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Abstract
We study correlation bounds and pseudorandom generators for depth-two circuits that consist of
a SYM-gate (computing an arbitrary symmetric function) or THR-gate (computing an arbitrary
linear threshold function) that is fed by S AND gates. Such circuits were considered in early
influential work on unconditional derandomization of Luby, Veličković, and Wigderson [31], who
gave the first non-trivial PRG with seed length 2O(

√
log(S/ε)) that ε-fools these circuits.

In this work we obtain the first strict improvement of [31]’s seed length: we construct a PRG
that ε-fools size-S {SYM,THR} ◦ AND circuits over {0, 1}n with seed length

2O(
√

logS) + polylog(1/ε),

an exponential (and near-optimal) improvement of the ε-dependence of [31]. The above PRG
is actually a special case of a more general PRG which we establish for constant-depth circuits
containing multiple SYM or THR gates, including as a special case {SYM,THR} ◦ AC0 circuits.
These more general results strengthen previous results of Viola [47] and essentially strengthen
more recent results of Lovett and Srinivasan [30].

Our improved PRGs follow from improved correlation bounds, which are transformed into
PRGs via the Nisan–Wigderson “hardness versus randomness” paradigm [37]. The key to our
improved correlation bounds is the use of a recent powerful multi-switching lemma due to
Håstad [21].
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1 Introduction

Depth-2 circuits which have a SYM or THR gate at the output and AND gates (of arbitrary
fan-in) adjacent to the input variables are central objects of interest in concrete complexity,
lying at the boundary of our understanding for many benchmark problems such as lower
bounds, learning, and pseudorandomness. The class of SYM ◦ AND circuits has received
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much attention even in the restricted case of polylog(n) bottom fan-in (such circuits are also
known as SYM+ circuits) because of the well-known connection with the complexity class
ACC0 [52, 4, 10], a connection that is at the heart of recent breakthrough circuit lower bounds
against ACC0 [50, 34]. Another well-studied subclass, corresponding to the special case where
the SYM gate computes the parity of its inputs, is the class of S-sparse polynomials over F2,
which have been intensively studied in a wide range of contexts such as learning [42, 8, 9],
approximation and interpolation [26, 18, 40], deterministic approximate counting [16, 27, 31],
and property testing [13, 14]. Turning to THR gates (which compute an arbitrary linear
threshold function of their inputs) as the top gate, the class of THR ◦ AND circuits of size-S
is easily seen to contain the class of S-sparse polynomial threshold functions over {0, 1}n.
This class, and special cases of it such as low-degree polynomial threshold functions, has also
been intensively studied in complexity theory, learning theory, and derandomization, see
e.g. [33, 17, 28, 24, 38, 32, 12, 15, 25, 11] and many other works. In this work we focus on
pseudorandom generators for these {SYM,THR} ◦ AND circuits.

In 1993 Luby, Veličković, and Wigderson [31] gave the first pseudorandom generators
for these depth-2 circuits. As we shall discuss in detail below, this result was subsequently
extended in various ways by different authors, but prior to the present work no strict
improvement of Theorem 1 was known for the class of circuits that it addresses.

I Theorem 1 (Luby–Veličković–Wigderson 1993). There is a PRG with seed length
2O(
√

log(S/ε)) that ε-fools the class of size-S SYM ◦ AND circuits over {0, 1}n. The same is
true for the class of size-S THR ◦ AND circuits.3

The main contribution of the present work is an exponential improvment of Theorem 1’s
dependence on ε, giving the first strict improvement of the [31] seed length:

I Theorem 2 (Our main result). There is a PRG with seed length 2O(
√

logS) + polylog(1/ε)
that ε-fools the class of size-S SYM ◦ AC0 circuits. The same is true for THR ◦ AC0 circuits.

Theorem 2 improves on a result of Viola [47] which, improving on [31], gave a 2O(
√

log(S/ε))-
seed-length PRG for size-S SYM ◦ AC0 circuits. The [47] PRG combines correlation bounds
against SYM◦AC0 circuits with the Nisan–Wigderson “hardness versus randomness” paradigm,
which yields pseudorandom generators from correlation bounds; we similarly prove Theorem
2 by establishing improved correlation bounds and using the Nisan–Wigderson paradigm.

Near-optimal hardness-to-randomness conversion. A major theme in computational com-
plexity over the the last several decades, dating back to the seminal works of [44, 51, 5, 35, 37],
has been that computational hardness can be converted into pseudorandomness. This insight
is at the heart of essentially all unconditional pseudorandom generators, and motivates the
goal of understanding when and how this conversion can be carried out in a quantitatively
optimal manner. With this perspective in mind, we observe that the dependence on ε in
Theorem 2 is optimal up to polynomial factors, and as we discuss in Section 1.3, achieving
better dependence on S even for the special case of {SYM,THR} ◦ AND circuits would
require groundbreaking new lower bounds against low-degree F2 polynomials and ACC0

circuits. Hence Theorem 2 achieves a near-optimal hardness-to-randomness conversion for
{SYM,THR} ◦ AC0 circuits; the seed length of our PRG is essentially the best possible given
current state-of-the-art correlation bounds and circuit lower bounds.

3 [31] does not actually consider THR ◦ AND circuits, but as we discuss later their arguments also apply
to this class.
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The exponential improvement in 1/ε over [31]’s seed length translates immediately
into significantly improved deterministic approximate counting and deterministic search
algorithms for {SYM,THR} ◦ AC0 circuits, two basic algorithmic tasks in unconditional
derandomization4 (see e.g. [2] for formal definitions of these tasks and a discussion of how
PRGs yield deterministic algorithms for them).

In the rest of this introduction we provide background and context for our results and
explain the main ingredients that underlie them.

1.1 Prior PRGs and correlation bounds for {SYM,THR} ◦ AC0

As mentioned above, the first results on PRGs for SYM ◦ AND circuits were given in early
influential work of Luby, Veličković, and Wigderson [31], who constructed a PRG that ε-fools
size-S SYM ◦ AND circuits over n variables with seed length 2O(

√
log(S/ε)). The work of

[31] employed ideas similar to those in the “hardness versus randomness” paradigm of [37],
which subsequently came to be well understood as a versatile technique for constructing
pseudorandom generators from correlation bounds.

A number of years later, with the [37] framework in hand, Viola [47] made the useful
observation that correlation bounds against the larger class of SYM ◦ AND ◦ OR circuits
translate to PRGs for SYM ◦ AND circuits in a “black-box” manner via [37], and the same is
true when the top gate is THR instead of SYM. (Informally, the [37] translation “costs” two
layers of depth: with typical parameter settings, it yields PRGs for a class C from correlation
bounds against C ◦ ANYlogn circuits, where an ANYt gate computes an arbitrary t-variable
Boolean function. By rewriting the ANYlogn gate as a CNF, it is possible to collapse the
two adjacent layers of AND gates, yielding Viola’s observation.) Roughly speaking, in this
translation from correlation bounds against C ◦ ANYlogn to PRGs that ε-fool C,

the larger the C ◦ ANYlogn circuits for which the correlation bound holds, the better
(smaller) is the PRG’s seed length for fooling size-S functions in C; and
the smaller the advantage over random guessing that the correlation bound establishes,
the better (smaller) is the PRG’s seed length’s dependence on the fooling parameter ε.

Motivated by this template, [47] established n−Ω(logn) correlation bounds against SYM ◦
AC0 circuits of size nΩ(logn). This translates (see Appendix B) into a PRG with seed length
2O(
√

log(S/ε)) for size-S SYM ◦ AC0 circuits over {0, 1}n, matching the seed length achieved
by [31] but for a larger class of circuits (and also with a simpler and more modular proof).
While [47] does not explicitly discuss THR gates, its proof like that of [31] also goes through
for THR ◦ AC0 as remarked in the earlier footnote.

Subsequent work of [30] established a strong correlation bound of exp(−Ω(n1−o(1)))
against SYM ◦ AC0 and a correlation bound of exp(−Ω(n1/2−o(1))) against THR ◦ AC0, but
in both cases only for such circuits of size nO(log logn). Via the Nisan–Wigderson framework
[37] this translates into a PRG with seed length 2O(logS/ log logS) + polylog(1/ε) for size-S
{SYM,THR} ◦ AC0 circuits over {0, 1}n; while this is a very good dependence on ε, it comes
at the cost of a significantly worse dependence on the circuit size S. Thus both the seed
length and correlation bounds of [30] are incomparable to those of [31, 47]; see Table 1. We
also note that the recent work of Sakai et al. [41] established a range of tradeoffs between
circuit size and correlation bounds for (a generalization of) SYM ◦ AC0 circuits, though for
the circuit sizes presented in Table 1 their results are not as strong as the results of [47, 30]
listed there.

4 Indeed, the work of [31] was explicitly motivated by deterministic approximate counting of S-sparse F2
polynomials; see the abstract of [31].

APPROX/RANDOM 2018
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Table 1 Correlation bounds against {SYM,THR} ◦ AC0
d circuits and the PRGs that follow via

the [37] paradigm. In all cases the “hard function” is the RW function that is defined in (3) and
was first considered by Razborov and Wigderson [39]. For a given row, a circuit size of s and a
correlation bound of α means that every size-s circuit of the stated type agrees with the n-variable
RW function on at most 1

2 + α fraction of inputs. For each row, see Appendix B for a derivation
of how the final column (seed length for a Nisan–Wigderson based PRG) follows from the earlier
columns via [37].

Circuit type Circuit size S Correlation bound PRG seed length

[47] {SYM,THR} ◦ AC0
d ncd log n n−cd log n 2O(

√
log(S/ε))

[30] SYM ◦ AC0
d ncd log log n exp(−n1−o(1)) 2O

(
logS

log logS

)
+ (log(1/ε))2+o(1)

[30] THR ◦ AC0
d ncd log log n exp(−n1/2−o(1)) 2O

(
logS

log logS

)
+ (log(1/ε))4+o(1)

This work {SYM,THR} ◦ AC0
d nc log n exp(−Ω(n0.499)) 2O(

√
log S) + (log(1/ε))4.01

(We further note that other incomparable results have been achieved in separate lines of
work on pseudorandom generators for degree-d polynomial threshold functions [12, 32, 25]
and degree-d F2 polynomials [6, 7, 29, 49], which correspond to THR◦ANDd and PAR◦ANDd
circuits respectively. The seed lengths of these PRGs all have an exponential dependence on
d, and thus do not yield non-trivial results for general poly(n)-size THR ◦AND or PAR ◦AND
circuits. For constant d, the [29, 49] PRGs for PAR ◦ ANDd circuits achieve optimal seed
length, while the [32, 25] PRGs for THR ◦ ANDd have seed length poly(1/ε) · logn.)

1.2 Our main technical contribution: New correlation bounds against
{SYM,THR} ◦ AC0 circuits

The technical heart of our main result is a new exponential correlation bound against
{SYM,THR} ◦ AC0 circuits of size nΩ(logn):

I Theorem 3. There is an absolute constant τ > 0 and an explicit poly(n)-time computable
function H : {0, 1}n → {0, 1} with the following property: for any constant d, for n sufficiently
large it is the case that for any n-variable circuit C of size nτ logn and depth d with a SYM
or THR gate at the top, we have

Pr
x←{0,1}n

[H(x) = C(x)] ≤ 1
2 + exp(−Ω(n0.499)).

Theorem 3 strictly improves on the correlation bound provided by Theorem 4 of [47], as
it establishes correlation bounds for the same class of nΩ(logn)-size circuits, but gives a much
smaller exp(−Ω(n0.499)) upper bound on the correlation rather than n−Ω(logn). As described
in Appendix B, our PRG result for {SYM,THR} ◦ AC0 (Theorem 2) follows directly from
Theorem 3 via the Nisan–Wigderson framework. In Section 1.4 we give an overview of the
ideas that underlie our new correlation bound.

Correlation bounds and PRGs for constant-depth circuits with multiple SYM or THR
gates. The main correlation bound and PRG of [47] are actually for ncd logn-size depth-d
circuits with cd(logn)2 many SYM gates, and similarly the main result of [30] is a correlation
bound for constant-depth circuits with n1−o(1) many SYM gates or n1/2−o(1) many THR
gates. Our results similarly extend to constant-depth circuits with multiple SYM or THR
gates. Our most general correlation bound is the following:
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I Theorem 4. There is an absolute constant τ > 0 and an explicit poly(n)-time computable
function H : {0, 1}n → {0, 1} with the following property: for any constant d, for n sufficiently
large, any n-variable circuit C of size nτ logn and depth d containing n0.249 many SYM or
THR gates (the circuit is allowed to contain both types of gates) satisfies

Pr
x←{0,1}n

[H(x) = C(x)] ≤ 1
2 + exp(−Ω(n0.249)).

Via the Nisan–Wigderson framework, Theorem 4 immediately yields the following, which
is our most general PRG result:
I Corollary 5. For some sufficiently small absolute constant c > 0, there is a PRG with seed
length 2O(

√
logS) + polylog(1/ε) that ε-fools the class of size-S constant-depth circuits that

contain 2
√
c logS many SYM or THR gates.

This strictly improves the main [47] PRG (Theorem 1 of [47]), which achieves seed length
2O(
√

log(S/ε)) for size-S constant-depth circuits that contain O((logS)2) many SYM or THR
gates. We prove Theorem 4 in Appendix C.

1.3 Barriers to further progress: correlation bounds for F2 polynomials
and ACC0 lower bounds

In this section we outline why achieving better dependence on S will require groundbreaking
new correlation bounds or circuit lower bounds.

The seminal work of Babai, Nisan, and Szegedy [3] gave an explicit function and established
that it has exponentially small correlation exp(−Ω(n/4d d)) with any n-variable F2 polynomi-
als of degree d (see Theorem 3 of [48]). This result (and the multiparty communication-based
techniques underlying it) have had far-reaching consequences in complexity theory; 25 years
later, improving on this correlation bound remains a prominent open problem. In particular,
even achieving correlation bounds of the form 1

2 + n−1 against polynomials of degree logn
with respect to any explicit distribution D would constitute a significant breakthrough (see
e.g. “Open Question 1” in Viola’s excellent survey [48]). Since every degree-d polynomial is
s-sparse for s =

(
n
d

)
, this is clearly a special case of obtaining 1

2 + n−1 correlation bounds
against polynomials of sparsity s =

(
n

logn
)
. Via a standard connection between PRGs and

correlation bounds (see e.g. Proposition 3.1 of [49]), an improvement in the dependence
on S in Theorem 2 to 2o(

√
logS) + polylog(1/ε), even for the special case of S-sparse F2

polynomials, would immediately yield exponentially-small correlation bounds against s-sparse
F2 polynomials for s = nω(logn) �

(
n

logn
)
with respect to an explicit distribution. (We remark

that the same correlation bounds are also open for the class of degree logn polynomial
threshold functions, and hence the same barrier applies to improving the S-dependence of
PRGs for size-S THR ◦ AND circuits.)

Further improvements of Theorem 2 would have even more dramatic consequences.
Classical “depth-compression” results of Yao [52] and Beigel and Tauri [4] (see also [10])
show that every size-s depth-d ACC0 circuit can be computed by a size-S SYM ◦AND circuit
where S = exp((logn)Od(1)). Improving the seed length of Theorem 2 for the class of size-S
SYM◦AND circuits to 2(logS)o(1) (even for constant ε) would therefore separate NP from ACC0,
a significant strengthening of Williams’s celebrated separation of NEXP from ACC0 [50].

1.4 The high-level structure of our correlation bound argument
We recall the “bottom-up” approach to proving correlation bounds via the method of random
restrictions. This approach dates back to the classic correlation bounds between Parity

APPROX/RANDOM 2018
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and AC0 of [1] and [20]; in particular, the relevant prior works of [47, 30] also operate within
this framework.

Fix a hard function H, and let F be any function belonging to a given class F of Boolean
functions (in our case F is the class of {SYM,THR} ◦AC0 circuits of size nΩ(logn)). Our goal
is to show that F has small correlation with H, i.e. that Prx←{0,1}n [F (x) = H(x)] ≤ 1

2 + α

for some small α where x is uniform over {0, 1}n. This can be achieved by designing a
fair distribution R over random restrictions that satisfies the following two competing
requirements. (A distribution R over restrictions is said to be fair if first drawing a restriction
ρ ← R and then filling in all ∗’s to independent uniform values from {0, 1} results in a
uniform random string from {0, 1}n.)

(1) Approximator (F ) simplifies: With high probability 1 − γSL over ρ ← R, F “col-
lapses" when it is hit by ρ, meaning that F � ρ ∈ Fsimple for some class Fsimple ⊆ F.
Looking ahead, in our case

Fsimple =
{
{SYM,THR} ◦ ANDk:=0.0005 logm circuits

}
where m ≈

√
n and ANDk denotes the class of fan-in k AND gates. A collapse to this

Fsimple is useful for us because there are efficient multiparty communication protocols
for functions computable by Fsimple (due to [22] when the top gate is SYM and to [36]
when it is THR).

(2) Target (H) retains structure: With high probability 1 − γtarget over ρ ← R, the
restricted hard functionH � ρ “retains structure”, in the sense that it has small correlation
with every function in Fsimple. In our case our notion of structure will be that H � ρ
“contains a perfect copy of” the generalized inner product function:

GIPm/2,k+1(x) :=
m/2⊕
i=1

k+1∧
j=1

xi,j ,

where m and k are the same m and k as above.

Suppose we have such a fair distribution R over random restrictions satisfying (1) and (2)
above. The remaining step in the argument is to show the following: (3) for any ρ such that
both of the above happen (approximator simplifies and the hard function retains structure),
F � ρ and H � ρ have small correlation, i.e. they agree on at most 1

2 + γcorr fraction of
all inputs. As in the previous works of [47, 30], the fact that Fsimple and GIPm/2,k+1 have
small correlation follows from a celebrated theorem of Babai, Nisan, and Szegedy [3] lower
bounding the multiparty communication complexity of GIPm,k+1.

It is straightforward to see that items (1)–(3) above establish a correlation bound of

Pr
x←{0,1}n

[F (x) = H(x) ] ≤ 1
2 + γSL + γtarget + γcorr.

The goal is therefore to carry out the above with max{γSL, γtarget, γcorr} as small as possible
for the class F of {SYM,THR}◦AC0

d circuits of as large a size as possible. As indicated earlier,
for any constant d and circuits of size up to s = nτ logn we achieve max{γSL, γtarget, γcorr} =
exp(−Ω(n0.499)).

We upper bound γSL, γtarget, and γcorr in Sections 2, 3, and 4 respectively. Some useful
preliminaries are given in Appendix A.



R.A. Servedio and L.-Y. Tan 56:7

1.5 How this work differs from [47, 30]: improved depth reduction
A simple observation (due to [19]) that is used in both [47, 30] and in our work as well is the
fact that a symmetric function of depth-k decision trees can be simulated by a (different)
symmetric function of width-k AND’s, and likewise for a threshold function of depth-k
decision trees. (See Fact 1 for a precise statement.) Consequently we can think of Fsimple
as {SYM,THR} ◦ DTk rather than {SYM,THR} ◦ ANDk (where DTk denotes the class of
decision trees of depth k), and for depth reduction it suffices to prove that a family of s
many AC0 circuits collapses to a family of small-depth decision trees with high probability
under a random restriction. This is exactly what is shown by switching lemmas.

The loss in the previous works of [47, 30] is due to the switching lemmas they use and
the limitations of these switching lemmas. [47] uses the standard [20] switching lemma:

I Theorem 6 (Håstad’s switching lemma). Let F be computed by a depth-2 circuit with
bottom fan-in w. Then

Pr
ρ←Rp

[F � ρ is not a depth-t decision tree
]
≤ (5pw)t.

This failure probability of (5pw)t cannot be made exponentially small in our setting:
since correlation bounds strong enough to be useful for the [37] framework are not known for
SYM ◦ ANDω(logn) (see “Open Question 1” of [48]) the value of t has to has to be taken to
be at most k = O(logn), and moreover p certainly has to be � 1/n (since taking p = 1/n
would leave only a constant number of coordinates alive, and H � ρ would not “retain
structure” in the sense of containing a copy of GIPm/2,k+1). Indeed, [47] applies Theorem 6
with p = n−Θ(1) in order to make the failure probability as small as n−Ω(logn), and this is
why [47] only achieves quasi-polynomial correlation bounds n−Ω(logn).

Faced with this obstacle, instead of using the standard [20] switching lemma, [30] reverts
to the earlier “multi-switching lemma” of [1] which applies to a collection of depth-2 circuits
rather than a single such circuit. The [1] multi-switching lemma, stated below, does achieve
exponentially small failure probability, but is only able to handle collections of nO(log logn)

many k-DNFs, for k = O(log logn). Recall that a restriction tree T is like a decision tree
except that leaves do not have labels associated with them (so each root-to-leaf path is a
restriction). The distribution µT corresponds to the distribution over restrictions obtained
by making a random walk from the root of T .

I Theorem 7 (Ajtai’s switching lemma [1]). Let F = {F1, . . . , Fs} be a family of s many
DNFs over x1, . . . , xn, each of width k. For any t ≥ 1, there is a restriction tree T of height
at most nk(log s)/(logn)t such that

Pr
ρ←µT

[
Fi � ρ is not a (logn)10kt2k -junta

]
≤ 2−n/(2

10k(logn)t).

Hence [30] achieves exponentially small correlation bounds (the main point of their paper),
but only against circuits of size nO(log logn).

The key new ingredient that we employ in this work is a recent powerful multi-switching
lemma from [21]. (We note that [23] gives an essentially equivalent multi-switching lemma
which we could also use.) Roughly speaking the [21] multi-switching lemma, whose precise
statement we defer to Section 2 as it is somewhat involved, lets us achieve an exponentially
small failure probability (like Ajtai’s multi-switching lemma) of achieving a significantly more
drastic simplification than Ajtai’s multi-switching lemma (recall the doubly-exponential-in-k
dependence on the junta size in Theorem 7). This quantitative improvement in depth
reduction translates into our stronger correlation bounds.

APPROX/RANDOM 2018
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1.6 Relation to [43]
We close this introduction by discussing the connection between this paper and recent
concurrent work of the authors [43]. The high-level approaches of the two papers are
fairly different: unlike the current paper, [43] does not use the Nisan–Wigderson hardness-
versus-randomness paradigm (and does not establish any new correlation bounds); instead it
establishes a derandomized version of the [21] multi-switching lemma and combines this with
other ingredients to obtain its final PRG in a manner reminiscent of [2, 45].

The results of the two papers are also incomparable (briefly, [43] obtains significantly
shorter seed length for significantly more restricted classes of functions). The first main
result of [43] is an ε-PRG for the class of size-S depth-d AC0 circuits with seed length
log(S)d+O(1) · log(1/ε). This is incomparable to the most closely related result of the
present paper (Corollary 5, which gives a 2O(

√
logS) + polylog(1/ε) seed length PRG for AC0

circuits augmented with polynomially many SYM or THR gates), since the [43] result gives a
significantly better seed length but for the significantly more limited class of “un-augmented”
constant-depth circuits (indeed, the [43] result does not apply to AC0 circuits augmented even
with a single SYM or THR gate). The second main result of [43] is an ε-PRG for the class of
S-sparse F2 polynomials with seed length 2O(

√
logS) · log(1/ε). Here too the seed length of

[43] is shorter than that of the current paper (giving the optimal log(1/ε) dependence on ε
as opposed to the (log(1/ε))4.01 of the current paper), but the result of [43] only holds for
S-sparse F2 polynomials, which are a very restricted case of the {SYM,THR} ◦AC0

d circuits
which are handled in the current paper.

2 Ingredient (1): Simplifying the approximator

The main result of this section is the following:

I Lemma 8. Let F be any {SYM,THR} ◦ AC0
d circuit of size s = nτ logn. There is a fair

distribution R over restrictions ρ ∈ {0, 1, ∗}n such that the following holds: With probability
1− γSL = 1− exp(−Ωd(

√
n/ logn)) over the draw of ρ← R, it is the case that F � ρ belongs

to the class Fsimple = {SYM,THR} ◦ ANDk:=0.0005 logm, where m = Θ(
√
n/ logn).

The recent “multi-switching lemma” of [21] is the main technical tool we use to establish
Lemma 8. To state the [21] lemma we need some terminology. Let G be a family of Boolean
functions. A restriction tree T is said to be a common `-partial restriction tree (RT) for
G if every g ∈ G can be expressed as T with depth-` decision trees hanging off its leaves.
(Equivalently, for every g ∈ G and root-to-leaf path π in T , we have that g � π is computed
by a depth-` decision tree.)

I Theorem 9 ([21] multi-switching lemma). Let F = {F1, . . . , Fs} be a collection of depth-2
circuits with bottom fan-in w. Then for any t ≥ 1,

Pr
ρ′←Rp

[
F � ρ′ does not have a common (log s)-partial RT of depth ≤ t

]
≤ s(24pw)t.

Theorem 9 is the main tool we use to simplify any {SYM,THR} ◦ AC0 circuit down to an
Fsimple-circuit. Conceptually, we think of this transformation as being done in three steps:
1. (Main step) Apply a random restriction ρ′ ← Rp to convert a {SYM,THR} ◦ AC0 circuit

into a decision tree with a {SYM,THR} ◦ DT circuit at each leaf.
2. Observing that {SYM,THR} ◦ DT ≡ {SYM,THR} ◦ AND, this is equivalent to a decision

tree with a {SYM,THR} ◦ AND circuit at each leaf.
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3. Trim the fan-in of the AND gates in each {SYM,THR} ◦ AND circuit (by increasing the
depth of the decision tree). The last step in the draw of a random restriction ρ from the
overall fair distribution R corresponds to a random walk down this final decision tree.

In the rest of this section we describe each of these steps in detail and thereby prove
Lemma 8.

First (main) step. If g is a Boolean function and C is a class of circuits, we say that g is
computed by a (d, C)-decision tree if g is computed by a decision tree of depth d (with a single
Boolean variable at each internal node as usual) in which each leaf is labeled by a function
from C. We require the following corollary of Theorem 9:

I Corollary 10. Let G be any Boolean function and G be a gate computing G, and let F be
a G ◦ AC0

d circuit of size s . Then for p = 1
48 (48 log s)−(d−1) and any t ≥ 1,

Pr
ρ′←Rp

[
F � ρ′ is not computed by a (2dt,G ◦ DTlog s)-decision tree

]
≤ s · 2−t.

Proof. We may assume without loss of generality that the depth-(d+ 1) circuit F is layered,
meaning that for any gate g it contains, every directed path from an input variable to g has
the same length (converting an unlayered circuit to a layered one increases its size only by a
factor of d, which is negligible for our purposes). Let si denote the number of gates in layer
i (at distance i from the inputs), so s = s1 + · · ·+ sd.

We begin by trimming the bottom fan-in of F : applying Theorem 9 with F being the
s1 many bottom layer gates of F (viewed as depth-2 circuits of bottom fan-in w = 1) and
p0 := 1/48, we get that

Pr
ρ0←Rp0

[
F � ρ0 is not computed by a

(t, G ◦ AC0(depth d, bottom fan-in log s))-decision tree
]
≤ s1 · 2−t.

Let F (0) be any good outcome of the above, a (t, G ◦ AC0(depth d, bottom fan-in log s))-
decision tree. Note that there are at most 2t many AC0(depth d, fan-in log s) circuits at the
leaves of the depth-t decision tree. Applying Theorem 9 to each of them with p1 := 1/(48 log s)
(and the ‘t’ of Theorem 9 being 2t) and taking a union bound over all 2t many of them, we
get that

Pr
ρ1←Rp1

[
F (0) � ρ1 is not a (t+ 2t, G ◦ AC0(depth d− 1, fan-in log s))-decision tree

]
≤ s2 · 2−2t · 2t = s2 · 2−t.

Repeat with p2 = . . . = pd−1 := 1/(48 log s), each time invoking Theorem 9 with its ‘t’ being
the one more than the current depth of the decision tree . The claim then follows by summing
the s12−t, s22−t, . . . , sd2−t failure probabilities over all d stages and the fact that

d−1∏
j=0

pi = 1
48 ·

1
(48 log s)d−1 = p. J

Second step: From {SYM,THR} ◦DT to {SYM,THR} ◦AND. We recall the following
fact from [19]:

I Fact 1. Every SYMs ◦ DTlog s function (resp. THRs ◦ DTlog s) can be computed by a
SYMs2 ◦ ANDlog s (resp. THRs2 ◦ ANDlog s) circuit.

APPROX/RANDOM 2018
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(This is an easy consequence of the fact that any decision tree may be viewed as a DNF
whose terms corresponds to the paths to 1-leaves, and that this DNF has the property
that any input assignment makes at most one term true.) Applying Fact 1 and choosing
t = m/2d+1 in Corollary 10, (where m = Θ(

√
n/ logn) will be defined precisely in the next

section), we get the following special case of Corollary 10:

I Corollary 11. Let F be a {SYM,THR} ◦ AC0
d circuit of size s = nτ logn. Then for

p = 1
48 (48 log s)−(d−1),

Pr
ρ′←Rp

[
F � ρ′ is not computed by a (m/2, {SYMs2 ,THRs2} ◦ ANDlog s)-decision tree

]
≤ s · 2−t = s · 2−m/2

d+2

= exp(−Ωd(
√
n/ logn)) := γSL. (1)

Third step: Trimming to reduce bottom fan-in. The {SYM,THR}◦AND circuits hanging
off the leaves of our decision tree have bottom fan-in at most log s, but we will need them to
have fan-in at most k in order to invoke the [3] lower bound later. At each leaf ` we achieve
this smaller fan-in by identifying a set (call it S`) of additional variables and restricting them
in all possible ways; we argue that every fixing of the variables in S` gives the desired upper
bound of k on the bottom-AND fan-in. We use a probabilistic argument to establish the
existence of the desired set S` (this is important because in the next section we will need
each S` to satisfy an additional property, and the probabilistic argument makes it easy to
achieve this).

Let us write “L ⊆q X” to indicate that L is a subset of X that is randomly chosen by
independently including each element of X with probability q. We will use the following easy
result:

I Fact 2. Let {C1, . . . , Cs2} be a collection of subsets of [n] where each |Ci| ≤ w. Then for
L ⊆q [n] and k ≤ w, we have

Pr
L⊆q [n]

[
∃ i ∈ [s2] such that |Ci ∩L| > k

]
≤ s2

(
w

k

)
qk.

Recall that s = nτ logn where τ > 0 is a small absolute constant to be specified later and
that k = 0.0005 logn. We set

q := k

e log s · 2
−(3 log s)/k = 1

Θ(logn) · n
−Θ(1)·τ < n−0.01,

where the last inequality holds for a suitably small choice of the constant τ . Observe that q
is chosen so as to ensure

s2
(

log s
k

)
qk ≤ 22 log s

(
e log s
k
· q
)k

= 1
s
� 1. (2)

Fix T to be an (m/2, {SYMs2 ,THRs2} ◦ ANDlog s)-decision tree as given by Corollary 11.
At each leaf ` of T , draw a set L(`) ⊆q [n] and let S` be ([n] \ fixed(`)) \ L(`), where
fixed(`) ⊆ [n] is the subset of variables that are fixed on the root-to-` path in T . By Fact 2
and (2), at each leaf ` it is the case that with probability at least 1− 1/s over the random
draw of L(`), every extension of the root-to-` path in T that additionally fixes all the
variables in S` collapses the {SYM,THR} ◦ ANDlog s circuit that was at ` in T down to a
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{SYM,THR} ◦ ANDk circuit. We say that such an outcome of L(`) is a good outcome (we
will refer back to this notion in the next section).

In summary, the above discussion establishes Lemma 8, where the fair distribution R
corresponds to
(a) first drawing ρ′ ← Rp,
(b) then walking down a random root-to-leaf path π in the resulting depth-(m/2) decision

tree given by Corollary 11,
(c) and then finally, at the resulting leaf `, choosing a random assignment to the variables

in the set S` that corresponds to L(`), where L(`) is a good outcome of the random
variable L(`) ⊆q [n]. (Note that the randomness over L(`) is not part of the random
draw of ρ← R; all we require is the existence of a good L(`).)

Based on our discussion thus far each L(`) may be fixed to be any good outcome of L(`);
we will give an additional stipulation on L(`) in Remark 3.

3 Ingredient (2) (target retains structure): GIP ◦ PAR under
random restrictions

Like [47, 30], our hard function will be the generalized inner product function composed with
parity:

RWm,k,r(x) =
m⊕
i=1

k+1∧
j=1

r⊕
`=1

xi,j,`. (3)

This function was introduced by Razborov and Wigderson [39] to show nΩ(logn) lower bounds
against depth-3 threshold circuits with AND gates at the bottom layer. We will set

m = r =
√
n/(k + 1) (recall that k = 0.0005 logm).

Note that m = r = Θ(
√
n/ logn) and k = Θ(logn). Given parameters m′, k′, r′, we say that

a function g : {0, 1}n → {0, 1} contains a perfect copy of RWm′,k′,r′ if there is a restriction κ
such that (g � κ)(x) = b⊕

⊕m′

i=1
∧k+1
j=1

(
bi,j
⊕r′

`=1 xi,j,k

)
for some bits b, bi,j .

Roughly speaking, the motivation behind augmenting GIP with a layer of parities is to
ensure that RW is resilient to random restrictions (i.e. that RW � ρ “remains complex”,
containing a copy of GIP with high probability after a suitable random restriction). In our
setting we need that RW is resilient to a random restriction ρ← R for the fair distribution
R from Lemma 8; we establish this in the rest of this section.

I Proposition 1. Consider the space of formal variables of RWm,k,r : {0, 1}n → {0, 1}:

X =
{
xi,j,t : (i, j, t) ∈ [m]× [k + 1]× [r]

}
, |X| = m(k + 1)r := n.

Then for p = 1
48 (48 log s)−(d−1) (as in Corollary 11),

Pr
L⊆pX

[
∃ (i, j) :

∣∣{t ∈ [r] : xi,j,t ∈ L}
∣∣ < pr

2

]
≤ m(k + 1) · exp (−Ω(pr)) .

Proof. This follows directly from a standard multiplicative Chernoff bound and a union
bound over all (i, j) ∈ [m]× [k + 1]. J
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Recall that a random restriction ρ′ ← Rp can be thought of as being sampled by first
drawing K ⊆p X and setting ρi to ∗ for each i ∈ K, and then setting the coordinates of
ρ′ in X \K according to a uniform random draw from {0, 1}X\K. Proposition 1 and the
definition of RW thus yield the following:

I Corollary 12. For ρ′ ← Rp, for p = 1
48 (48 log s)−(d−1), RWm,k,r(x) � ρ′ contains a perfect

copy of

RWm,k,r′(x) =
m⊕
i=1

k+1∧
j=1

r′⊕
t=1

xi,j,t, where r′ = pr

2

with failure probability at most

exp(−Ω(pr)) = exp
(
−

√
n/ logn

(Θ(log s))d−1

)
:= γtarget. (4)

Note that

r′ = pr

2 =
√
n/ logn

(Θ(log s))d−1 > n0.49,

where the inequality uses the fact that d is a constant and the fact that s = nO(logn); we will
use this later.

Corollary 12 states that with very high probability over ρ′ ← Rp, the function RWm,k,r �
ρ′ “does not simplify too much”; however we need RWm,k,r to “not simplify too much” under
a full random restriction drawn from R (recall the discussion at the end of Section 2). We
proceed to establish this.

Fix any outcome ρ′ of ρ′ ← Rp such that (i) the conclusion of Corollary 11 holds (i.e.
F � ρ′ is computed by a (m/2, {SYMs2 ,THRs2} ◦ DTlog s)-decision tree, which we call T ),
and (ii) the conclusion of Corollary 12 holds (i.e. RWm,k,r � ρ′ contains a perfect copy of
RWm,k,r′). (A random ρ′ ← Rp is such an outcome with probability at least 1−γSL−γtarget.)
For ease of notation let us write RW′ to denote RWm,k,r � ρ′.

Fix any path π that reaches a leaf ` in T. (Note that a random choice of such a path
corresponds to part (b) in the random draw of ρ← R, recalling the discussion at the end of
Section 2.) Since |π| ≤ m/2, we have that the set

A` := {i ∈ [m] : πi,j,t = ∗ for all j ∈ [k + 1] and all t}

has cardinality at least m − |π| ≥ m/2. In words, at least m/2 of the m many depth-2
subcircuits of RW′ are completely “untouched” by π. For part (c) of the draw from R,
recall that the set L(`) could be taken to be any good outcome of L(`), and that a random
L(`) ⊆q [n] is good with probability at least 1− 1/s. By the same Chernoff bound argument
as the one in Proposition 1, we have that

Pr
L⊆q [n]

[
∃ (i, j) ∈ A` × [k + 1] :

∣∣{t : xi,j,t ∈ L(`)}
∣∣ < qr′

2

]
≤ |A`|(k + 1) exp (−Ω(qr′))

� exp(−Ω(n0.48)),

recalling that |A`| ≤ m, k = Θ(logn), q ≥ n−0.01 and r′ > n0.49. Since 1 − 1/s + 1 −
exp(−Ω(n0.48)) > 1, there must exist a good outcome L(`) of L(`) such that for the
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corresponding S`, every restriction ρtrim fixing precisely the variables in S` is such that
RW′ � πρtrim contains a perfect copy of

RWm,k,r′′(x) =
⊕
i∈A`

k+1∧
j=1

r′′⊕
t=1

xi,j,t, where r′′ = qr′

2 � 1.

Having r′′ ≥ 1 is crucial for us because, together with |A`| ≥ m/2, it means that RWm,k,r′′

contains a perfect copy of GIPm/2,k+1 (i.e. by possibly restricting and renaming some
variables of RWm,k,r′′ and possibly negating the result, we obtain a function identical to
GIPm/2,k+1).
I Remark. We refine the definition of R to require that in (c) it use an L(`) as specified
above at each leaf `.

Summarizing, the above discussion establishes that RWm,k,r “retains structure” with
high probability under a random ρ← R. The formal statement of this result (incorporating
also Lemma 8) is as follows:

I Lemma 13. Let F be any {SYM,THR} ◦ AC0
d circuit of size s = nτ logn. The fair

distribution R over restrictions ρ ∈ {0, 1, ∗}n from Lemma 8 satisfies the following: With
probability 1− γSL − γtarget over a draw of ρ← R, both of the following hold:
(i) F � ρ belongs to {SYM,THR} ◦ ANDk;
(ii) RWm,k,r � ρ contains a perfect copy of GIPm/2,k+1.

4 Bounding the correlation between the approximator and target
post-restriction

With Lemma 13 in hand it is a simple matter to finish the argument. Fix any outcome ρ of
ρ← R such that F � ρ and RWm,k,r � ρ satisfy (i) and (ii) of Lemma 13. Applying either
Fact 3 or Theorem 15 (depending on whether the top gate of F is SYM or THR) along with
the lower bound of Theorem 14, we get that

Pr
x←{0,1}n

[ (F � ρ)(x) = (RWm,k,r � ρ)(x) ] ≤ 1
2 + exp

(
−Ω(m/4k)

)
= 1/2 + γcorr, (5)

where

γcorr = exp
(
−Ω(m/4k)

)
= exp

(
−Ω(m0.999)

)
= exp

(
−Ω(n0.499)

)
.

This gives ingredient (3) as described in Section 1.4. Recalling the discussion at the end of
Section 1.4, Theorem 3 follows from Lemma 13 and (5).
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A Preliminaries

We use bold font like x, ρ, etc. to denote random variables.
We write “size-S AC0

d” to denote the class of circuits of depth d consisting of at most
S unbounded fan-in AND/OR gates with variables and negated variables as the inputs (we
include these literals in the gate count).

Pseudorandomness. For r < n, we say that a distribution D over {0, 1}n can be sampled
efficiently with r random bits if (i) D is the uniform distribution over a multiset of size exactly
2r of strings from {0, 1}n, and (ii) there is a deterministic algorithm GenD which, given as
input a uniform random r-bit string x← {0, 1}r, runs in time poly(n) and outputs a string
drawn from D.

For δ > 0 and a class C of functions from {0, 1}n to {0, 1}, we say that a distribution D
over {0, 1}n δ-fools C with seed length r if (a) D can be sampled efficiently with r random
bits via algorithm GenD, and (b) for every function f ∈ C, we have∣∣∣∣ E

s←{0,1}r
[f(GenD(s))]− E

x←{0,1}n
[f(x)]

∣∣∣∣ ≤ δ.
Equivalently, we say that GenD is a δ-PRG for C with seed length r.

Restrictions. A restriction ρ of variables x1, . . . , xn is an element of {0, 1, ∗}n). Given a
function f(x1, . . . , xn) and a restriction ρ, we write f � ρ to denote the function obtained
by fixing xi to ρ(i) if ρ(i) ∈ {0, 1} and leaving xi unset if ρ(i) = ∗. For two restrictions
ρ, ρ′ ∈ {0, 1, ∗}n, their composition, denoted ρρ′ ∈ {0, 1, ∗}n, is the restriction defined by

(ρρ′)i =
{
ρi if ρi ∈ {0, 1}
ρ′i otherwise.

http://dx.doi.org/10.1137/050640941
http://dx.doi.org/10.1137/050640941
http://dx.doi.org/10.1007/s00037-009-0273-5


R.A. Servedio and L.-Y. Tan 56:17

We write Rp to denote the standard distribution over random restrictions with ∗-probability
p, i.e. ρ drawn from Rp is a random string in {0, 1, ∗} obtained by independently setting
each coordinate to ∗ with probability p and to each of 0, 1 with probability 1−p

2 .

A.1 Multiparty communication complexity
We recall a celebrated lower bound of Babai, Nisan, and Szegedy [3] on the multi-party
“number on forehead” (NOF) communication complexity of the generalized inner product
function:

I Theorem 14 ([3]). There is a partition of the m · (k + 1) inputs of

GIPm,k+1(x) :=
m⊕
i=1

k+1∧
j=1

xi,j

into k + 1 blocks such that the following holds: Let P be a (k + 1)-party randomized NOF
communication protocol exchanging at most 1

10 (m/4k+1−log(1/γcomm)) bits of communication
and computing a Boolean function f with error γerr (meaning that on every input x the
protocol outputs the correct value f(x) with probability at least 1− γerr). Then

Pr
x←{0,1}m(k+1)

[
f(x) = GIPm,k+1(x)

]
≤ 1

2 + γerr + γcomm.

The connection between SYM◦ANDk circuits and (k+1)-party communication complexity
is due to the following simple but influential observation of Håstad and Goldmann:

I Fact 3 ([22]). Let f : {0, 1}n → {0, 1} be a Boolean function computed by a size-s
SYM ◦ANDk circuit. Then for any partition of the n inputs of f into k + 1 blocks, there is a
deterministic NOF (k + 1)-party communication protocol that computes f using O(k log s)
bits of communication.

For THR◦AC0 circuits we use an analogous result from [36] on the (k+1)-party randomized
γ-error communication complexity of THR ◦ ANDk circuits:

I Theorem 15 ([36]). Let f : {0, 1}n → {0, 1} be a Boolean function computed by a
THR ◦ ANDk circuit. Then for any partition of the n inputs of f into k + 1 blocks, there is a
randomized NOF (k + 1)-party communication protocol that computes f with error γerr using
O(k3 logn log(n/γerr)) bits of communication.

B Applying the [37] paradigm to obtain pseudorandom generators
from correlation bounds

A function f is said to be (s, τ)-hard for a circuit class C if every circuit C ∈ C of size at
most s has Prx[f(x) = C(x)] ≤ 1

2 + τ , where x is a uniform random input string. If this
holds then we say that f gives a correlation bound of τ against C-circuits of size s.

Given a quadruple (m, r, `, s) of non-negative integers, a family F = {T1, . . . , Ts} of
r-element subsets of [m] is said to be an (m, r, `, s)-design if for any two distinct subsets
Ti, Tj ∈ F we have |Ti ∩ Tj | ≤ `.

An ANYt gate is a gate that takes in t inputs and computes an arbitrary function from
{0, 1}t to {0, 1}.

We recall the Nisan-Wigderson [37] translation from correlation bounds to PRGs:

APPROX/RANDOM 2018



56:18 LVW Revisited: Improved Correlation Bounds and PRGs for Depth-Two Circuits

I Theorem 16 (The Nisan-Wigderson generator). Fix a circuit class C and let m, r, `, s ∈ N
be positive parameters with m ≥ r ≥ `. Given an explicit f : {0, 1}r → {0, 1} that is
(s · 2`, ε/s)-hard for C ◦ ANYlog ` and an explicit (m, r, `, s)-design, there is an explicit PRG
G : {0, 1}m → {0, 1}s that ε-fools size-s circuits in C. (Hence for s ≥ n, by taking the first
n output bits of G there is an explicit PRG mapping {0, 1}m to {0, 1}n that ε-fools size-s
n-variable circuits in C.)

The existence of explicit designs is well known, in particular we recall the following:

I Lemma 17 (Problem 3.2 of [46]). There is a deterministic algorithm which, for any
r, s ∈ N, runs in time poly(m, s) and outputs an explicit (m, r, `, s)-design with m = O(r2/s)
and ` ≤ log s.

A PRG from the [47] correlation bound. Viola [47] gives an explicit function f : {0, 1}r →
{0, 1} and shows that for every constant d there is a constant cd such that f is
(rcd log r, r−cd log r)-hard for SYM ◦ AC0

d. Fix any d. Given values for ε, s let us set the
parameters

` = log s, r = 210·
√

1
cd

log(s/ε)
.

It is straightforward to verify that s · 2` ≤ rcd log r and ε/s ≥ r−cd log r. By Lemma 17 there
is an explicit (m, r, `, s)-design with m = O(r2/`) = 2O(

√
1
cd

log(s/ε)), so applying the Nisan-
Wigderson generator, we get that for s ≥ n, there is an explicit PRG G : {0, 1}m → {0, 1}n

with seed length m = 2O(
√

log(s/ε)) that ε-fools n-variable size-s circuits in AC0
d.

A PRG from the [30] correlation bound. Lovett and Srinivasan [30] give an explicit
function f : {0, 1}r → {0, 1} such that for every constant d there is a constant cd such that
f is (rcd log log r, exp(−r1−o(1))-hard for SYM ◦ AC0

d. We proceed as above but now choosing

` = log s, r = 2
10
cd
· log s

log log s + (log(s/ε))1+o(1)
.

It is straightforward to verify that s · 2` ≤ rcd log log r and ε/s ≥ exp(−r1−o(1)). By Lemma 17
there is an explicit (m, r, `, s)-design with m = O(r2/`) = 2O(log s/ log log s) · (log(1/ε))2+o(1),

so applying the Nisan-Wigderson generator, we get that for s ≥ n, there is an explicit PRG
G : {0, 1}m → {0, 1}n with seed length m = 2O(log s/ log log s) + (log(1/ε))2+o(1) that ε-fools
n-variable size-s circuits in SYM ◦ AC0

d.

For THR ◦ AC0
d, [30] show that the same function f is (rcd log log r, exp(−r1/2−o(1)))-hard

for THR ◦ AC0
d; a similar analysis to the above gives an explicit PRG G : {0, 1}m → {0, 1}n

with seed length m = 2O(log s/ log log s) + (log(1/ε))4+o(1) that ε-fools n-variable size-s circuits
in THR ◦ AC0

d.

A PRG from our Theorem 3: Proof of Theorem 2. Theorem 3 gives an explicit f :
{0, 1}r → {0, 1} and τ > 0 such that for all d, f is (rτ log r, exp(−r0.499))-hard for
{SYM,THR} ◦ AC0

d. This time we choose

` = log s, r = 210·
√

2
τ log s + (log(s/ε))2.005

.

We have s · 2` ≤ rτ log r and ε/s ≥ exp(−r0.499), so we get that for s ≥ n, there is an explicit
PRG G : {0, 1}m → {0, 1}n with seed length m = O(r2/`) = 2O(

√
log s) + (log(1/ε))4.01 that

ε-fools n-variable size-s circuits in {SYM,THR} ◦ AC0
d.
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A PRG from our Theorem 4: Proof of Corollary 5. Finally, Theorem 4 gives an explicit
f : {0, 1}r → {0, 1} and τ > 0 such that for all d, f is (rτ log r, exp(−r0.499))-hard for the class
of depth-d circuits over {0, 1}r that contain r0.249 many SYM or THR gates. We choose `, r
as above, so similar to the above, we get that there is an explicit PRG G : {0, 1}m → {0, 1}n

with seed length m = O(r2/`) = 2O(
√

log s) + (log(1/ε))4.01 that ε-fools n-variable size-s
depth-d circuits with at most 2c

√
log s many SYM or THR gates.

C Proof of Theorem 4: Handling multiple SYM and THR gates

We prove Theorem 4 via a slight variant of Theorem 3 and an argument from [30] (a related
argument appears in a somewhat different form in [47]). The variant of Theorem 3, stated
as Theorem 20 below, is proved by combining ingredients (1), (2) and (3) as in Section 1.4,
but now with the aim of proving a correlation bound against ANYu ◦ {SYM,THR} ◦ AC0

d

circuits rather than {SYM,THR} ◦ AC0
d circuits (where here and throughout this appendix

we take u := n0.249). As we describe at the end of this section, once this correlation bound
against ANYu ◦ {SYM,THR} ◦ AC0

d is in place, the extension to circuits with n0.249 many
SYM or THR gates directly follows using an argument from [30].

In more detail we have: (throughout the following the values of m, k, r are as they were
before)

I Lemma 18 (Lemma 8 analogue). Fix u := n0.249 and let F be an ANYu◦{SYM,THR}◦AC0
d

circuit where each of the u {SYM,THR} ◦ AC0
d subcircuits of F has size at most s = nτ logn.

There is a fair distribution R over restrictions ρ ∈ {0, 1, ∗}n such that the following holds:
With probability 1− γSL = 1− exp(−Ωd(

√
n/ logn)) over the draw of ρ← R, it is the case

that F � ρ belongs to the class Fsimple, u := ANYu ◦ {SYM,THR} ◦ ANDk.

The proof is almost identical to that of Lemma 8, with ANYu · {SYM,THR} taking the
place of {SYM,THR} throughout the argument. Now in Corollary 10 the gate G corresponds
to ANYu ◦{SYM,THR} (rather than to just {SYM,THR} as earlier) and the total circuit size
of F is us rather than s (leading to us ·2−t rather than s ·2−t on the RHS of the Corollary 10
bound), but this is swallowed up by the slack in the inequalities leading to (1).

I Lemma 19 (Lemma 13 analogue). Fix u := n0.249 and let F be an ANYu ◦ {SYM,THR} ◦
AC0

d circuit where each {SYM,THR} ◦AC0
d subcircuit has size at most s = nτ logn. The fair

distribution R over restrictions ρ ∈ {0, 1, ∗}n from Lemma 18 satisfies the following: With
probability 1− γSL − γtarget over a draw of ρ← R, both of the following hold:
(i) F � ρ belongs to Fsimple, u = ANYu ◦ {SYM,THR} ◦ ANDk; and
(ii) RWm,k,r � ρ contains a perfect copy of GIPm/2,k+1.

The proof of Lemma 19 is unchanged from Section 3.

I Theorem 20 (Theorem 3 analogue). Fix u := n0.249. There is an absolute constant τ > 0
and an explicit poly(n)-time computable function H : {0, 1}n → {0, 1} with the following
property: for any constant d, for n sufficiently large, for F an ANYu ◦ {SYM,THR} ◦ AC0

d

circuit where each {SYM,THR} ◦ AC0
d subcircuit has size at most s = nτ logn, we have

Pr
x←{0,1}n

[F (x) = RWm,k,r(x)] ≤ 1
2 + exp(−Ω(n0.249)).

The proof, using Lemmas 18 and 19, is virtually identical to the proof of Theorem 3 using
Lemmas 8 and 13. The only difference is that we use the obvious extensions of Fact 3 and
Theorem 15 to ANYu · SYM ◦ ANDk circuits and ANYu · THR ◦ ANDk circuits respectively;
these extensions are stated for completeness below.
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I Fact 4 (Fact 3 analogue). Let f : {0, 1}n → {0, 1} be a Boolean function computed by a
size-s ANYu ◦ SYM ◦ ANDk circuit. Then for any partition of the n inputs of f into k + 1
blocks, there is a deterministic NOF (k + 1)-party communication protocol that computes f
using u ·O(k log s) bits of communication.

I Theorem 21 (Theorem 15 analogue). Let f : {0, 1}n → {0, 1} be a Boolean function
computed by a ANYu ◦ THR ◦ ANDk circuit. Then for any partition of the n inputs of f into
k + 1 blocks, there is a randomized NOF (k + 1)-party communication protocol that computes
f with error γerr using u ·O(k3 logn log(n/γerr)) bits of communication.

We note that the extra factors of u in Fact 4 and in Theorem 21, which are not present
in the analogous Fact 3 and Theorem 15 respectively, are responsible for the quantitatively
weaker correlation bound in Theorem 4 as opposed to Theorem 3. The n0.249 bound on the
number of SYM or THR gates which Theorem 4 can handle can be traded off against the
correlation bound in that theorem; we leave the details to the interested reader.

Finally, the correlation bound Theorem 4 follows from Theorem 20 exactly as Theorem 6
of [30] follows from Lemma 3 of that paper.
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