research

Efficient deterministic approximate counting for low-degree polynomial threshold functions

Abstract

We give a deterministic algorithm for approximately counting satisfying assignments of a degree-dd polynomial threshold function (PTF). Given a degree-dd input polynomial p(x1,,xn)p(x_1,\dots,x_n) over RnR^n and a parameter ϵ>0\epsilon> 0, our algorithm approximates Prx{1,1}n[p(x)0]\Pr_{x \sim \{-1,1\}^n}[p(x) \geq 0] to within an additive ±ϵ\pm \epsilon in time Od,ϵ(1)poly(nd)O_{d,\epsilon}(1)\cdot \mathop{poly}(n^d). (Any sort of efficient multiplicative approximation is impossible even for randomized algorithms assuming NPRPNP\not=RP.) Note that the running time of our algorithm (as a function of ndn^d, the number of coefficients of a degree-dd PTF) is a \emph{fixed} polynomial. The fastest previous algorithm for this problem (due to Kane), based on constructions of unconditional pseudorandom generators for degree-dd PTFs, runs in time nOd,c(1)ϵcn^{O_{d,c}(1) \cdot \epsilon^{-c}} for all c>0c > 0. The key novel contributions of this work are: A new multivariate central limit theorem, proved using tools from Malliavin calculus and Stein's Method. This new CLT shows that any collection of Gaussian polynomials with small eigenvalues must have a joint distribution which is very close to a multidimensional Gaussian distribution. A new decomposition of low-degree multilinear polynomials over Gaussian inputs. Roughly speaking we show that (up to some small error) any such polynomial can be decomposed into a bounded number of multilinear polynomials all of which have extremely small eigenvalues. We use these new ingredients to give a deterministic algorithm for a Gaussian-space version of the approximate counting problem, and then employ standard techniques for working with low-degree PTFs (invariance principles and regularity lemmas) to reduce the original approximate counting problem over the Boolean hypercube to the Gaussian version

    Similar works

    Full text

    thumbnail-image

    Available Versions