25 research outputs found

    Surface networks

    Get PDF
    © Copyright CASA, UCL. The desire to understand and exploit the structure of continuous surfaces is common to researchers in a range of disciplines. Few examples of the varied surfaces forming an integral part of modern subjects include terrain, population density, surface atmospheric pressure, physico-chemical surfaces, computer graphics, and metrological surfaces. The focus of the work here is a group of data structures called Surface Networks, which abstract 2-dimensional surfaces by storing only the most important (also called fundamental, critical or surface-specific) points and lines in the surfaces. Surface networks are intelligent and “natural ” data structures because they store a surface as a framework of “surface ” elements unlike the DEM or TIN data structures. This report presents an overview of the previous works and the ideas being developed by the authors of this report. The research on surface networks has fou

    Parallel Computation of Piecewise Linear Morse-Smale Segmentations

    Full text link
    This paper presents a well-scaling parallel algorithm for the computation of Morse-Smale (MS) segmentations, including the region separators and region boundaries. The segmentation of the domain into ascending and descending manifolds, solely defined on the vertices, improves the computational time using path compression and fully segments the border region. Region boundaries and region separators are generated using a multi-label marching tetrahedra algorithm. This enables a fast and simple solution to find optimal parameter settings in preliminary exploration steps by generating an MS complex preview. It also poses a rapid option to generate a fast visual representation of the region geometries for immediate utilization. Two experiments demonstrate the performance of our approach with speedups of over an order of magnitude in comparison to two publicly available implementations. The example section shows the similarity to the MS complex, the useability of the approach, and the benefits of this method with respect to the presented datasets. We provide our implementation with the paper.Comment: Journal: IEEE Transactions on Visualization and Computer Graphics / Submitted: 22-Jun-2022 / Accepted: 13-Mar-202

    The Discrete Morse Complex of Images: Algorithms, Modeling and Applications

    Get PDF
    The Morse complex can be used for studying the topology of a function, e.g., an image or terrain height field when understood as bivariate functions. We present an algorithm for the computation of the discrete Morse complex of two-dimensional images using an edge-based data structure. By using this data structure, it is possible to perform local operations efficiently, which is important to construct the complex and make the structure useful for areas like visualization, persistent homology computation, or construction of a topological hierarchy. We present theoretical and applied results to demonstrate benefits and use of our method

    The Stellar decomposition: A compact representation for simplicial complexes and beyond

    Get PDF
    We introduce the Stellar decomposition, a model for efficient topological data structures over a broad range of simplicial and cell complexes. A Stellar decomposition of a complex is a collection of regions indexing the complex’s vertices and cells such that each region has sufficient information to locally reconstruct the star of its vertices, i.e., the cells incident in the region’s vertices. Stellar decompositions are general in that they can compactly represent and efficiently traverse arbitrary complexes with a manifold or non-manifold domain. They are scalable to complexes in high dimension and of large size, and they enable users to easily construct tailored application-dependent data structures using a fraction of the memory required by a corresponding global topological data structure on the complex. As a concrete realization of this model for spatially embedded complexes, we introduce the Stellar tree, which combines a nested spatial tree with a simple tuning parameter to control the number of vertices in a region. Stellar trees exploit the complex’s spatial locality by reordering vertex and cell indices according to the spatial decomposition and by compressing sequential ranges of indices. Stellar trees are competitive with state-of-the-art topological data structures for manifold simplicial complexes and offer significant improvements for cell complexes and non-manifold simplicial complexes. We conclude with a high-level description of several mesh processing and analysis applications that utilize Stellar trees to process large datasets

    Computing multiparameter persistent homology through a discrete Morse-based approach

    Get PDF
    Persistent homology allows for tracking topological features, like loops, holes and their higher-dimensional analogues, along a single-parameter family of nested shapes. Computing descriptors for complex data characterized by multiple parameters is becoming a major challenging task in several applications, including physics, chemistry, medicine, and geography. Multiparameter persistent homology generalizes persistent homology to allow for the exploration and analysis of shapes endowed with multiple filtering functions. Still, computational constraints prevent multiparameter persistent homology to be a feasible tool for analyzing large size data sets. We consider discrete Morse theory as a strategy to reduce the computation of multiparameter persistent homology by working on a reduced dataset. We propose a new preprocessing algorithm, well suited for parallel and distributed implementations, and we provide the first evaluation of the impact of multiparameter persistent homology on computations

    Master index of Volumes 21–30

    Get PDF

    Computational Topology Methods for Shape Modelling Applications

    Get PDF
    This thesis deals with computational topology, a recent branch of research that involves both mathematics and computer science, and tackles the problem of discretizing the Morse theory to functions defined on a triangle mesh. The application context of Morse theory in general, and Reeb graphs in particular, deals with the analysis of geometric shapes and the extraction of skeletal structures that synthetically represents shape, preserving the topological properties and the main morphological characteristics. Regarding Computer Graphics, shapes, that is a one-, two- or higher- dimensional connected, compact space having a visual appearance, are typically approximated by digital models. Since topology focuses on the qualitative properties of spaces, such as the connectedness and how many and what type of holes it has, topology is the best tool to describe the shape of a mathematical model at a high level of abstraction. Geometry, conversely, is mainly related to the quantitative characteristics of a shape. Thus, the combination of topology and geometry creates a new generation of tools that provide a computational description of the most representative features of the shape along with their relationship. Extracting qualitative information, that is the information related to semantic of the shape and its morphological structure, from discrete models is a central goal in shape modeling. In this thesis a conceptual model is proposed which represents a given surface based on topological coding that defines a sketch of the surface, discarding irrelevant details and classifying its topological type. The approach is based on Morse theory and Reeb graphs, which provide a very useful shape abstraction method for the analysis and structuring of the information contained in the geometry of the discrete shape model. To fully develop the method, both theoretical and computational aspects have been considered, related to the definition and the extension of the Reeb graph to the discrete domain. For the definition and automatic construction of the conceptual model, a new method has been developed that analyzes and characterizes a triangle mesh with respect to the behavior of a real and at least continuous function defined on the mesh. The proposed solution handles also degenerate critical points, such as non-isolated critical points. To do that, the surface model is characterized using a contour-based strategy, recognizing critical areas instead of critical points and coding the evolution of the contour levels in a graph-like structure, named Extended Reeb Graph, (ERG), which is a high-level abstract model suitable for representing and manipulating piece-wise linear surfaces. The descriptive power of the (ERG) has been also augmented with the introduction of geometric information together with the topological ones, and it has been also studied the relation between the extracted topological and morphological features with respect to the real characteristics of the surface, giving and evaluation of the dimension of the discarded details. Finally, the effectiveness of our description framework has been evaluated in several application contexts
    corecore