setting where ρ is fixed and n→∞.

The fact that we do not understand optimal partitions for k ≥ 3, led De, Mossel &
Neeman [19] to ask whether the optimal partition is realized in any finite dimension. More
formally:

Question 2. Given k ≥ 2, ρ ∈ (0, 1), and α ∈ ∆k, let Sn(α) be the optimal noise stability
of a function f : Rn → ∆k subject to E[f ] = α. Is there an n0 such that Sn(α) = Sn0(α) for
all n ≥ n0?

Even Question 2 is open as of now! In this light, De, Mossel & Neeman [19] ask whether
one can obtain an explicitly computable n0 = n0(k, ρ, ε) such that Sn0(α) ≥ Sn(α)− ε for all
n ∈ N (in other words, there exists a function f : Rn0 → ∆k that comes ε-close to achieving
the optimal noise stability). Note that the challenge is really about n0 being explicit, since
some n0(k, ρ, ε) always exists, as Sn(α) is a converging sequence as n→∞.

A natural approach to proving such an explicit bound is the idea of dimension reduction.
Basically, it suffices to obtain an n0 = n0(k, ρ, ε) such that for any n and any given
function f : Rn → ∆k, there exists a function f̃ : Rn0 → ∆k with E[f̃ ] = E[f ] and
Stabρ(f̃) ≥ Stabρ(f)− ε. Instantiating f with an optimal (or near-optimal) partition in Rn,
for arbitrarily large n, then gives an ε-optimal partition f̃ in Rn0 .

Indeed, De, Mossel and Neeman follow such an approach and obtain an explicitly comput-
able bound on n0. To do so, they use and build on the theory of eigenregular polynomials
that were previously studied in [21], which in turn uses other tools such as Malliavin calculus.

In this work, we introduce fundamentally different, but more elementary techniques
(elaborated on shortly), thereby significantly improving the bound in [19]. In particular, we
show the following.

I Theorem 1 (Dimension Bound on Approximately Optimal Noise-Stable Function). Given
parameters k ≥ 2, ρ ∈ [0, 1] and ε > 0, there exists an explicitly computable n0 = n0(k, ρ, ε)

CCC 2018
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such that the following holds:
For any n ∈ N and f : Rn → ∆k, there exists f̃ : Rn0 → ∆k such that,
1. ‖E[f ]− E[f̃ ]‖1 ≤ ε.
2. Stabρ(f̃) ≥ Stabρ(f)− ε.
In particular, the explicit choice of n0 can be upper bounded by exp

(
poly

(
k, 1

1−ρ ,
1
ε

))
.

Remarks

(i) In contrast to our theorem, the bound on n0 in [19] has an Ackermann-type growth.
(ii) It is a slight technicality that we get ‖E[f ]− E[f̃ ]‖1 ≤ ε instead of E[f ] = E[f̃ ] as was

required. However, it is possible to slightly modify f̃ to make E[f ] = E[f̃ ], if we allow
n0 to depend on α = E[f ] (which is the case in Question 2).

Theorem 1 has an immediate application to showing that approximately most-stable voting
schemes (among all low-influential voting schemes) can be computed efficiently. We refer
the reader to [19] for the details of this application. In order to prove Theorem 1, we in fact
turn to the more general setting of non-interactive simulation.

1.2 Non-Interactive Simulation from Correlated Gaussian Sources
Consider a more general setting where instead of a single function f , we have two players, Alice
and Bob, with corresponding functions A : Rn → ∆k and B : Rn → ∆k. They apply A and B
on the sequence of random variables X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) respectively,
where (X,Y ) ∼ G⊗nρ , which is the distribution of ρ-correlated Gaussians in n dimensions,

i.e. each coordinate (Xi,Yi) is independently sampled from Gρ := N
([

0
0

]
,

[
1 ρ

ρ 1

])
. The

goal is to choose A and B such that E[A] = E[B] = α, which is a pre-specified vec-
tor in ∆k, while maximizing E(X,Y )[〈A(X), B(Y )〉]. Note that, this quantity is same as
EX∼γn [〈A(X), UρB(X)〉], and hence in the restricted setting of A = B = f this quantity is
exactly the noise stability of f .

We can interpret the above as: Alice observesX and outputs i ∈ [k] with probability
Ai(X), similarly Bob observes Y and outputs j ∈ [k] with probability Bj(Y ). In this sense,
Alice and Bob wish to maximize their “agreement probability”, i.e., their probability of
outputting the same symbol. The dimension reduction mentioned in Theorem 1 generalized
to this setup would require obtaining an n0(k, ρ, ε) and a dimension reduction of A and B
that approximately preserves the marginals and does not decrease the agreement probability
by more than ε.

However, in this language, it is more natural to ask for a much stronger dimension
reduction that preserves the entire joint distribution of symbols that Alice and Bob output,
up to ε in total variation distance. We denote the joint distribution of Alice and Bob’s
outputs as (A(X), B(Y ))G⊗nρ , which is the distribution over (i, j) ∈ [k]× [k] given as Pr[Alice
outputs i and Bob outputs j] = E(X,Y )[Ai(X)Bj(Y )]. In the case of k = 2, such a dimension
reduction follows from (a more general version of) Borell’s theorem with in fact n0 = 1! Our
main result is indeed such a dimension reduction for all k ≥ 2.

I Theorem 2 (NIS from correlated Gaussian source). Given parameters k ≥ 2, ρ ∈ (0, 1) and
ε > 0, there exists an explicitly computable n0 = n0(k, ρ, ε) such that the following holds:
For any n and A : Rn → ∆k and B : Rn → ∆k, there exist Ã : Rn0 → ∆k and B̃ : Rn0 → ∆k

such that,

dTV

(
(A(X), B(Y ))G⊗nρ , (Ã(a), B̃(b))G⊗n0

ρ

)
≤ ε .
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In particular, the explicit choice of n0 is upper bounded as exp
(

poly
(
k, 1

1−ρ ,
1
ε

))
.

The transformation satisfies a stronger property that there exists an “oblivious” randomized
transformation (with a shared random seed) to go from A to Ã and from B to B̃, which
works with probability at least 1− ε. Since the same transformation is applied on A and B
with the same random seed, if A = B, then Ã = B̃ as well.

Theorem 1 follows immediately from Theorem 2, by simply setting A = B = f to obtain
f̃ = Ã = B̃. In fact, following up on [19], De, Mossel & Neeman were able to extend their
techniques to prove Theorem 2 [20] (again with Ackerman-type bounds on n0). To do so,
they build on the tools developed in [19] along with a new smoothing argument inspired
by boosting procedures in learning theory and potential function arguments in complexity
theory and additive combinatorics. As we shall present shortly, our approach gets directly to
Theorem 2 in a much more elementary fashion.

1.3 Extension: Non-Interactive Simulation from General Discrete
Sources

The Non-Interactive Simulation of Joint Distributions is quite well studied in Information
Theory and more recently in Theoretical Computer Science. Two players, Alice and Bob,
observe the sequences of random variables (x1, . . . ,xn) and (y1, . . . ,yn) respectively, where
each pair (xi,yi) is independently drawn from a known source distribution µ. The funda-
mental question here is to understand which other target joint distributions ν can Alice
and Bob simulate, without communicating with each other? How many samples from µ are
needed to do so, or in other words, what is the simulation rate?

The history of this problem goes back to the classical works of Gács and Körner [24]
and Wyner [56]. Specifically, consider the distribution Eq over {0, 1} × {0, 1} where both
marginals are Ber(1/2) and the bits are identical with probability 1. Gács and Körner studied
the special case of this problem corresponding to the target distribution ν = Eq. They
characterized the simulation rate in this case, showing that it is equal to what is now known
as the Gács-Körner common information of µ. On the other hand, Wyner studied the special
case corresponding to the source distribution µ = Eq. He characterized the simulation rate in
this case, showing that it is equal to what is now known as Wyner common information of ν.
Another particularly important work was by Witsenhausen [54] who studied the case where
the target distribution ν = Gρ. In this case, he showed that the largest correlation ρ that can
be simulated is exactly the well-known “maximal correlation coeffcient”4 ρ(µ) which was first
introduced by Hirschfeld [33] and Gebelein [25] and then studied by Rényi [52]. Witsenhausen
also considered the case where the target distribution ν = DSBSρ is a “doubly symmetric
binary source”, which is a pair of ρ-correlated bits (i.e., a pair of ±1 random variables with
correlation ρ), and gave an approach to simulate correlated bits by first simulating Gρ starting
with samples from µ, and then applying half-space functions to get outputs in {±1}. Starting
with µ, such a approach simulates DSBSρ′ where ρ′ = 1− 2 arccos ρ(µ)

π . Indeed, this calculation
is identical to one that arises in the rounding technique employed in Goemans-Williamson’s
approximation algorithm [30] for MaxCut 20 years later!

We will consider the modern formulation of the NIS question as defined in [37]. This
formulation ignores the simulation rate, and only focuses on whether simulation is even
possible or not, given infinitely many samples from µ – that is, whether the simulation rate
is non-zero or not.

4 We skip this definition as it is not central to our paper. The definition can be found in e.g. [29].

CCC 2018
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Alice

Bob

x

y

Zn 3

Zn 3

u

v

∈ [k]

∈ [k]

private randomness

private randomness

µ⊗n ν ∈ P ?

Figure 2 Non-Interactive Simulation, e.g., as studied in [37]

I Definition 3 (Non-interactive Simulation of Joint Distributions [37]). Let (Z × Z, µ) and
([k] × [k], ν) be two joint probability spaces. The distribution ν can be non-interactively
simulated from distribution µ if there exists a sequence of functions

{
A(n) : Zn → ∆k

}
n∈N

and
{
B(n) : Zn → ∆k

}
n∈N such that the joint distribution νn = (A(n)(x), B(n)(y))µ⊗n over

[k]× [k] is such that lim
n→∞

dTV(νn, ν) = 0.

A central question that was left open following the work of Witsenhausen is: given
distributions µ and ν, can ν be non-interactively simulated from µ? Can this be even decided
algorithmically? Even when µ and ν are extremely simple, e.g., µ is uniform on the triples
{(0, 0), (0, 1), (1, 0)} and ν is the doubly symmetric binary souce DSBS0.49, it is open if µ
can simulate ν! This problem was formalized as a natural gap-problem in a work by a subset
of the authors along with Sudan [29]. Here we state a slightly more general version.

I Problem 4 (Gap-NIS((Z × Z, µ),P, k, ε), cf. [29]). Given a joint probability space
(Z × Z, µ), a family of joint probability spaces P supported over [k] × [k], and an error
parameter ε > 0, distinguish between the following cases:
(i) there exists n and A : Zn → ∆k and B : Zn → ∆k, s.t. the distribution ν′ =

(A(x), B(y))µ⊗n satisfies dTV(ν′, ν) ≤ ε for some ν ∈ P.
(ii) for all n and all A : Zn → ∆k and B : Zn → ∆k, the distribution ν′ = (A(x), B(y))µ⊗n

satisfies dTV(ν′, ν) > 2ε for all ν ∈ P.5

In prior work [29], it was shown that Gap-NIS for discrete distributions µ and ν is
decidable, in the special case where k = 2. This was done by introducing a framework, which
reduced the problem to understanding Gap-NIS for the special case where µ = Gρ. Indeed,
the reason why the case of k = 2 was easier was precisely because Borell’s theorem [10] gives
an exact characterization of the distributions over [2]× [2] that can be simulated from Gρ.
The lack of understanding of the distributions over [k]× [k] that can be simulated from Gρ was
suggested in [29] as a barrier for extending their result to k > 2. With Theorem 2 in hand,
it is possible to extend the framework in [29] of using a Regularity Lemma and Invariance
principle, to yield the following theorem (as also done in [20], but with Ackerman-type
bounds).

5 the choice of constant 2 is arbitrary. Indeed, we could replace it by any constant greater than 1.
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I Theorem 5 (NIS from Discrete Sources). Let (Z ×Z, µ) be a joint probability space. Given
parameters k ≥ 2 and ε > 0, there exists an explicitly computable n0 = n0(k, µ, ε) such that
the following holds:
For any n and A : Zn → ∆k and B : Zn → ∆k, there exist Ã : Zn0 → ∆k and B̃ : Zn0 → ∆k

such that,

dTV

(
(A(x), B(y))µ⊗n , (Ã(a), B̃(b))µ⊗n0

)
≤ ε .

In particular, the explicit choice of n0 is upper bounded as exp
(

poly
(
k, 1

ε ,
1

1−ρ , log
( 1
α

)))
,

where α = α(µ) is the smallest atom in µ and ρ = ρ(µ) is the maximal correlation coefficient
of µ.

The above theorem immediately suggests a brute force algorithm to decide Gap-NIS((Z ×
Z, µ),P, k, ε). We do not provide details of the proof of the above theorem in this extended
abstract. The interested reader is referred to the full version of this paper [27] (available
online) for details.

1.4 Dimension Reduction for Polynomials over Gaussian Space
We now describe the main technique of “dimension reduction for low-degree polynomials”
that we introduce in this work, which could be of independent interest. We highlight that
this technique is the main contribution of this paper.

Let’s start with Theorem 2, and explain the main ideas behind its proof. We are given two
vector-valued functions A : Rn → ∆k and B : Rn → ∆k. We wish to reduce the dimension
n of the Gaussian space on which A and B act while preserving the joint distribution
(A(X), B(Y ))G⊗nρ over [k]× [k]. Recall that E(X,Y )∼G⊗nρ [Ai(X) ·Bj(Y )] is the probability
of the event [Alice outputs i and Bob outputs j]. For succinctness, we write this expectation
as 〈Ai, Bj〉G⊗nρ . In order to approximately preserve the joint distribution (A(X), B(Y ))G⊗nρ ,
it suffices to approximately preserve 〈Ai, Bj〉G⊗nρ for each (i, j) ∈ [k]× [k] upto an additive
ε/k2. Thus, to prove Theorem 2, we wish to find an explicit constant n0 = n0(ρ, k, ε), along
with functions Ã : Rn0 → ∆k and B̃ : Rn0 → ∆k such that∣∣∣∣〈Ãi, B̃j〉G⊗n0

ρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ ε

k2 .

Achieving this directly is highly unclear, since a priori, we have no structural information
about A and B! To get around this, we show that it is possible to first apply a structural
transformation on A and B to convert them to low-degree and multilinear polynomials
(see subsection 2.2 for formal definitions). Such transformations are described in section 4.
This however creates a new problem that the transformed A and B no longer map to
∆k. Nevertheless, we will show that after the said transformation, we still have that
the outputs of A and B are close to ∆k in expected `22 distance, that is, dist(A,∆k) :=
(EX ‖R(A(X))− A(X)‖22)1/2 is small (where R : Rk → ∆k denotes the rounding operator
that maps any v ∈ Rk to its closest point in ∆k). This will ensure that rounding the outputs
of A and B to ∆k will approximately preserve the correlations 〈Ai, Bj〉G⊗nρ .

We are now able to revise our objective as follows: Given two (vector-valued) degree-d
polynomials A : Rn → Rk and B : Rn → Rk, does there exist an explicit function n0 =
n0(k, d, δ), along with polynomials Ã : Rn0 → Rk and B̃ : Rn0 → Rk that δ-approximately
preserve (i) the correlation 〈Ai, Bj〉G⊗nρ for all (i, j) ∈ [k]× [k] and (ii) closeness of the outputs
of A and B to ∆k, that is, dist(A,∆k) and dist(B,∆k)?

CCC 2018
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We introduce a very simple and natural dimension-reduction procedure for low-degree
multilinear polynomials over Gaussian space. Specifically, for M that is a randomly sampled
n× n0 matrix with i.i.d. standard Gaussian entries, we set

Ã(a) := A

(
Ma

‖a‖2

)
and B̃(b) := B

(
Mb

‖b‖2

)
for a, b ∈ Rn0 r {0} . (1)

We leave Ã and B̃ undefined on 0 ∈ Rn0 . This is inconsequential as {0} is a measure zero
set under γn. Our main dimension-reduction theorem for polynomials is stated as follows.

I Theorem 6 (Dimension Reduction Over Gaussian Space). Given parameters k ≥ 2, d ∈ Z≥0,
ρ ∈ (0, 1) and δ > 0, there exists an explicitly computable n0 = n0(d, k, δ) such that the
following holds:

Let A : Rn → Rk and B : Rn → Rk be degree-d multilinear polynomials. Additionally,
suppose that dist(A,∆k),dist(B,∆k) ≤ δ. Consider the functions Ã : Rn0 → Rk and
B̃ : Rn0 → Rk as defined in Equation 1. With probability at least 1−O(δ) over the choice of
M ∼ γ⊗(n×n0)

1 , the following holds:

1. For every i, j ∈ [k] :
∣∣∣∣〈Ai, Bj〉G⊗nρ −

〈
Ãi, B̃j

〉
G⊗n0
ρ

∣∣∣∣ ≤ δ.

2. dist(Ã,∆k) ≤
√
δ and dist(B̃,∆k) ≤

√
δ.

In particular, the explicit choice of n0 is upper bounded as exp
(
poly

(
d, log k, log( 1

δ )
))
.

It is clear from the construction of Ã and B̃ that this theorem is giving us an “oblivious”
randomized transformation, as also remarked in Theorem 2. The proof of Theorem 6 is
obtained by combining Theorem 8 and Proposition 9 in section 3.

Proof outline and analogy with the Johnson-Lindenstrauss lemma.

We will now highlight a few parallels between our proof of Theorem 6 and the proof of
the Johnson-Lindenstrauss (JL) lemma (cf. [36, 18]), which has been extremely influential
in computer science with numerous applications including compressed sensing, manifold
learning, unsupervised learning and graph embedding.

Suppose that we have two unit vectors u, v ∈ Rn. We wish to obtain a randomized
transformation Ψs : Rn → Rn0 (for some random seed s) that approximately preserves
the inner product, that is, 〈Ψs(u),Ψs(v)〉 ≈δ 〈u, v〉 holds with probability 1 − δ, over
the randomness of seed s; note that here 〈·, ·〉 denotes the inner product over Rn and
Rn0 respectively. Indeed, there is such a transformation, namely, ΨM (u) = M ·u√

n0
where

M ∼ γ⊗n0×n
1 . Let F (M) = 〈ΨM (u),ΨM (v)〉. Such a transformation satisfies,

E
M

[F (M)] = 〈u, v〉 and Var
M

(F (M)) = 〈u, v〉2 + ‖u‖22‖v‖22
n0

≤ 2
n0
,

where we use that u and v are unit vectors. Thus, if we choose n0 = 2/δ3, then we can make the
variance smaller than δ3. Thereby, using Chebyshev’s inequality, we get that with probability
at least 1− δ, the inner product 〈u, v〉 is preserved, that is, | 〈ΨM (u),ΨM (v)〉 − 〈u, v〉 | ≤ δ.
Thus, we have a oblivious randomized dimension reduction that reduces the dimension
of any pair of unit vectors to O(1/δ3), independent of n. Note that, instead of using
Chebyshev’s inequality, we could use a much sharper concentration bound to show that
n0 = O(1/ε2 log(1/δ)) suffices to preserve the inner product up to an additive ε, with
probability 1− δ. However, we described the Chebyshev’s inequality version as this is similar
to our proof of Theorem 6.
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The problem we are facing, although morally similar, is technically entirely different. For
simplicity, let’s first consider the task of reducing the dimension of the domain of a single pair of
polynomials A : Rn → R and B : Rn → R. And for the moment, consider the transformation
such that ΨMA : Rn0 → R is given by A(Ma/

√
n0). Similarly, ΨMB(b) = B(Mb/

√
n0).

Our proof of Theorem 6 proceeds along similar lines as the above proof of the JL Lemma,
that is, by considering F (M) = 〈ΨMA,ΨMB〉G⊗n0

ρ
, and proving bounds on EM [F (M)] and

Var(F (M)). This turns out to be quite delicate! Unlike the JL case, we don’t even have
EM [F (M)] = 〈A,B〉G⊗nρ . What we do show however is that,∣∣∣EM [F (M)] − 〈A,B〉G⊗nρ

∣∣∣ ≤ on0(1) and Var
M

(F (M)) ≤ on0(1) ,

that is, both are converging to 0 at an explict rate determined by n0 (with some dependence
on the degree d of A and B). Interestingly however, in the case of d = 1, it turns out that
F (M) is in fact an unbiased estimator of 〈A,B〉G⊗nρ . Indeed, this is not a coincidence! We
leave it to the interested reader to figure out that in the case of d = 1, our transformation
is in fact identical to the above described JL transformation on the n-dimensional space of
Hermite coefficients of A and B.

Our actual transformation is slightly different, namely ΨMA(a) = A(Ma/‖a‖2). This is
to ensure item 2, about preserving the closeness of the output of A to ∆k. The proof gets a
little more technical due to this change, but is intuitively similar to the above transformation
since ‖a‖2 is tightly concentrated around √n0. It is important to note that item 2 is quite
critical to the entire approach. If it were not for this restriction, item 1 is very easy to satisfy
on its own by other more direct dimension reduction operations on the Hermite coefficients.

The mean and variance bounds on F (M) are presented as Lemma 10. This is the most
technical part of this work, but we stress that the main ideas are conceptually simple and
elementary (for the most part). We provide a brief sketch of the proof in subsection 3.1 that
illustrates all the main ideas in under a page, and defer all details to Appendix A. To prove
these mean and variance bounds, we first analyze the case when A and B are multi-linear
monomials (subsection A.2) and then combine these monomial calculations to obtain bounds
for general multilinear polynomials (subsection A.3).

1.5 Comparisons with recent works of De, Mossel & Neeman
Our main theorems (Theorems 1, 2, 5) significantly improve the bounds in the versions
proved by De, Mossel & Neeman [19, 20]. Our work was inspired by [19, 20] through
several high-level ideas, such as the use of the transformation to low-degree and multilinear
polynomials (although these tranformations are technically different in our case). However, it
seems that the key insight into “why dimension reduction is possible” provided by the works
of De Mossel & Neeman and the current work are fundamentally different.

The key insight for dimension reduction in the work of De, Mossel & Neeman is (quoting
[19]): “the fact that a collection of homogeneous polynomials can be replaced by polynomials
in bounded dimensions is a tensor analogue of the fact that for any k vectors in Rn, there
exist k vectors in Rk with the same matrix of inner products”. By contrast, the main
intuition in our work is an “oblivious” dimension reduction technique, very similar to the
Johnson-Lindenstrauss Lemma, as described in subsection 1.4.

Also, we point out a minor difference in our versions of Theorem 1. In [19] the function
f̃ maps to [k], while in our theorem f̃ maps to ∆k. Interestingly however, this is not a major
difference and it follows from a thresholding lemma in [19, Lemma 15 & 16] that any such
f̃ can be modified to have range [k], while preserving E[f̃ ] without decreasing the noise
stability.
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1.6 Other Related Work and Future Directions
Information Theory

Several previous works in information theory and theoretical computer science study “non-
interactive simulation” type of questions. For instance, the non-interactive simulation of
joint distributions question studied in this work is a generalization of the “non-interactive
correlation distillation” problem6 which was studied by [43, 45]. Moreover, recent works in
the information theory community [37, 8] derive analytical tools (based on hypercontractivity
and the so-called strong data processing constant) to prove impossibility results for NIS.
While these results provide stronger bounds for some sources, they are not tight in general.
Finally, the “non-interactive agreement distillation” problem studied by [9] can also be viewed
as a particular case of the NIS setup.

Randomness in Computation

As discussed in [29], one motivation for studying NIS problems stems from the study of
the role of randomness in distributed computing. Specifically, recent works in cryptography
[2, 3, 11, 17, 41, 51], quantum computing [47, 16, 23] and communication complexity
[6, 15, 28, 26] study how the ability to solve various computational tasks gets affected by
weakening the source of shared randomness. In this context, it is very natural to ask how
well can a source of randomness be transformed into another (more structured) one, which is
precisely the setup of non-interactive simulation.

The classic Newman’s theorem [46] tells us that any communication protocol with n-bit
inputs and 0-1 outputs can be simulated with only O(logn) bits of randomness. On the
other hand, if we consider the setting where Alice and Bob run a communication protocol
with correlated randomness, such as those defined in [6, 15], then reducing the randomness
requirement of such protocols is not clear. Theorem 5 implies randomness reduction for
zero-communication or even simultaneous message protocols, and hence can be seen as a
first step towards understanding the randomness requirements of arbitrary (one or two way)
communication protocols with access to correlated randomness.

Tensor Power problems

Another motivation comes from the fact that NIS belongs to the class of tensor power
problems, which have been very challenging to analyze. In such questions, the goal is to
understand how some combinatorial quantity behaves in terms of the dimensionality of
the problem as the dimension tends to infinity. A famous instance of such problems is the
Shannon capacity of a graph [53, 40] where the aim is to understand how the independence
number of the power of a graph behaves in terms of the exponent. The question of showing
the computability of the Shannon capacity remains open to this day [4]. Other examples
of such open problems (which are more closely related to NIS) arise in the problems of
local state transformation of quantum entanglement [7, 22], the problem of computing the
entangled value of a 2-prover 1-round game (see for, e.g., [38] and also the open problems
[1]). Another example is the problem of computing the amortized value of parallel repetitions
of a 2-prover 1-round game [49, 34, 48, 50, 5]. While we don’t have computability results for
the amortized value, there has been a recent work that tries to characterize it in terms of an
information theoretic quantity [12]. Yet another example of a tensor-power problem is the

6 which considered the problem of maximizing agreement on a single bit, in various multi-party settings.
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task of computing the amortized communication complexity of a communication problem.
Braverman-Rao [13] showed that this equals the information complexity of the communication
problem, however the computability of information complexity was shown only recently [14].

We hope that the recent progress on the Non-Interactive Simulation problem would
stimulate progress on these other notable tensor-power problems. A concrete question is
whether the techniques used for NIS (regularity lemma, invariance principle, etc.) can be
translated to any of the above mentioned setups.

Deterministic Approximate Counting

We also point out that the notions of eigenregularity used in [19, 20] were originally introduced
and used in [21] to give the only known fixed-polynomial time deterministic approximate
counting algorithm for polynomial threshold functions (PTFs). Our randomized techniques
don’t seem directly applicable to the PTF counting problem, as the emphasis there is on
being deterministic. However, it will be interesting if our techniques could yield some further
insights into approximate counting problems and pseudorandomness in general.

1.7 Organization of the Paper
In section 2, we summarize some useful definitions and provide a simple lemma that will be
useful later. In section 3, we state our main technique of dimension reduction for polynomials
(Theorem 6) and provide a brief sketch of the proof, with most details deferred to Appendix A.
In section 4, we describe the transformations to make functions low-degree and multilinear,
with proofs deferred to Appendix B. Finally, in section 5, we prove Theorem 2 (which implies
Theorem 1 as a corollary).

2 Preliminaries

2.1 Gaussian Probability Spaces
Throughout this paper, we deal with the n-dimensional Gaussian space, i.e. Rn equipped
with Gaussian measure γn given by the density function

dγn
dX

:= 1
(2π)n/2

· exp
(
−1

2 · ‖X‖
2
Rn

)
.

where ‖ · ‖Rn denotes the `2 norm of a vector. We use letters such as X, Y to denote points
in Rn, bold symbols such as X, Y to denote random variables, subscripts such as Xi or Xi

denote the i-th coordinate.

The `2-norm of a function f : Rn → R is defined as ‖f‖2 :=
[

E
X∼γn

f(X)2
]1/2

. We use

L2(Rn, γn) to denote the space of all `2-integrable functions f : Rn → R, i.e. ‖f‖2 <∞. All
functions we consider will be `2-integrable. The inner product of f, g ∈ L2(Rn, γn) is defined
as 〈f, g〉γn := EX∼γn [f(X)g(X)].

The joint distribution of ρ-correlated Gaussians is denoted as Gρ, which is a 2-dimensional
Gaussian distribution (X,Y ), where X and Y are marginally distributed according to γ1,
with E[XY ] = ρ. For A,B ∈ L2(Rn, γn), the noisy correlation between A and B over G⊗nρ
is defined as,

〈A,B〉G⊗nρ := E
(X,Y )∼G⊗nρ

[A(X) ·B(Y )]
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Finally, the total variation distance between two distributions µ and ν over domain Ω is
defined as,

dTV(µ, ν) := sup
S⊆Ω

∣∣µ(S)− ν(S)
∣∣ .

2.2 Hermite Analysis
The set of Hermite polynomials {Hr : R→ R : r ∈ Z≥0} form an orthonormal basis for
functions in L2(R, γ1) with respect to the inner product 〈·, ·〉γ1

. The r-th Hermite polynomial
Hr : R→ R (for r ∈ Z≥0) is defined as,

H0(x) = 1; H1(x) = x; Hr(x) = (−1)r√
r!

ex
2/2 · d

r

dxr
e−x

2/2 .

Hermite polynomials can also be obtained via the generating function, ext− t
2
2 =

∑∞
r=0

Hr(x)√
r! ·

tr.
For any σ = (σ1, . . . , σn) ∈ Zn≥0, define Hσ : Rn → R as Hσ(X) =

∏n
i=1Hσi(Xi). It

easily follows that the set
{
Hσ : σ ∈ Zn≥0

}
forms an orthonormal basis for L2(Rn, γn). Thus,

every A ∈ L2(Rn, γn) has a Hermite expansion given by A(X) =
∑
σ∈Zn≥0

Â(σ) · Hσ(X),

where the Â(σ)’s are the Hermite coefficients of A obtained as Â(σ) = 〈A,Hσ〉γn . The
degree of σ is defined as |σ| :=

∑
i∈[n] σi, and the degree of A is the largest |σ| for which

Â(σ) 6= 0. We say that A ∈ L2(Rn, γn) is multilinear if Â(σ) is non-zero only if σi ∈ {0, 1}
for all i ∈ [n].
We list several useful facts about Hermite coefficients:
(1) Parseval’s identity:

∥∥A∥∥2
2 =

∑
σ∈Zn≥0

Â(σ)2 and Var(A) =
∑

0 6=σ∈Zn≥0
Â(σ)2.

(2) Plancherel’s identity: 〈A,A′〉γn =
∑
σ∈Zn≥0

Â(σ)Â′(σ).

(3) Ornstein-Uhlenbeck operator: UρA(X) =
∑
σ∈Zn≥0

ρ|σ| · Â(σ) ·Hσ(X).

(4) Noisy Correlation: 〈A,B〉G⊗nρ = 〈A,UρB〉γn =
∑
σ∈Zn≥0

ρ|σ|Â(σ)B̂(σ)

For convenience, Uρ(X) denotes the distribution (ρX +
√

1− ρ2Z) where Z ∼ γn, for any
X ∈ Rn.

2.3 Vector-valued functions
For any function A : Rn → Rk, we will interpret A as a vector of functions (A1, · · · , Ak),
where Ai : Rn → R is the i-th coordinate of the output of A. The definitions of Hermite
analysis extend naturally to vector-valued functions as follows. For A : Rn → Rk, the Hermite
coefficient Â(σ) is

(
Â1(σ), . . . , Âk(σ)

)
∈ Rk. We can extend the definition of `2-norm as

‖A‖2 := EX∼γn ‖A(X)‖2 or equivalently ‖A1‖2 + · · · + ‖Ak‖2 =
∑
σ∈Zn≥0

‖Â(σ)‖2. Also,
deg(A) := maxi∈[k] deg(Ai). Again, all the vector-valued functions with domain Rn that we
consider will be such that the function in each coordinate is in L2(Rn, γn).

For k ∈ N and i ∈ [k], let ei be the unit vector along coordinate i in Rk. The simplex ∆k

is defined as the convex hull formed by {ei : i ∈ [k]}. Equivalently, ∆k =
{
v ∈ Rk : ‖v‖1 = 1

}
is the set of probability distributions over [k]. While we will consider vector-valued functions
mapping to Rk, we will be primarily interested in functions which map to ∆k. The rounding
operator R(k) : Rk → ∆k maps any v ∈ Rk to its closest point in ∆k. In particular, it is
the identity map on ∆k. We will drop the superscript on R, as k is fixed throughout this
paper. Similar to our notation for vector-valued functions, Ri denotes the i-th coordinate of
R. Thus, while the i-th coordinate of A is denoted by Ai, the i-th coordinate of R(A) is
denoted by Ri(A).
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As mentioned already, an important relaxation in our work is to consider functions that
do not map to ∆k, but instead map to Rk. For such functions to be meaningful, we will
require that the outputs are usually close to ∆k, in which case, we will be rounding them
to the simplex ∆k. Towards this end, the following simple proposition will be very useful,
which says that if we modify the strategies of Alice and Bob slightly (in `2-distance), then
the correlation between the strategies does not change significantly. The proof follows by a
simple triangle inequality and the Cauchy-Schwarz inequality.

I Proposition 7 (Close strategies, have similar correlations). Let A, Ã,B, B̃ ∈ L2(Rn, γn) such
that ‖A‖2, ‖Ã‖2, ‖B‖2, ‖B̃‖2 ≤ 1. If ‖A− Ã‖2 ≤ ε and ‖B − B̃‖2 ≤ ε, then it holds that,∣∣∣∣〈Ã, B̃〉G⊗nρ − 〈A,B〉G⊗nρ

∣∣∣∣ ≤ 2ε .

3 Dimension Reduction for Low-Degree Multilinear Polynomials

In this section, we present our main technique of dimension reduction for low-degree multilin-
ear polynomials over Gaussian space. Theorem 6 is obtained immediately as a combination
of Theorem 8 and Proposition 9 stated below.

I Theorem 8. Given d ∈ Z>0, ρ ∈ [0, 1] and δ > 0, there exists an explicitly computable
n0 = n0(d, δ), such that the following holds:
Let A : Rn → R and B : Rn → R be degree-d multilinear polynomials, s.t.

∥∥A∥∥2 ,
∥∥B∥∥2 ≤ 1.

For M ∈ Rn×n0 with entries i.i.d. sampled from γ1, define the functions7 AM : Rn0 → R
and BM : Rn0 → R as

AM (a) = A

(
Ma∥∥a∥∥2

)
and BM (b) = B

(
Mb∥∥b∥∥2

)
for a, b ∈ Rn0 r {0} .

Then, with probability at least 1− δ (over the choice of M), it holds that,∣∣∣〈AM , BM 〉G⊗n0
ρ

− 〈A,B〉G⊗nρ
∣∣∣ < δ .

In particular, the explicit choice of n0 is upper bounded as dO(d)

δ4 .

In other words, for a typical choice of M ∼ γ
⊗(n×n0)
1 , the correlation between A and B

is approximately preserved if we replace (X,Y ) ∼ G⊗nρ by (Ma/
∥∥a
∥∥

2 ,Mb/
∥∥b
∥∥

2), where
(a, b) ∼ G⊗n0

ρ . Intuitively, M can be thought of as a means to “stretch” n0 coordinates of Gρ
into effectively n coordinates of Gρ, while “fooling” correlations between degree-d multilinear
polynomials.

Before we prove the above theorem, we prove a simple proposition that completely handles
item 2 of Theorem 6 by showing that if this dimension reduction were applied to vector-valued
functions whose outputs lie close to the simplex ∆k, then with high probability, even the
dimension-reduced functions will have outputs close to the simplex. More formally,

I Proposition 9. Let A : Rn → Rk and B : Rn → Rk, such that
∥∥R(A)−A

∥∥
2 ,∥∥R(B)−B

∥∥
2 ≤ δ. Then, with probability at least 1 − 2δ (over choice of M), it holds

that,∥∥R(AM )−AM

∥∥
2 ≤
√
δ and

∥∥R(BM )−BM

∥∥
2 ≤
√
δ .

7 AM and BM can be defined arbitrarily on 0 ∈ Rn0 . This is inconsequential as {0} is a measure zero
set under γn.
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Proof. Observe that even for a fixed non-zero a ∈ Rn0 , the distribution of Ma
‖a‖2

is identical
to that of a standard n-variate Gaussian distribution γn. Thus, we immediately have that,

E
M

E
a

∥∥∥R(A(Ma
‖a‖2

))
−A

(
Ma
‖a‖2

)∥∥∥2

2
= E

X

∥∥R (A (X))−A (X)
∥∥2

2

Alternately, E
M

∥∥R(AM )−AM

∥∥2
2 =

∥∥R(A)−A
∥∥2

2 ≤ δ2

Thus, by Markov’s inequality,
∥∥R(AM )−AM

∥∥
2 ≤
√
δ holds with probability at least 1− δ.

We can similarly argue for BM , and a union bound completes the proof. J

To prove Theorem 8, we primarily use the second moment method (i.e., Chebyshev’s
inequality). In particular, let F (M) be defined as,

F (M) def= 〈AM , BM 〉G⊗n0
ρ

The most technical part of this work is to show sufficently good bounds on the mean and
variance of F (M) for a random choice of M ∼ γ⊗(n×n0)

1 , given by the following lemma.

I Lemma 10. (Mean & Variance Bound). Given d and δ, there exists an explicitly computable
n0 := n0(d, δ) such that for M ∼ γ⊗(n×n0)

1 ,∣∣∣E
M
F (M)− 〈A,B〉G⊗nρ

∣∣∣ ≤ δ (Mean bound)

Var
M

(F (M)) ≤ δ (Variance bound)

In particular, one may take n0 = dO(d)

δ2 .

We provide a little sketch of the proof of Lemma 10 below, with the full details in Appendix A.
Assuming Lemma 10, we can easily prove Theorem 8.

Proof of Theorem 8. We invoke Lemma 10 with parameters d and δ2/2, to get a choice of
n0 = dO(d)

δ4 . Using Chebyshev’s inequality and the Variance bound in Lemma 10, we have
that for any η > 0,

Pr
M

[∣∣F (M)− EM F (M)
∣∣ > η

]
≤ δ2

2η .

Using the triangle inequality, and the Mean bound in Lemma 10, we get

Pr
M

[∣∣∣F (M)− 〈A,B〉G⊗nρ
∣∣∣ > δ

]
≤ Pr

M

[∣∣F (M)− EM F (M)
∣∣+
∣∣∣EM F (M)− 〈A,B〉G⊗nρ

∣∣∣ > δ
]

≤ Pr
M

[∣∣F (M)− EM F (M)
∣∣ > δ − δ2] ≤ δ. J

3.1 Proof Sketch of Lemma 10
While the proof of Lemma 10 is somewhat technical as a whole, the main driver of the
entire lemma is a simple combinatorial fact that if we sample d times with replacement
from a bag with n0 items, then the probability of not sampling distinct items is at most
O(d2/n0) = on0(1). We briefly illustrate this idea at play by proving a simpler version of
the mean bound. For this section, let’s consider a different dimension reduction of setting
AM and BM as, AM (a) = A(Ma/

√
n0) and BM (b) = B(Mb/

√
n0), where M ∼ γ⊗(n×n0)

1 .
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Let mi ∈ Rn0 denote the vector corresponding to the i-th row of M . Consider the mean of
F (M) = 〈AM , BM 〉G⊗n0

ρ
:

E
M
F (M) = E

M
E

a,b
A

(
Ma
√
n0

)
B

(
Mb
√
n0

)
= E

M
E

a,b

∑
σ,κ

Â(σ)B̂(κ)
n

(|σ|+|κ|)/2
0

·
∏

i :σi=1
〈mi,a〉 ·

∏
j :κj=1

〈mj , b〉

where, recall that A and B are multilinear, and so the relevant σ and κ are in {0, 1}n, with
|σ|, |κ| ≤ d. Next, observe that Emim

T
i = In0×n0 , and hence we get that,

E
M

∏
i :σi=1

〈mi,a〉 ·
∏

j :κj=1
〈mj , b〉 =

{
〈a, b〉|σ| if σ = κ

0 if σ 6= κ
.

Finally, we observe that if we expand 〈a, b〉d as
∑
i1,...,id∈[n0] ai1bi1 . . .aidbid , then from

the combinatorial fact above, except for a O(d2) · nd−1
0 out of total nd0 terms, the in-

dices i1, . . . , id are all distinct. It is immediate to see that if all the ij ’s are distinct then
Ea,b ai1bi1 . . .aidbid = ρd. Additionally, we show that if the ij ’s are not all distinct then
|Ea,b ai1bi1 . . .aidbid | ≤ dO(d) (this follows from the fact that for the d-th moments of γ1
are at most dO(d)). Putting this together we get for any σ (with |σ| ≤ d) that,

E
a,b

〈a, b〉|σ|

n
|σ|
0

= ρ|σ| ± dO(d)

n0

Putting everything together we get,

E
M
F (M) =

∑
σ

Â(σ)B̂(σ) ·
(
ρ|σ| ± dO(d)

n0

)
= 〈A,B〉G⊗nρ ±

∑
σ

Â(σ)B̂(σ) · d
O(d)

n0

And hence,∣∣∣EM F (M)− 〈A,B〉G⊗nρ
∣∣∣ ≤ dO(d)

n0
·
∑
σ

Â(σ)B̂(σ) ≤ dO(d)

n0
· ‖A‖2 · ‖B‖2 ≤ δ,

where we use the Cauchy-Schwarz inequality and that n0 ≥ dO(d)/δ. This completes a
proof sketch of the mean bound in Lemma 10. Replacing √n0 by ‖a‖2 introduces a minor
technicality, but still works because ‖a‖2 is tightly concentrated around √n0. The variance
bound is slightly more complicated with the use of a hypercontractive inequality instead of
Cauchy-Schwarz. The full details of the proof are in Appendix A.

4 Transformation to Low-Degree Multilinear Polynomials

While Theorem 6 applies only for low-degree multilinear polynomials, we can extend it
for all functions by using the following lemma that transforms k-dimensional `2-integrable
functions A : Rn → Rk and B : Rn → Rk into low-degree multilinear polynomials while
approximately preserving all correlations and also not deviating much from the simplex ∆k

(although slightly increasing the number of variables).

I Lemma 11 (Low-Degree Multilinear Transformation). Given parameters ρ ∈ [0, 1], δ > 0,
k ∈ N, there exists an explicit d = d(k, ρ, δ) and t := t(k, d, δ) such that the following holds:
Let A : Rn → Rk and B : Rn → Rk, s.t. for any i ∈ [k], it holds that Var(Ai),Var(Bi) ≤ 1.
Then, there exist functions Ã : Rnt → Rk and B̃ : Rnt → Rk such that the following
statements hold.
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1. Ã and B̃ are multilinear with degree at most d.
2. For any i ∈ [k], it holds that Var(Ãi) ≤ Var(Ai) ≤ 1 and Var(B̃i) ≤ Var(Bi) ≤ 1.
3.
∥∥∥R(Ã)− Ã

∥∥∥
2
≤
∥∥R(A)−A

∥∥
2 + δ and

∥∥∥R(B̃)− B̃
∥∥∥

2
≤
∥∥R(B)−B

∥∥
2 + δ

4. For every i, j ∈ [k],∣∣∣∣〈Ãi, B̃j〉G⊗ntρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ δ√
k

In particular, one may take d = O
(√

k log2(k/δ)
δ(1−ρ)

)
and t = O

(
kd2

δ2

)
.

This lemma is itself proved in two stages. The first stage transforms general functions
to low-degree polynomials by applying a small noise operator (making the functions have
“decaying Hermite tails”) followed by truncation of the higher degree terms. The second
stage transforms low-degree polynomials into multilinear ones, by replacing each variable by
a normalized sum of new variables (making the functions have low mass on non-multilinear
terms) followed by truncation of the non-multilinear terms.

These techniques are quite standard in literature. For the use of noise operator in the
first stage see e.g. [44, 42]. For the substitution of variables in the second stage see e.g. [19].
However, since we are stating particular quantitative versions of the lemmas, we provide the
proofs in Appendix B for completeness.

5 Non-Interactive Simulation from Correlated Gaussian Sources

In this section, we complete the proof of our main theorem regarding non-interactive
simulation from correlated Gaussian sources, i.e. Theorem 2. Recall that it immediately
implies Theorem 1 by setting A = B = f and obtaining f̃ = Ã = B̃.

Proof of Theorem 2. Starting with functions A : Rn → ∆k and B : Rn → ∆k, we first
apply Lemma 11 to transform A and B to low-degree and multilinear polynomials, and
subsequently apply Theorem 8. Unfortunately after these transformations, the range is no
longer restricted to ∆k. Nevertheless, we do have that these transformations ensure that
the functions still output something “close” to the simplex ∆k. This allows us to apply the
rounding operator and get the range as ∆k again (using Lemma 7). An overview of the
transformations done is presented in Figure 3.

We thus transform A and B through each of the following steps. At each step, we
approximately preserve the correlation 〈Ai, Bj〉 for every i, j ∈ [k]. Additionally, in each step∥∥R(A)−A

∥∥
2 and

∥∥R(B)−B
∥∥

2 doesn’t increase significantly (note that, to begin with, the
range of A and B is ∆k and hence we start with

∥∥R(A)−A
∥∥

2 =
∥∥R(B)−B

∥∥
2 = 0).

1. Transformation to Low-Degree & Multilinear: We apply Lemma 11 on A and B
with parameter δ (chosen later), setting d = d(ρ, k, δ) and t = t(d, k, δ) as required, to
get degree-d and multilinear A(1) : Rn → Rk and B(1) : Rn → Rk. Moreover, we have
that for every i, j ∈ [k],∣∣∣∣〈A(1)

i , B
(1)
j

〉
G⊗ntρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ δ (2)

Additionally, we have
∥∥R(A(1))−A(1)

∥∥
2 ≤

∥∥R(A)−A
∥∥

2 + δ ≤ δ and similarly for B(1).
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A B Rn → ∆k

Low-Degree &
Multilinear transform

Lemma 11 Lemma 11

A(1) B(1) Rnt → Rk

Dimension
Reduction

Theorem 8
(using random seed M)

A(2) B(2) Rn0 → Rk

Rounding Lemma 7 Lemma 7

Ã B̃ Rn0 → ∆k

Figure 3 Transformations for Non-interactive simulation from Correlated Gaussian Sources

2. Dimension reduction: We apply Theorem 8 with parameter δ/k2, setting n0 =
n0(d, ρ, δ/k2) as required, on individual coordinates of A(1) and B(1) to obtain func-
tions A(2) : Rn0 → Rk and B(2) : Rn0 → Rk. Taking a union bound, we have that with
probability at least 1− δ, it holds for every i, j ∈ [k] that,∣∣∣∣〈A(2)

i , B
(2)
j

〉
G⊗n0
ρ

−
〈
A

(1)
i , B

(1)
j

〉
G⊗ntρ

∣∣∣∣ ≤ δ (3)

From Proposition 9, we have that with probability 1− 4δ,∥∥R(A(2))−A(2)
∥∥

2 ≤
√∥∥R(A(1))−A(1)

∥∥
2 ≤

√
δ

∥∥R(B(2))−B(2)
∥∥

2 ≤
√∥∥R(B(1))−B(1)

∥∥
2 ≤

√
δ

Note that this is the only randomized step in the entire transformation, and it succeeds
in obtaining the above three statements with probability at least 1− 5δ.

3. Rounding to ∆k: Finally, we set Ã = R(A(2)) and B̃ = R(B(2)). Thus, assuming the
previous step succeeds, we have that ‖Ãi −A(2)

i ‖2 ≤
√
δ and ‖B̃j −B(2)

j ‖2 ≤
√
δ. Hence

we can invoke Lemma 7, to conclude that,∣∣∣∣〈Ãi, B̃j〉G⊗n0
ρ

−
〈
A

(2)
i , B

(2)
j

〉
G⊗n0
ρ

∣∣∣∣ ≤ 2
√
δ. (4)

Thus we started with functions A : Rn → ∆k and B : Rn → ∆k and ended with functions
Ã : Rn0 → ∆k and B̃ : Rn0 → ∆k such that for every i, j ∈ [k] (by combining Equations 2, 3
and 4) it holds that,∣∣∣∣〈Ãi, B̃j〉G⊗n0

ρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ O(
√
δ) .

Thus, more strongly, if we instantiate δ = O(ε2/k4), then we get that our entire transformation
succeeds with probability 1− ε in obtaining Ã and B̃ such that,

dTV

(
(A(X), B(Y ))G⊗nρ , (Ã(a), B̃(b))G⊗n0

ρ

)
≤ ε .
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It is easy to see that n0 works out to be

n0 = dO(d)

δ4 = exp
(
Õ

(
k4.5

ε2(1− ρ)

))
= exp

(
poly

(
k,

1
ε
,

1
1− ρ

))
. J
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A Proofs of Mean and Variance Bounds in Dimension Reduction

In this section, we provide the proof of Lemma 10. This is the main new technical component
introduced in this paper. Even though the calculations might seem cumbersome, they involve
mostly elementary steps. To understand the high level picture, we recommend the reader to
go through a short proof sketch presented in subsection 3.1.

Recall that starting with degree d multilinear polynomials A : Rn → R and B : Rn → R,
we defined functions AM : Rn0 → R and BM : Rn0 → R, for M ∼ γ⊗(n×n0)

1 , as

AM (a) = A

(
Ma∥∥a∥∥2

)
and BM (b) = B

(
Mb∥∥b∥∥2

)
for a, b ∈ Rn0 r {0} .

and we defined their correlation as F (M) def= 〈AM , BM 〉G⊗n0
ρ

. Lemma 10 proves bounds
on the mean and variance of F (M), which we restate below for convenience.

I Lemma 12. (Mean & Variance Bound). Given d and δ, there exists an explicitly computable
n0 := n0(d, δ) such that for M ∼ γ⊗(n×n0)

1 ,∣∣∣E
M
F (M)− 〈A,B〉G⊗nρ

∣∣∣ ≤ δ (Mean bound)

Var
M

(F (M)) ≤ δ (Variance bound)

In particular, one may take n0 = dO(d)

δ2 .

We break down the full proof into the following three modular steps.
1. In subsection A.1, we prove a meta-lemma (Lemma 13) that will help us prove both the

mean and variance bounds; indeed this meta-lemma is at the heart of why Theorem 8 holds.
Morally, this lemma says that if we have an expectation of a product of a small number
of inner products of normalized correlated Gaussian vectors, then, we can exchange the
product and the expectations while incurring only a small additive error. Lemma 13 is
the main take away from this subsection, and the reader may skip to subsection A.2 and
subsection A.3 to see the rest of the proof.

2. In subsection A.2, we prove bounds on the mean and co-variances of degree-d multilinear
monomials, under the above transformation of replacing X,Y ∈ Rn (inputs to A and B)
by Ma
‖a‖2

and Mb
‖b‖2

respectively.
3. In subsection A.3, we finally use the above bounds on mean and co-variances of degree-d

multilinear monomials in order to prove Lemma 10.
I Remark. To make our notations convenient, we will often write equations such as α = β±ε
which is to be interpreted as

∣∣α− β∣∣ ≤ ε.
A.1 Product of Inner Products of Normalized Correlated Gaussian

Vectors
The following is the main lemma in this subsection (this is the meta-lemma alluded to earlier).

I Lemma 13. Given d,D ∈ Z≥0 and δ > 0 (with D sufficiently larger than d), let
(u1, . . . ,ud,v1, . . . ,vd) be a 2dD-dimensional multivariate Gaussian distribution such that,

each ui,vi ∈ RD are marginally distributed as standard D-dimensional Gaussians γD.
for each j ∈ [D], the joint distribution (u1,j , . . . ,ud,j ,v1,j , . . . ,vd,j), is independent across
different values of j.
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Then,∣∣∣∣ E
{ui,vi}i

[∏d
i=1

〈ui,vi〉
‖ui‖2‖vi‖2

]
−
∏d
i=1 E

{ui,vi}i

[
〈ui,vi〉
D

]∣∣∣∣ ≤ dO(d)

D
.

We point out that there are two steps taking place in Lemma 13:
(i) the replacement of ‖ui‖2 (and ‖vi‖2) by

√
D (around which it is tightly concentrated),

(ii) the interchanging of the expectation and the product.
We will handle each of these changes one by one.

Product of Negative Moments of `2-norm of Correlated Gaussian vectors
In order to handle the replacement of ‖ui‖2 (and ‖vi‖2) by

√
D, we will prove some bounds

on the mean and variance of products of negative powers of the `2-norm of a standard
Gaussian vector.

I Lemma 14. Let w1, w2, . . . , w` be (possibly correlated) multivariate Gaussians where
each wi ∈ RD is marginally distributed as γD, and let d1, d2, . . . , d` be non-negative integers
with d :=

∑`
i=1 di. Then,∣∣∣∣E [ ∏̀

i=1

1
‖wi‖

di
2

]
− 1

Dd/2

∣∣∣∣ ≤ O

(
d5

D
d
2 +1

)
,

Var
[∏̀
i=1

1
‖wi‖di2

]
≤ O

(
d5

Dd+1

)
.

I Remark. It is conceivable that the bounds in Lemma 14 could be improved in terms of the
dependence on d. However, this was not central to our application, so we go ahead with the
stated bounds. The main point to note in the above lemma is the extra factor of D in the
denominator.
We start out by first proving the base case where we have a single vector w, that is, ` = 1.

I Proposition 15. There exists an absolute constant C such that for sufficiently large
d,D ∈ Z>0 satisfying D > Cd2, we have that for w ∼ γD,∣∣∣∣Ew

[
1
‖w‖d2

]
− 1
Dd/2

∣∣∣∣ ≤ C ·
(

d2

D
d
2 +1

)
, (5)

Var
w

[
1
‖w‖d2

]
≤ 8C ·

(
d2

Dd+1

)
. (6)

Proof. It is well-known that the distribution of ‖w‖2 follows a χ-distribution with parameter
D, and whose probability density function is given by

fD(x) = xD−1 · e− x
2

2

2D2 −1 · Γ(D2 )
, (x ∈ R≥0)

where Γ(·) denotes the Gamma function. Thus, we have that

E
w

[
1
‖w‖d

]
=
∫ ∞

0

1
xd
· fD(x)dx =

∫ ∞
0

xD−d−1 · e− x
2

2

2D2 −1 · Γ(D2 )
dx

=
2D−d−1

2 · Γ
(
D−d

2
)

2D2 −1 · Γ(D2 )
= 1

Dd/2 ·
(

1±O
(
d2

D

))
,
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where the last equality follows from the Stirling’s approximation of the Gamma function,
which holds for every real number z > 0:

Γ(z + 1) =
√

2πz ·
(z
e

)z
·
(

1±O
(

1
z

))
.

This completes the proof of Equation 5, for the explicit constant C that can be derived from
the Stirling’s approximation. Now, Equation 6 immediately follows as:

Var
w

[
1
‖w‖d

]
= E

w

[
1

‖w‖2d

]
− E

w

[
1
‖w‖d

]2

=
(

1
Dd
± C ·

(
(2d)2

Dd+1

))
−
(

1
Dd/2 ± C ·

(
d2

Dd/2+1

))2

≤ 8C ·
(

d2

Dd+1

)
,

where, we use that D is sufficiently large that C2
(

d4

Dd+2

)
< 2C ·

(
d2

Dd+1

)
, i.e. D > Cd2. J

We now show how to generalize the above to prove Lemma 14.

Proof of Lemma 14. More specifically, we will show that,∣∣∣∣E [ ∏̀
i=1

1
‖wi‖

di
2

]
− 1

Dd/2

∣∣∣∣ ≤ C · `3 ·
(

d2

D
d
2 +1

)
(7)

Var
[∏̀
i=1

1
‖wi‖di2

]
≤ 8C · `3 ·

(
d2

Dd+1

)
(8)

where C is the absolute constant (as obtained in Proposition 15). This implies the lemma
since ` ≤ d.

We proceed by induction on ` (more specifically on log `). For ` = 1, the bound
immediately follows from Proposition 15. For the inductive step, we assume that the bound
in Equations 7 and 8 holds for `, and we prove that the bound also holds for 2`. While
it may seem that our bounds are being proven only when ` is a power of 2, it is not hard
to see that our proof could be done for non powers of 2 as well, giving a bound that is
monotonically increasing in ` and hence it suffices having proved it for ` that are powers of 2.
Let d1, d2, . . . , d2` be non-negative integers with d :=

∑2`
i=1 di. For notational convenience,

let s1 =
∑`
i=1 di and s2 =

∑2`
i=`+1 di, and so d = s1 + s2.

We will first prove Equation 7 inductively by using the following idea: for any two
random variables X and Y , we have E[XY ] = E[X]E[Y ] + Cov[X,Y ] and |Cov[X,Y ]| ≤√

Var[X] · Var[Y ] and hence E[XY ] = E[X]E[Y ]±
√

Var[X] · Var[Y ]. Thus, we get,

E
[ 2∏̀
i=1

1∥∥wi

∥∥di
2

]
= E

[ ∏̀
i=1

1∥∥wi

∥∥di
2

]
· E
[ 2∏̀
i=`+1

1∥∥wi

∥∥di
2

]

±

√√√√Var
[ ∏̀
i=1

1∥∥wi

∥∥di
2

]
· Var

[ 2∏̀
i=`+1

1∥∥wi

∥∥di
2

]
. (9)
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Using the inductive assumption w.r.t. `, we get that,

E
[ ∏̀
i=1

1∥∥wi

∥∥di
2

]
= 1

Ds1/2

(
1± C · `3 ·

(
s2

1
D

))
(10)

E
[ 2∏̀
i=`+1

1∥∥wi

∥∥di
2

]
= 1

Ds2/2

(
1± C · `3 ·

(
s2

2
D

))
(11)

and

Var
[ ∏̀
i=1

1∥∥wi

∥∥di
2

]
≤ 1

Ds1
· 8C · `3 ·

(
s2

1
D

)
(12)

Var
[ 2∏̀
i=`+1

1∥∥wi

∥∥di
2

]
≤ 1

Ds2
· 8C · `3 ·

(
s2

2
D

)
(13)

Plugging Equations 10, 11, 12 and 13 in Equation 9, it is not hard to see that,

E
[ 2∏̀
i=1

1∥∥wi

∥∥di
2

]
= 1
Dd/2

(
1± C · (2`)3 ·

(
d2

D

))
.

This completes the proof of Equation 7. Now, Equation 8 follows easily as,

Var

 2∏̀
i=1

1∥∥wi

∥∥di
2

 = E

 2∏̀
i=1

1∥∥wi

∥∥2di
2

− E
w

 2∏̀
i=1

1∥∥wi

∥∥di
2

2

=
(

1
Dd
± C · (2`)3

(
(2d)2

Dd+1

))
−
(

1
Dd/2 ± C · (2`)

3 ·
(

d2

Dd/2+1

))2

≤ 8C · (2`)3 ·
(

d2

Dd+1

)
. J

Interchanging Product and Expectation
In order to handle the interchanging of the product and expectation operations, we will show
the following lemma.

I Lemma 16. Let (u1, . . . ,ud,v1, . . . ,vd) be distributed as in Lemma 13. Then,∣∣∣∣ E
{ui,vi}i

[∏d
i=1 〈ui,vi〉

]
−
∏d
i=1 E

{ui,vi}i
[〈ui,vi〉]

∣∣∣∣ ≤ dO(d) ·Dd−1.

I Remark. The dO(d) term has an explicit expression, although we only highlight its qualitative
nature for clarity. Again, it is conceivable that the bounds in Lemma 16 could be improved
in terms of the dependence on d, although we suspect that it is tight upto constant factors
in the exponent. Anyhow, this was not central to our application, so we go ahead with the
stated bounds. The main point to note in the above lemma is that the exponent of D is
(d− 1) instead of d.

To prove the lemma, we first obtain the following proposition on moments of a multivariate
Gaussian.
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I Proposition 17. Let w ∈ R` be any multivariate Gaussian vector with each coordinate
marginally distributed according to γ1. Let d1, d2, . . . , d` be non-negative integers such that
d :=

∑`
i=1 di. Then,∣∣∣∣E [ ∏̀
i=1

wdi
i

]∣∣∣∣ ≤ (2d)3d.

Proof. More specifically we will show that when ` is a power of 2,∣∣∣∣E [ ∏̀
i=1

wdi
i

]∣∣∣∣ ≤ 2`−1(`d)d. (14)

It is easy to see that this immediately implies the bound of 2d · d2d in the main lemma, since
` ≤ d. However if ` is not a power of 2 we can round it up to the nearest power of 2, which
amounts to substituting ` ≤ 2d in the above, obtaining a bound of 23d · d2d ≤ (2d)3d.
We proceed by induction on ` (more specifically on log `). For ` = 1, we use the well-known
fact that for w ∼ γ1,∣∣E[wd]

∣∣ =
{

0 if d is odd
(d− 1)!! if d is even

}
≤ dd,

where (d− 1)!! denotes the double factorial of (d− 1), i.e., the product of all integers from
1 to d− 1 that have the same parity as d− 1. For the inductive step, we assume that the
bound in (14) holds for ` and we show that it also holds for 2`. For notational convenience,
let s1 =

∑`
i=1 di and s2 =

∑2`
i=`+1 di, and so d = s1 + s2.

The main idea to prove the inductive step is simply the Cauchy-Schwarz inequality.

∣∣∣∣E [ 2∏̀
i=1

wdi
i

]∣∣∣∣ ≤
√√√√E

[ ∏̀
i=1

w2di
i

]
· E
[ 2∏̀
i=`+1

w2di
i

]
≤
√

2`−1(2`s1)2s1 · 2`−1(2`s2)2s2 ≤ 22`−1(2`d)d ,

where, we use the inductive assumption regarding product of ` terms and that s1 +s2 = d. J

Using the above proposition, we are now able to prove Lemma 16.

Proof of Lemma 16. Let S ⊆ [D]d be the set of all tuples c ∈ [D]d such that cj 6= ck for all
j 6= k ∈ [d]. Let S denote the complement of S in [D]d. Note that |S| ≤ d2 ·Dd−1. We have
that

E
[ d∏
i=1
〈ui,vi〉

]
= E

[ d∏
i=1

D∑
k=1

ui,kvi,k

]
=

∑
c∈[D]d

E
[ d∏
i=1

ui,civi,ci

]

=
∑
c∈S

E
[ d∏
i=1

ui,civi,ci

]
+
∑
c∈S

E
[ d∏
i=1

ui,civi,ci

]

=
∑
c∈S

d∏
i=1

E[ui,civi,ci ] +
∑
c∈S

E
[ d∏
i=1

ui,civi,ci

]
, (15)

where the last equality follows from the assumption that the distribution of the j-th coordin-
ates (u1,j , . . . ,ud,j ,v1,j , . . . ,vd,j) is independent across j ∈ [D]. On the other hand, we have
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that
d∏
i=1

E[〈ui,vi〉] =
d∏
i=1

E
[ D∑
k=1

ui,kvi,k

]
=

∑
c∈[D]d

d∏
i=1

E[ui,civi,ci ]

=
∑
c∈S

d∏
i=1

E[ui,civi,ci ] +
∑
c∈S

d∏
i=1

E[ui,civi,ci ] (16)

Combining Equations 15 and 16, we get∣∣∣∣E [ d∏
i=1
〈ui,vi〉

]
−

d∏
i=1

E[〈ui,vi〉]
∣∣∣∣ =

∣∣∣∣∑
c∈S

(
E
[ d∏
i=1

ui,civi,ci

]
−

d∏
i=1

E[ui,civi,ci ]
)∣∣∣∣

≤ |S| ·max
c∈S

∣∣∣∣E [ d∏
i=1

ui,civi,ci

]
−

d∏
i=1

E[ui,civi,ci ]
∣∣∣∣

≤ d2 ·Dd−1 ·
(
(2d)3d + 1

)
≤ dO(d) ·Dd−1,

where the second last inequality follows from the fact that |S| ≤ d2 · Dd−1 and from
Proposition 17. J

Putting things together to prove Lemma 13
Proof of Lemma 13. We show the following bounds, which immediately imply Lemma 13.∣∣∣∣ E

{ui,vi}

[∏d
i=1

〈ui,vi〉
‖ui‖2‖vi‖2

]
− E
{ui,vi}

[∏d
i=1

〈ui,vi〉
D

]∣∣∣∣ ≤ dO(d)

D
. (17)∣∣∣∣ E

{ui,vi}

[∏d
i=1

〈ui,vi〉
D

]
−
∏d
i=1 E

{ui,vi}

[
〈ui,vi〉
D

]∣∣∣∣ ≤ dO(d)

D
. (18)

Note that Equation 18 is simply a restatement of Lemma 16. To prove Equation 17, we
define the random variables

W :=
d∏
i=1
〈ui,vi〉 and Z :=

d∏
i=1

1∥∥ui
∥∥

2

∥∥vi
∥∥

2

− 1
Dd

.

Note that Equation 17 is equivalent to showing bounds on |E[W ·Z]|. In order to do so, we
use the following four bounds:
1.
∣∣E[W ]

∣∣ ≤ Dd + dO(d) ·Dd−1. Since, by Lemma 16, we have that

|E[W ]| ≤
∣∣∣∣ d∏
i=1

E[〈ui,vi〉]
∣∣∣∣+ dO(d) ·Dd−1 ≤ Dd + dO(d) ·Dd−1

2. Var[W ] ≤ dO(d) ·D2d−1. Since,

Var[W ] = E[W 2]− [EW ]2

= E

[
d∏
i=1
〈ui,vi〉2

]
−

[
E

d∏
i=1
〈ui,vi〉

]2

≤ dO(d) ·D2d−1 . . . (from Lemma 16)

3.
∣∣E[Z]

∣∣ = O
(

d5

Dd+1

)
(follows exactly from Lemma 14).
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4. Var[Z] = O
(

d5

D2d+1

)
(follows exactly from Lemma 14).

Thus, we can bound |E[W ·Z]| as,

∣∣E[W ·Z]
∣∣ ≤ ∣∣E[W ]

∣∣ · ∣∣E[Z]
∣∣+
√

Var[W ] · Var[Z] ≤ dO(d)

D
.

This completes the proof of Equation 17 and hence of Lemma 13. J

A.2 Mean & Variance Bounds for Multilinear Monomials

For the rest of this section, we simplify our notations as follows:
For (a, b) ∼ G⊗n0

ρ , we will use ã and b̃ to denote the normalized vectors a
‖a‖2

and b
‖b‖2

respectively.
We will use U ∈ Rn to denote Mã and similarly V ∈ Rn to denote Mb̃. We will also
have independent variables (a′, b′) ∼ G⊗n0

ρ , for which we use U ′ = Mã′ and V ′ = Mb̃′.
Ui denotes the i-th coordinate of U . Similarly, mi ∈ Rn0 is the i-th row of M . Note
that Ui = 〈mi, ã〉. For S ⊆ [n], let US denote

∏
i∈S Ui =

∏
i∈S 〈mi, ã〉. Similarly for

VS .
We will take expectations over random variables M , a, b, a′, b′. It will be understood
that we are sampling M ∼ γ⊗(n×n0)

1 . Also, (a, b) and (a′, b′) are independently sampled
from G⊗n0

ρ .

I Lemma 18 (Mean bounds for monomials). Given parameter d and δ, there exists an
explicitly computable n0 := n0(d, δ) such that the following holds: For any subsets S, T ⊆ [n]
satisfying |S|, |T | ≤ d, it holds that,

E
M

E
a,b

USVT =
{

0 if S 6= T

ρ|S| ± δ if S = T
.

In particular, one may take n0 = dO(d)

δ .

Proof. We have that

E
M

E
a,b

USVT = E
M

E
a,b

[∏
i∈S

Ui ·
∏
i∈T

Vi

]
= E

a,b
E
M

[ ∏
i∈S∩T

UiVi ·
∏

i∈S\T

Ui ·
∏

i∈T\S

Vi

]
= E

a,b
E
M

[ ∏
i∈S∩T

〈mi, ã〉
〈

mi, b̃
〉
·
∏

i∈S\T

〈mi, ã〉 ·
∏

i∈T\S

〈
mi, b̃

〉]
E
M

E
a,b

USVT = E
a,b

[ ∏
i∈S∩T

E
mi

〈mi, ã〉
〈

mi, b̃
〉
·
∏

i∈S\T

E
mi

〈mi, ã〉 ·
∏

i∈T\S

E
mi

〈
mi, b̃

〉]
, (19)

where the last equality follows from the independence of the mi’s.
If S 6= T , one of

∏
i∈S\T Emi [〈mi, ã〉] or

∏
i∈T\S Emi [

〈
mi, b̃

〉
] is 0. This is because even

for any fixed vector a and for each i ∈ [n], the random variable 〈mi, ã〉 has zero-mean (and
similarly for

〈
mi, b̃

〉
). The first part of the lemma now follows from Equation 19.
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If S = T , Equation 19 becomes

E
M

E
a,b

USVT = E
a,b

[∏
i∈S

E
mi

〈mi,a〉
‖a‖2

〈mi, b〉
‖b‖2

]
= E

a,b

[∏
i∈S

〈a, b〉
‖a‖2‖b‖2

] [
since E

mi

mi ·mT
i = In0×n0 .

]

=
∏
i∈S

[
Ea,b〈a, b〉

n0

]
± δ

[
from Lemma 13, for n0 = dO(d)

δ

]
= ρ|S| ± δ. J

I Lemma 19 (Covariance bounds for monomials). Given parameters d and δ, there exists
an explicitly computable n0 := n0(d, δ) such that the following holds: For any subsets
S, T, S′, T ′ ⊆ [n] satisfying |S|, |T |, |S′|, |T ′| ≤ d, it holds that,∣∣∣∣∣∣ E

M
a,b,a′,b′

[USVT U ′S′V
′

T ′ ]−

(
E
M
a,b

[USVT ]

)
·

 E
M

a′,b′

[U ′S′V ′T ′ ]

∣∣∣∣∣∣
= 0 if S4T4S′4T ′ 6= ∅

≤ δ if S4T4S′4T ′ = ∅

Here, S4T4S′4T ′ is the symmetric difference of the sets S, T, S′, T ′, equivalently, the set
of all i ∈ [n] which appear an odd number of times in the multiset S t T t S′ t T ′.
In particular, one may take n0 = dO(d)

δ2 .

In order to prove Lemma 19, we need the following lemma.

I Lemma 20. For m ∼ γn0 ,

E
a,b,
a′,b′

[(
E
m

[〈m, ã〉〈m, b̃〉〈m, ã′〉〈m, b̃′〉]−E
m

[〈m, ã〉〈m, b̃〉] ·E
m

[〈m, ã′〉〈m, b̃′〉]
)2]
≤ O

(
1
n0

)

and

E
a,a′

[(
E
m

[〈m, ã〉 〈m, ã′〉]− E
m

[〈m, ã〉] · E
m

[〈m, ã′〉]
)2]

≤ O

(
1
n0

)
.

Proof. To prove the first part of the lemma, consider the quantity

T (a, b,a′, b′)

:= E
m

[〈m, ã〉〈m, b̃〉〈m, ã′〉〈m, b̃′〉]− E
m

[〈m, ã〉〈m, b̃〉] · E
m

[〈m, ã′〉〈m, b̃′〉]

= 〈ã, b̃〉〈ã′, b̃′〉+ 〈ã, ã′〉〈b̃, b̃′〉+ 〈ã, b̃′〉〈ã′, b̃〉 − 〈ã, b̃〉〈ã′, b̃′〉

= 〈ã, ã′〉〈b̃, b̃′〉+ 〈ã, b̃′〉〈ã′, b̃〉.

where we use that for any j ∈ [n0], it holds that Em[m4
j ] = 3 and Em[m2

j ] = 1. Thus,

E
a,b,a′,b′

[
T (a, b,a′, b′)2]

= E
a,b,a′,b′

[[
〈ã, ã′〉〈b̃, b̃′〉+ 〈ã, b̃′〉〈ã′, b̃〉

]2]
≤ 2 · E

a,b,a′,b′

[
〈ã, ã′〉2〈b̃, b̃′〉2

]
+ 2 · E

a,b,a′,b′

[
〈ã, b̃′〉2〈ã′, b̃〉2

]
≤ O

(
1
n0

)
,
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where the last step follows by two applications of Lemma 13 (with d = 4). This completes
the proof of the first part of the lemma. The second part of the lemma similarly follows from
Lemma 13 (with d = 2) along with the fact that Em[〈m, ã〉] = 0. J

Proof of Lemma 19. Let 1(E) denote the 0/1 indicator function of an event E. We have
that

E
M

E
a,b

E
a′,b′

[USVTU ′S′V
′
T ′ ]

= E
M

E
a,b

E
a′,b′

[ ∏
i∈S∪T∪S′∪T ′

U
1(i∈S)
i V

1(i∈T )
i U ′

1(i∈S′)
i V ′

1(i∈T ′)
i

]

= E
a,b

E
a′,b′

[ ∏
i∈S∪T∪S′∪T ′

E
mi

[
U

1(i∈S)
i V

1(i∈T )
i U ′

1(i∈S′)
i V ′

1(i∈T ′)
i

]]
. (20)

On the other hand, we have that

E
M

E
a,b

[USVT ] = E
a,b

E
M

[ ∏
i∈S∪T

U
1(i∈S)
i V

1(i∈T )
i

]
= E

a,b

[ ∏
i∈S∪T

E
mi

[
U

1(i∈S)
i V

1(i∈T )
i

]]
,

(21)

and similarly, E
M

E
a′,b′

[U ′S′V ′T ′ ] = E
a′,b′

[ ∏
i∈S′∪T ′

E
mi

[
U

1(i∈S′)
i V

1(i∈T ′)
i

]]
. (22)

If there exists i ∈ S ∪ T ∪ S′ ∪ T ′ that appears in an odd number of S, T , S′ and T ′, then
it can be seen that the expectation in Equation 20 is equal to 0, and that at least one of
the expectations in Equations 21 and 22 is equal to 0. This already handles the case that
S4T4S′4T ′ 6= ∅.

Henceforth, we assume that each i ∈ S ∪ T ∪ S′ ∪ T ′ appears in an even number of S, T ,
S′ and T ′. Assume for ease of notation that S ∪ T ∪ S′ ∪ T ′ ⊆ [4d]. Define

gi(a, b,a′, b′) := E
mi

[
U

1(i∈S)
i V

1(i∈T )
i U ′

1(i∈S′)
i V ′

1(i∈T ′)
i

]
(23)

hi(a, b) := E
mi

[
U

1(i∈S)
i V

1(i∈T )
i

]
. (24)

h′i(a′, b′) := E
mi

[
U
′1(i∈S′)
i V

′1(i∈T ′)
i

]
. (25)

Combining Equations 20, 21 and 22 along with the definitions in 23, 24 and 25, we get∣∣∣∣ EM E
a,b

E
a′,b′

[USVTU ′S′V
′
T ′ ]− E

M
E

a,b
[USVT ] · E

M
E

a′,b′
[U ′S′V ′T ′ ]

∣∣∣∣
=
∣∣∣∣ Ea,b E

a′,b′

[ 4d∏
i=1

gi(a, b,a′, b′)−
4d∏
i=1

hi(a, b) · h′i(a′, b′)
] ∣∣∣∣

=
∣∣∣∣ Ea,b E

a′,b′

 4d∑
j=1

[ ∏j−1
i=1 hi(a, b) · h′i(a′, b′)

∏4d
i=j gi(a, b,a′, b′)

−
∏j
i=1 hi(a, b) · h′i(a′, b′)

∏4d
i=j+1 gi(a, b,a′, b′)

] ∣∣∣∣
≤

4d∑
j=1

∣∣∣∣ Ea,b E
a′,b′

j−1∏
i=1

hi(a, b) · h′i(a′, b′)
4d∏

i=j+1
gi(a, b,a′, b′) ·

[
gj(a, b,a′, b′)

−hj(a, b) · h′j(a′, b′)

] ∣∣∣∣
≤ 4 · d ·

√
τ · κ,
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where the last inequality follows from the Cauchy-Schwarz inequality with

τ := max
j∈[4d]

E
a,b

E
a′,b′

j−1∏
i=1

hi(a, b)2 · hi(a′, b′)2
4d∏

i=j+1
gi(a, b,a′, b′)2


κ := max

j∈[4d]
E

a,b
E

a′,b′
[gj(a, b,a′, b′)− hj(a, b) · hj(a′, b′)]

2

Lemma 20 implies that κ ≤ O(1/n0). We now show that τ ≤ 2O(d). Note that for any
i ∈ [n0], it holds that,

hi(a, b) =


〈ã, b̃〉 if i ∈ S and i ∈ T

1 if i /∈ S and i /∈ T
0 otherwise

h′i(a′, b′) =


〈ã′, b̃′〉 if i ∈ S′ and i ∈ T ′

1 if i /∈ S′ and i /∈ T ′
0 otherwise

gi(a, b,a′, b′) =



〈ã, b̃〉〈ã′, b̃′〉+ 〈ã, ã′〉〈b̃, b̃′〉+ 〈ã, b̃′〉〈ã′, b̃〉 if i ∈ S ∩ T ∩ S′ ∩ T ′

〈ã, b̃〉 if i ∈ S ∩ T, i /∈ S′ ∪ T ′
〈ã, ã′〉 if i ∈ S ∩ S′, i /∈ T ∪ T ′

〈ã, b̃′〉 if i ∈ S ∩ T ′, i /∈ S′ ∪ T
〈ã′, b̃〉 if i ∈ S′ ∩ T, i /∈ S ∪ T ′

〈ã′, b̃′〉 if i ∈ S′ ∩ T ′, i /∈ S ∪ T
〈b̃, b̃′〉 if i ∈ T ∩ T ′, i /∈ S ∪ S′

1 otherwise

Thus, if we expand out a single term
∏j−1
i=1 hi(a, b)2 · hi(a′, b′)2∏4d

i=j+1 gi(a, b,a′, b′)2, we
get at most 38d terms (since each gi can increase the number of terms by a factor of at most
3). Each of these terms is the expectation of the product of inner product of some correlated
Gaussian vectors. We have from Lemma 13 that each such term is at most 1 + δ and thus
τ ≤ 2O(d). Thus, for an explicit choice of n0 that is upper bounded by dO(d)/δ2, we get that
4d
√
τκ ≤ δ, which concludes the proof of the lemma. J

A.3 Mean & Variance Bounds for Multilinear Polynomials
We are now ready to prove Lemma 10. Recall again that,

F (M) = E
a,b

[A(U) ·B(V )] where, U = Ma∥∥a
∥∥

2

and V = Mb∥∥b
∥∥

2

.

We wish to bound the mean and variance of F (M). These proofs work by considering the
Hermite expansions of A and B given by,

A(X) =
∑
S⊆[n]

ÂSXS and B(X) =
∑
T⊆[n]

B̂TYT .

The basic definitions and facts related to Hermite polynomials were given in section 2.

Proof of Lemma 10. We start out by proving the bound on
∣∣∣EM F (M)− 〈A,B〉G⊗nρ

∣∣∣. To
this end, we will use Lemma 18 with parameters d and δ. Thus, for a choice of n0 = dO(d)/δ2,
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we have that,

∣∣∣EM F (M)− 〈A,B〉G⊗nρ
∣∣∣

=
∣∣∣EM E

a,b
[A(U) ·B(V )]− E

X,Y∼G⊗nρ
[A(X) ·B(Y )]

∣∣∣
=
∣∣∣∣ ∑
S,T⊆[n]

ÂSB̂T ·
(
E
M

E
a,b

[US · VT ]− E
X,Y∼G⊗nρ

[XS · YT ]
)∣∣∣∣

=
∣∣∣∣ ∑
S⊆[n]

ÂSB̂S ·
(
E
M

E
a,b

[US · VS ]− ρ|S|
)∣∣∣∣ . . . (terms corresponding to S 6= T are 0.)

≤
∑

S⊆[n]

∣∣ÂSB̂S

∣∣ · δ . . . . . . (using Lemma 18)

≤
∥∥A∥∥

2
·
∥∥B∥∥

2
· δ . . . . . . (Cauchy-Schwarz inequality)

≤ δ . . . . . . (
∥∥A∥∥

2
,
∥∥B∥∥

2
≤ 1) J

We now move to proving the bound on VarM (F (M)). To this end, we will use Lemma 19
with parameters d and δ/9d. Thus, for a choice of n0 = dO(d)/δ2, we have that,

E
M

(
E

a,b
A(U) ·B(V )

)2
−
(
E
M

E
a,b

A(U) ·B(V )
)2

=

∣∣∣∣∣∣ E
M
a,b

a′,b′

[A(U)B(V )A(U ′)B(V ′)]−
(
E
M

E
a,b

[A(U)B(V )]
)
·
(
E
M

E
a′,b′

[A(U ′)B(V ′)]
)∣∣∣∣∣∣

≤
∑

S,T⊆[n]
S′,T ′⊆[n]

∣∣∣ÂSB̂T ÂS′B̂T ′ ∣∣∣ ·
∣∣∣∣∣∣∣

E
M

E
a,b

E
a′,b′

[USVTU ′S′V
′
T ′ ]

−
(
E
M

E
a,b

[USVT ]
)
·
(
E
M

E
a′,b′

[U ′S′V ′T ′ ]
)∣∣∣∣∣∣∣

≤ δ

9d ·
∑

S,T,S′,T ′⊆[n]
S4T4S′4T ′=∅

∣∣∣ÂSB̂T ÂS′B̂T ′ ∣∣∣ .

To finish the proof, we will show that,

∑
S,T,S′,T ′⊆[n]
S4T4S′4T ′=∅

∣∣∣ÂSB̂T ÂS′B̂T ′ ∣∣∣ ≤ 9d ·
∥∥A∥∥2

2 ·
∥∥B∥∥2

2 .

Define functions f : {1,−1}n → R, g : {1,−1}n → R over the boolean hypercube as,

f(x) =
∑
S⊆[n]
|S|≤d

ÂSXS(x) and g(x) =
∑
S⊆[n]
|S|≤d

B̂SXS(x) .

Hypercontractivity bounds [55] for degree-d polynomials over the boolean hypercube imply
that,

E
x

[
f(x)4] ≤ 9d

(
E
x

[
f(x)2])2

and E
x

[
g(x)4] ≤ 9d

(
E
x

[
g(x)2])2

.
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We now finish the proof as follows,∑
S,T,S′,T ′⊆[n]

S4T4S′4T ′=∅

∣∣ÂSB̂T ÂS′B̂T ′
∣∣ = E

x

[
f(x)2g(x)2]

≤
(
E
x

[
f(x)4])1/2

·
(
E
x

[
g(x)4])1/2

. . . (Cauchy-Schwarz)

≤ 9d ·
(
E
x

[
f(x)2]) · (E

x

[
g(x)2]) . . . (Hypercontractivity)

= 9d ·
∥∥A∥∥2

2
·
∥∥B∥∥2

2
.

Thus, overall we get that, VarM (F (M)) ≤ δ.
This completes the proof of Lemma 10 for an explicit choice of n0 ≤ dO(d)/δ2.

B Proof of Low-Degree Multilinear Transformation Lemma

The goal of this section is to prove Lemma 11, which follows immediately by putting together
the following two lemmas. The first lemma transforms general functions to low-degree
polynomials and second lemma subsequently transforms it to multilinear polynomials.

I Lemma 21 (Low Degree Transformation). Given parameters ρ ∈ [0, 1], δ > 0, k ∈ N, there
exists an explicit d = d(ρ, k, δ) such that the following holds:
Let A : Rn → Rk and B : Rn → Rk, such that, for any j ∈ [k] : Var(Aj),Var(Bj) ≤ 1.
Then, there exist functions Ã : Rn → Rk and B̃ : Rn → Rk such that the following hold.
1. Ã and B̃ have degree at most d.
2. For any i ∈ [k], it holds that Var(Ãi) ≤ Var(Ai) ≤ 1 and Var(B̃i) ≤ Var(Bi) ≤ 1.
3.
∥∥∥R(Ã)− Ã

∥∥∥
2
≤
∥∥R(A)−A

∥∥
2 + δ and

∥∥∥R(B̃)− B̃
∥∥∥

2
≤
∥∥R(B)−B

∥∥
2 + δ

4. For every i, j ∈ [k],∣∣∣∣〈Ãi, B̃j〉G⊗nρ − 〈Ai, Bj〉G⊗nρ
∣∣∣∣ ≤ δ√

k

In particular, one may take d = O
(√

k log2(k/δ)
δ(1−ρ)

)
.

I Lemma 22 (Multi-linear Transformation). Given parameters ρ ∈ [0, 1], δ > 0, d, k ∈ Z≥0,
there exists an explicit t = t(k, d, δ) such that the following holds:
Let A : Rn → Rk and B : Rn → Rk be degree-d polynomials, such that, for any j ∈ [k] :
Var(Aj),Var(Bj) ≤ 1.
Then, there exist functions Ã : Rnt → Rk and B̃ : Rnt → Rk such that the following hold:
1. Ã and B̃ are multilinear with degree at most d.
2. For any i ∈ [k], it holds that Var(Ãi) ≤ Var(Ai) ≤ 1 and Var(B̃i) ≤ Var(Bi) ≤ 1.
3.
∥∥∥R(Ã)− Ã

∥∥∥
2
≤
∥∥R(A)−A

∥∥
2 + δ and

∥∥∥R(B̃)− B̃
∥∥∥

2
≤
∥∥R(B)−B

∥∥
2 + δ

4. For every i, j ∈ [k],∣∣∣∣〈Ãi, B̃j〉G⊗ntρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ δ√
k

In particular, one may take t = O
(
kd2

δ2

)
.
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Simple Proposition for Rounding
Before getting to the proofs of the above lemmas, we present a simple proposition that will
be useful. It says that if we have two strategies which are close in `2-distance, and one of
them is close to the simplex ∆k, then so is the other. The proof follows by a straightforward
triangle inequality.

I Proposition 23. For A : Rn → Rk and Ã : Rn → Rk s.t. ‖A‖2, ‖Ã‖2 ≤ 1, it holds that,

‖R(Ã)− Ã‖2 ≤ ‖R(A)−A‖2 + ‖A− Ã‖2 .

B.1 Transformation to Low-Degree
The key idea behind Lemma 21 is quite standard, that applying a “small” amount of noise
(via the Ornstein-Uhlenbeck operator) to a pair of functions doesn’t hurt their correlation
“significantly”. In particular, we have the following lemma.

I Lemma 24. Let P,Q ∈ L2(Rn, γn) and ε > 0. There exists ν = ν(ρ, ε) such that,∣∣∣〈P,Q〉G⊗nρ − 〈UνP,UνQ〉G⊗nρ ∣∣∣ ≤ ε ·√Var[P ] Var[Q]

In particular, one may take ν := (1− ε)log ρ/(log ε+log ρ), or even ν := 1−C (1−ρ)ε
log(1/ε) for some

constant C > 0.

Proof. Consider the Hermite expansions of P and Q. That is,

P (X) =
∑
σ∈Zn≥0

P̂ (σ)Hσ(X) and Q(Y ) =
∑
σ∈Zn≥0

Q̂(σ)Hσ(Y ).

Using properties of Hermite polynomials, namely, UνHσ = ν|σ|Hσ, we get that,

UνP (X) =
∑
σ∈Zn≥0

ν|σ|P̂ (σ)Hσ(X) and UνQ(Y ) =
∑
σ∈Zn≥0

ν|σ|Q̂(σ)Hσ(Y ).

Our choice of ν was to ensures that ρd
(
1− ν2d) ≤ ε for all d ∈ N. Thus, we get that,∣∣∣〈P,Q〉G⊗nρ − 〈UνP,UνQ〉G⊗nρ ∣∣∣

=
∣∣∣∣ ∑σ 6=0

ρ|σ| · P̂ (σ)Q̂(σ) ·
(
1− ν2|σ|)∣∣∣∣

≤
∑
σ 6=0

∣∣∣P̂ (σ)Q̂(σ)
∣∣∣ · ρ|σ| (1− ν2|σ|

)
≤ ε ·

∑
σ 6=0

∣∣∣P̂ (σ)Q̂(σ)
∣∣∣ . . . (since, ρd

(
1− ν2d) ≤ ε for all d ∈ N)

≤ ε ·
√

Var[P ] Var[Q] . . . (Cauchy-Schwarz inequality) J

The above lemma transforms general functions into functions which are concentrated
on low-degree. Thus, to complete the proof of Lemma 21, we consider the definition of
low-degree truncation.
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I Definition 25 (Low-degree truncation). Let A ∈ L2(Rn, γn) is given by the Hermite
expansion A(X) =

∑
σ∈Zn≥0

ÂσHσ(X). The degree-d truncation of A is defined as the
function A≤d ∈ L2(Rn, γn) given by

A≤d(X) :=
∑
σ∈Zn≥0
|σ|≤d

ÂσHσ(X).

That is, A≤d is obtained by retaining only the terms with degree at most d in the Hermite
expansion of A, where recall that for σ ∈ Zn≥0, its degree is defined as |σ| =

∑n
i=1 σi.

For convenience, define A>d := A−A≤d. Also, for vector valued functions A, we define A≤d
as the function obtained by applying the above low-degree truncation on each coordinate.

Proof of Lemma 21. We obtain Ã and B̃ by first applying some suitable amount of noise
to the functions such that the functions have decaying Hermite tails and then truncating the
Hermite coefficients corresponding to terms larger than degree d.

In particular, given parameter δ, we first choose ε and ν in Lemma 24, such that
ε = δ

2
√
k
and then ν = 1− C (1−ρ)ε

log(1/ε) as required. We choose d to be large enough such that

ν2d ≤ δ
4
√
k
, that is, d = O

(
log(k/δ)
log(1/ν)

)
= O

(√
k log2(k/δ)
δ(1−ρ)

)
. Finally, we let Ã := (UνA)≤d and

B̃ := (UνB)≤d.
We now verify the four properties required of the lemma.

1. By definition, Ã and B̃ have degree at most d.
2. Var(Ãi) =

∑
σ 6=0
|σ|≤d

ν2|σ| · Âi(σ)2 ≤ Var(Ai). Similarly, Var(B̃i) ≤ Var(Bi).

3. For convenience, define A := UνA, and hence Ã = A
≤d. Observe that, since ∆k is a

convex body,
∥∥R(v)− v

∥∥2
2 is a convex function in v ∈ Rk. Thus, we have that,∥∥R(A)−A

∥∥2
2 = E

X∼γn

∥∥R(A(X))−A(X)
∥∥2

2

= E
X∼γn

∥∥∥∥R( E
X′∼Uν(X)

A(X ′)
)
− E

X′∼Uν(X)
A(X ′)

∥∥∥∥2

2

≤ E
X∼γn

E
X′∼Uν(X)

∥∥R (A(X ′))−A(X ′)
∥∥2

2 . . . (using convexity of
∥∥R(v)− v

∥∥2
2)

= E
X′∼γn

∥∥R (A(X ′))−A(X ′)
∥∥2

2

=
∥∥R(A)−A

∥∥2
2 .

Next, observe that,
∥∥∥A>d∥∥∥2

2
=

∑
|σ|>d

ν2|σ| · ‖Â(σ)‖22 ≤ ν2d ·
√
k ≤ δ

4 . Thus, we get

that,∥∥∥R(Ã)− Ã
∥∥∥

2
≤
∥∥R(A)−A

∥∥
2 +

∥∥∥A− Ã∥∥∥
2

. . . (Proposition 23)

=
∥∥R(A)−A

∥∥
2 +

∥∥∥A>d∥∥∥
2

≤
∥∥R(A)−A

∥∥
2 + δ/4 .

Similar argument holds for B̃.
4. For every i, j ∈ [k], we simply have from Lemma 24 that∣∣∣〈Ai, Bj〉G⊗nρ − 〈Ai, Bj〉G⊗nρ ∣∣∣ ≤ ε = δ

2
√
k
.
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Additionally, since
∥∥∥Ãi −Ai∥∥∥

2
≤ δ

4
√
k
and

∥∥∥B̃j −Bj∥∥∥
2
≤ δ

4
√
k
, we get using Lemma 7

that
∣∣∣∣〈Ãi, B̃j〉G⊗nρ − 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ δ
2
√
k
. We get the desired statement by combining

the two above statements. J

B.2 Transformation to Multi-linear
The key idea behind Lemma 22 is similar to that of Lemma 21 in that, we first apply a
transformation on our polynomials that makes it concentrated on multilinear terms, while
slightly increasing the number of variables. Subsequently, we apply a multi-linear truncation
defined as follows.

I Definition 26 (Multilinear truncation). Suppose A ∈ L2(Rn, γn) is given by the Hermite
expansion A(x) =

∑
σ∈Zn≥0

ÂσHσ(x). The multilinear truncation of A is defined as the function

Aml ∈ L2(Rn, γn) given by

Aml(x) :=
∑

σ∈{0,1}n
ÂσHσ(x).

That is, Aml is obtained by retaining only the multilinear terms in the Hermite expansion of
A.
For convenience, also define Anml := A − Aml. Also, for vector valued functions A, we
define Aml as the function obtained by applying the above multilinear truncation on each
coordinate.

I Lemma 27. Given parameters ρ ∈ [0, 1], δ > 0 and d ∈ Z≥0, there exists t = t(d, δ) such
that the following holds:

Let A,B ∈ L2(Rn, γn) be degree-d polynomials, such that
∥∥A∥∥2 ,

∥∥B∥∥2 ≤ 1. Define
polynomials A,B ∈ L2(Rnt, γnt) over variables X :=

{
X

(i)
j : (i, j) ∈ [n]× [t]

}
and Y :={

Y
(i)
j : (i, j) ∈ [n]× [t]

}
respectively, as,

A
(
X
)

:= A(X(1), . . . ,X(n)) and B
(
Y
)

:= B(Y (1), . . . ,Y (n))

where X(i) =
(

X
(i)
1 + · · ·+ X

(i)
t

)
/
√
t and Y (i) =

(
Y

(i)
1 + · · ·+ Y

(i)
t

)
/
√
t.

Since (X(i),Y (i)) is distributed according to Gρ, this transformation doesn’t change the
“structure” of A and B. In particular, it is follows that,〈

A,B
〉
G⊗ntρ

= 〈A,B〉G⊗nρ and
∥∥A∥∥2 =

∥∥A∥∥2 and
∥∥B∥∥2 =

∥∥B∥∥2

Next, let Aml
, B

ml ∈ L2(Rnt, γnt) be the multilinear truncations of A and B respectively.
Then the following hold,
1. Aml and Bml are multilinear with degree at most d.
2. Var(Aml) ≤ Var(A) ≤ 1 and Var(Bml) ≤ Var(B) ≤ 1.
3.
∥∥∥Aml −A

∥∥∥
2
,
∥∥∥Bml −B

∥∥∥
2
≤ δ/2.

4.
∣∣∣∣〈Aml

, B
ml〉
G⊗ntρ

− 〈A,B〉G⊗nρ

∣∣∣∣ ≤ δ.

In particular, one may take t = O
(
d2

δ2

)
.
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In order to prove Lemma 27, we will need the following multinomial theorem for Hermite
polynomials. It can be proved quite easily using the generating function for Hermite
polynomials.

I Fact 28 (Multinomial theorem for Hermite polynomials). Let β1, . . . , βt ∈ R satisfying∑t
i=1 β

2
i = 1. Then, for any d ∈ N, it holds that

Hd (β1X1 + · · ·+ βtXt) =
∑

d1,...,dt∈Z≥0
d1+···+dt=d

√
d!

d1! · · · dt!
·
t∏
i=1

βdii Hdi(Xi) .

Proof of Lemma 27. Before we prove the theorem, we will first understand the effect of
the transformation from X to X for a univariate Hermite polynomial. Instantiating βi’s in
Fact 28 with 1/

√
t, we get that,

Hd

(
X1 + · · ·+Xt√

t

)
=

∑
d1,...,dt∈Z≥0
d1+···+dt=d

√
d!

d1! · · · dt!
·
∏t
i=1Hdi(Xi)
td/2

.

We will split the terms into multilinear and non-multilinear terms, writing the above as
Hml
d +Hnml

d . Note that there are at most O(d
2td−1

d! ) non-multilinear terms (for t� d2). Also,
note that each coefficient 1

td/2 ·
√

d!
d1!···dt! is at most

√
d!
td
. Thus, we can bound

∥∥Hnml
d

∥∥
2 as

follows,

∥∥Hnml
d

∥∥2
2 =

∑
d1,...,dt∈Z≥0
d1+···+dt=d
∃i di≥2

(
1
td/2
·
√

d!
d1! · · · dt!

)2

≤ O

(
d2td−1

d!

)
· d!
td
≤ O

(
d2

t

)
(26)

More generally, if we consider a term Hσ

(
X
)

= Hσ1(X(1)) ·Hσ2(X(2)) · · ·Hσn(X(n)), where
each X(i) =

(
X

(i)
1 + · · ·+X

(i)
t

)
/
√
t. Let’s write Hσ

(
X
)

= H
ml
σ

(
X
)

+ H
nml
σ

(
X
)
, that

is, separating out the multilinear and non-multilinear terms. Similarly, for any i, let
Hσi(X(i)) = Hml

σi (X(i)) + Hnml
σi (X(i)). We wish to bound

∥∥∥Hnml
σ

∥∥∥
2
, which can be done as

follows,

∥∥∥Hnml
σ

∥∥∥2

2
=
∥∥∥∥ n∏
i=1

(Hml
σi +Hnml

σi )−
n∏
i=1

Hml
σi

∥∥∥∥2

2

≤
n∏
i=1

(
1 +O

(
σ2
i

t

))
− 1 (from Equation 26)

≤ O

(
|σ|2

t

)
(since, t� |σ|2)

Thus,
∥∥∥Hnml

σ

∥∥∥2

2
< δ2/4. (for t = Θ(d2/δ2)) (27)

We are now ready to prove the parts of Lemma 27.

1. It holds by definition that Aml and Bml are multilinear. Also, note that the transformation
from A to A and finally to Aml does not increase the degree. So both Aml and Bml have
degree at most d.
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2. It is easy to see that Var(A) = Var(A). Since Aml is obtained by truncating certain
Hermite coefficients of A, it immediately follows that Var(Aml) ≤ Var(A) = Var(A) ≤ 1.
Similarly, Var(Bml) ≤ Var(B) ≤ 1.

3. Recall that Anml = A − A
ml. We wish to bound

∥∥∥Anml
∥∥∥2

2
≤ δ2/4. Consider the

Hermite expansion of A, namely A(X) =
∑
σ∈Zn≥0

Â(σ) ·Hσ(X). Note that, Anml (
X
)

=∑
σ∈Zn≥0

Â(σ) ·Hnml
σ

(
X
)
, where recall that Hnml

σ is the non-multilinear part of Hσ

(
X
)

=

Hσ1(X(1)) ·Hσ2(X(2)) · · ·Hσn(X(n)), where each X(i) =
(
X

(i)
1 + · · ·+X

(i)
t

)
/
√
t.

From Equation 27, we have that for any σ ∈ Zn≥0, it holds that
∥∥∥Hnml

σ

∥∥∥2

2
< δ2/4. And

hence we get that,∥∥∥Anml
∥∥∥2

2
=
∑
σ

Â(σ)2 ·
∥∥∥Hnml

σ

∥∥∥2

2
≤
∑
σ

Â(σ)2 · (δ2/4) = (δ2/4)
∥∥A∥∥2

2 ≤ (δ2/4).

Note that, here we use that Hσ(X) are mutually orthogonal for different σ. Similarly,
we can also get that

∥∥∥Bnml
∥∥∥2

2
≤ δ2/4.

4. Note that we already have,〈
A,B

〉
G⊗ntρ

= 〈A,B〉G⊗nρ .

And combining Part 3 and Lemma 7, we immediately get that∣∣∣∣〈Aml
, B

ml〉
G⊗ntρ

−
〈
A,B

〉
G⊗ntρ

∣∣∣∣ ≤ δ

where we use that
∥∥∥Bml

∥∥∥
2
≤
∥∥B∥∥2 ≤ 1 and

∥∥∥Aml
∥∥∥

2
≤
∥∥A∥∥2 ≤ 1. J

Proof of Lemma 22. We apply the transformation in Lemma 27, with parameter δ being
δ/
√
k, to each of the k-coordinates of A : Rn → Rk and B : Rn → Rk to get polynomials

Ã : Rnt → Rk and B̃ : Rn → Rk. Namely, for any j ∈ [k], we set Ãj(X) = A
ml
j (X) and

B̃j(Y ) = B
ml
j (Y )as described in Lemma 27.

It is easy to see that parts 1, 2, 4 follow immediately from the conditions satisfied in
Lemma 27. For part 3, we have that

∥∥∥Aml
j −Aj

∥∥∥
2
≤ δ/

√
k for every j ∈ [k], which implies

that
∥∥∥Aml −A

∥∥∥
2
≤ δ. Using Proposition 23, we immediately get that,∥∥∥R(Aml)−Aml
∥∥∥

2
≤
∥∥R(A)−A

∥∥
2 + δ .

Finally, it is a simple observation that
∥∥R(A)−A

∥∥
2 =

∥∥R(A)−A
∥∥

2, and hence,∥∥∥R(Ã)− Ã
∥∥∥

2
≤
∥∥R(A)−A

∥∥
2 + δ .

Similarly,
∥∥∥R(B̃)− B̃

∥∥∥
2
≤
∥∥R(B)−B

∥∥
2 + δ. This concludes the proof. J
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