
The Stellar decomposition: A compact representation for simplicial
complexes and beyond

Riccardo Fellegara, German Aerospace Center (DLR), Braunschweig, Germany
Kenneth Weiss, Lawrence Livermore National Laboratory, Livermore, CA, USA

Leila De Floriani, University of Maryland at College Park, College Park, MD, USA

Abstract
We introduce the Stellar decomposition, a model for efficient
topological data structures over a broad range of simplicial and
cell complexes. A Stellar decomposition of a complex is a collec-
tion of regions indexing the complex’s vertices and cells such that
each region has sufficient information to locally reconstruct the
star of its vertices, i.e., the cells incident in the region’s vertices.
Stellar decompositions are general in that they can compactly rep-
resent and efficiently traverse arbitrary complexes with a mani-
fold or non-manifold domain. They are scalable to complexes in
high dimension and of large size, and they enable users to easily
construct tailored application-dependent data structures using a
fraction of the memory required by a corresponding global topo-
logical data structure on the complex.

As a concrete realization of this model for spatially embed-
ded complexes, we introduce the Stellar tree, which combines
a nested spatial tree with a simple tuning parameter to control
the number of vertices in a region. Stellar trees exploit the com-
plex’s spatial locality by reordering vertex and cell indices ac-
cording to the spatial decomposition and by compressing sequen-
tial ranges of indices. Stellar trees are competitive with state-of-
the-art topological data structures for manifold simplicial com-
plexes and offer significant improvements for cell complexes and
non-manifold simplicial complexes. We conclude with a high-
level description of several mesh processing and analysis appli-
cations that utilize Stellar trees to process large datasets.

1 Introduction
Efficient mesh data structures play a fundamental role in a broad
range of mesh processing applications in computer graphics, geo-
metric modeling, scientific visualization, geospatial data science
and finite element analysis. Although simple problems can be
easily modeled on small low dimensional meshes, phenomena of
interest might occur only on much larger meshes and in higher
dimensions. Thus, we often require flexibility to deal with in-
creasingly complex meshes including those defined by irregularly
connected heterogeneous and/or multidimensional cell types dis-
cretizing spaces with complicated topology. Moreover, as ad-
vances in computing capabilities continue to outpace those in
memory, it becomes increasingly important to optimize and ex-
ploit locality within the mesh as we process and locally query it.
Such queries are the primary means of interacting with the mesh
and have traditionally been posed in terms of a few spatial and
topological primitives. However, while there are simple, intuitive

models for representing polygonal surfaces, there are numerous
challenges in generalizing these structures to higher dimensions
and in scaling to very large meshes.

In this paper, we introduce the Stellar decomposition, a model
for topological data structures that supports efficient navigation of
the topological connectivity of simplicial complexes and of cer-
tain classes of cell complexes, e.g., those composed of quadrilat-
erals, polygons, hexahedra, prisms and pyramids. We refer to this
class of complexes as Canonical Polytope complexes (CP com-
plexes). The defining property of a Stellar decomposition is that
the complex is broken up into regions indexing a collection of
vertices such that each vertex within a region has sufficient infor-
mation to locally reconstruct its star, i.e., the set of cells from the
complex incident in that vertex.

A Stellar decomposition is general, in that it can easily rep-
resent arbitrary complexes with a manifold or non-manifold do-
main, it is scalable to complexes both in high dimensions and
with a large number of cells, and it is flexible, in that it enables
users to defer decisions about which topological connectivity re-
lations to encode. It, therefore, supports the generation of optimal
application-dependent local data structures at runtime. Due to the
locality of successive queries in typical mesh processing applica-
tions, the construction costs of these local topological data struc-
tures are amortized over multiple mesh operations while process-
ing a local region.

We also formally define and analyze the Stellar tree as a
concrete instance of the Stellar decomposition model for spa-
tially embedded complexes. Stellar trees utilize a hierarchical n-
dimensional quadtree, or kD-tree, as vertex decomposition, and
are easily tunable using a single parameter that defines the maxi-
mum number of vertices allowed in each local region.

While Stellar trees have been previously utilized in sev-
eral mesh processing applications ranging from mesh simpli-
fication [Fellegara et al., 2020b] to morphological feature ex-
traction [Weiss et al., 2013, Fellegara et al., 2017], they have not
been formally defined and their performance has not yet been
characterized in relation to existing topological data structures
for simplicial and cell complexes. This paper presents a care-
ful study of the storage requirements, generation algorithms and
timings and query performance for Stellar trees over a wide range
of CP complexes. As we demonstrate in Section 8, Stellar trees
are competitive with dimension-specific state-of-the-art topolog-
ical data structures for (pseudo)-manifold triangle and tetrahe-
dral complexes and offer significant improvements for other CP
complexes, especially over data structures for general simplicial
complexes in 3D and higher dimensions. The source code for our

1

Stellar tree implementation will be released in the public domain.

Contributions The contributions of this work include:
• The formal theoretical definition of a Stellar decomposition

over Canonical Polytope (CP) complexes, a class of cell
complexes that includes simplicial and cubical complexes
of arbitrary dimension, as well as cells in the finite element
‘zoo’, such as polygons, pyramids and prisms.

• The definition of the Stellar tree as a concrete realization
of the Stellar decomposition for spatially embedded com-
plexes. The decomposition in a Stellar tree is based on a
hierarchical spatial index with a simple tuning parameter to
facilitate balancing storage and performance needs.

• The definition of Sequential Range Encoding (SRE), a com-
pact encoding for the entities indexed by each region of the
decomposition. When applied to CP complexes reindexed
by the spatial decomposition of a Stellar tree, SRE yields
compressed Stellar trees with only a small overhead relative
to the original CP complex’s cells.

Outline The remainder of this paper is organized as follows.
In Sections 2 and 3, we review background notions and related
work, respectively. In Section 4, we define Stellar decomposi-
tions, describe our compact encoding, and provide a high-level
description of the procedure for generating a Stellar decomposi-
tion. In Section 5, we define the Stellar tree, a spatio-topological
realization of the Stellar decomposition. In Section 6, we de-
scribe a general mesh processing paradigm that can be followed
by applications defined on a Stellar tree. In Section 7, we discuss
our experimental setup and evaluate how our tuning parameter
affects the quality of a Stellar tree’s decomposition and its per-
formance in extracting topological features. We then compare
Stellar trees to several state-of-the-art topological data structures
in Section 8. In Section 9, we describe how to extract local con-
nectivity information from the Stellar tree and evaluate the perfor-
mance of these algorithms. We provide a high-level overview of
several mesh processing and analysis applications that have ben-
efited from Stellar trees to process large datasets in Section 10
and conclude in Section 11 with some remarks and directions for
future work.

2 Background notions
In this section, we review notions related to cell and simplicial
complexes, which are the basic combinatorial structures for rep-
resenting discretized shapes. Throughout the paper, we use n to
denote the dimension of the ambient space in which the com-
plex is embedded, d to represent the dimension of the complex
and k to denote the dimension of a cell from the complex, where
0 ≤ k ≤ d.

A k-dimensional cell in the n-dimensional Euclidean space En

is a subset of En homeomorphic to a closed k-dimensional ball
Bk = {x ∈ Ek : ∥x∥ ≤ 1}. A d-dimensional cell complex Γ in
En is a finite set of cells with disjoint interiors and of dimension
at most d such that the boundary of each k-cell γ in Γ consists
of the union of other cells of Γ with dimension less than k. Such
cells are referred to as the faces of γ. A cell which does not

belong to the boundary of any other cell in Γ is called a top cell.
Γ is a pure cell complex when all top cells have dimension d. The
subset of En spanned by the cells of Γ is called the domain of Γ.
An example of a pure cell 3-complex is shown in Figure 1(a): all
its top cells are 3-cells (tetrahedra).

Throughout this paper, we are concerned with a re-
stricted class of cell complexes whose cells can be fully
reconstructed by their set of vertices, e.g., via a canon-
ical ordering [Schoof and Yarberry, 1994, Poirier et al., 1998,
Remacle and Shephard, 2003, Celes et al., 2005, Tautges, 2010].
We refer to this class of complexes as Canonical Polytope com-
plexes (CP complexes), and note that it includes simplicial com-
plexes, cubical complexes, polygonal cell complexes and hetero-
geneous meshes with cells from the finite element ‘zoo’ (e.g.,
simplices, hexahedra, pyramids, and prisms). In what follows,
we denote a CP complex as Σ. An example of a CP complex is
shown in Figure 1(b), which contains top edges, triangles, quadri-
laterals, and tetrahedra.

A pair of cells in a CP complex Σ are mutually incident if
one is a face of the other. They are h-adjacent if they have the
same dimension k > h and are incident in a common h-face.
We informally refer to vertices (0-cells) as adjacent if they are
both incident in a common edge (1-cell) and, similarly, for k-cells
that are incident in a common (k−1)-cell (i.e., they are (k−1)-
adjacent). The (combinatorial) boundary of a CP cell σ is defined
by the set of its faces. The star of a CP cell σ is the set of its co-
faces, i.e., CP cells in Σ that have σ as a face. An example of star
for a 0-cell (vertex) is shown in Figure 2(a). In this example, the
star of vertex v0 is formed by five edges, four triangles, a quad,
and a tetrahedron. Of these CP cells, tetrahedron σ5, quad σ1

and triangle σ4 are top cells. The link of a CP cell σ is the set
of all the faces of cells in the star that are not incident in σ. An
example of link for a 0-cell (vertex) is shown in Figure 2(b). In
this example, the link of v0 is composed of six vertices, six edges,
and a triangle.

Two h-cells σ and σ′ in Σ are (h−1)-connected if there is a
sequence, called an h-path, of (h−1)-adjacent h-cells in Σ from
σ to σ′. A complex Σ is h-connected, if for every pair of h-cells
σ1 and σ2, there is an h-path in Σ joining σ1 and σ2.

We can now define a d-dimensional CP complex Σ as a set of
CP-cells in En of dimension at most d such that: (1) Σ contains
all CP-cells in the boundary of the CP-cells in Σ; (2) the inter-
section of any two CP-cells in Σ is conforming, i.e., it is either
empty, or it consists of faces shared by both CP-cells. Simplicial
complexes are an important subset of CP complexes whose cells
are simplices. Let k be a non-negative integer. A k-simplex σ is
the convex hull of k + 1 independent points in En (with k ≤ n),
called vertices of σ. A face of a k-simplex σ is an h-simplex
(0 ≤ h ≤ k) generated by h+ 1 vertices of σ.

Other important notions are those of manifolds and pseudo-
manifolds. A subset M of the Euclidean space En is called a d-
manifold, with d ≤ n, if and only if every point of M has a neigh-
borhood homeomorphic to the open d-dimensional ball. A more
practical concept for the purpose of representing CP complexes
is that of pseudo-manifold. A pure d-dimensional CP complex Σ
is said to be a pseudo-manifold when it is (d−1)-connected and
its (d−1)-cells are incident in at most two d-cells. Informally, we
refer to the connected and compact subspace of En not satisfying

2

(a) A pure complex

v4

v0

v1

v5

v2

v3

σ3σ0

σ4

σ5

σ1

σ2

(b) A CP complex (c) A pseudo-manifold

Figure 1: Examples of CP complexes. (a) A pure simplicial 3-complex with four tetrahedra. (b) A CP complex with three top edges,
three top triangles, two top quads and a top tetrahedron. (c) A 2-dimensional pseudo-manifold with eleven triangles.

v0

(a) Star

v0

(b) Link

Figure 2: The star and the link of 0-cell (vertex) v0 from the
complex in Figure 1(b). Cells belonging to either the star (a) or
link (b) of v0 are highlighted in red.

the manifold conditions as non-manifold.

Queries on a cell complex are often posed in terms of topologi-
cal relations, which are defined by the adjacencies and incidences
of its cells. Let us consider a d-dimensional CP complex Σ and a
k-cell σ ∈ Σ, with 0≤ k≤ d:

• a boundary relation Rk,p(σ), with 0 ≤ p < k, consists of
the p-cells of Σ in the boundary of σ;

• a co-boundary relation Rk,q(σ), with k < q ≤ d, consists
of the q-cells of Σ in the star of σ;

• an adjacency relation Rk,k(σ) consists of the set of k-cells
of Σ that are (k−1)-adjacent to σ.

For some examples of topological relations, consider the CP com-
plex in Figure 1(b): Boundary relation R3,0 for tetrahedron σ5 is
the list of its boundary vertices, i.e., R3,0(σ5) = {v0, v2, v4, v5}.
Co-boundary relation R0,2 for vertex v3 is the list of its incident
2-cells (triangles and quads), i.e., R0,2(v3) = {σ0, σ1, σ2, σ3, σ4}.
Adjacency relation R0,0 for vertex v0 is the list of its adjacent ver-
tices, i.e., R0,0(v0) = {v1, v2, v3, v4, v5}.

3 Related work

In this section, we review the state of the art on topological mesh
data structures, hierarchical spatial indexes, data layouts and dis-
tributed mesh data structures.

3.1 Topological mesh data structures
There has been much research on efficient representations for
manifold cell and simplicial complexes, especially for the 2D
case. A comprehensive survey of topological data struc-
tures for manifold and non-manifold shapes can be found
in [De Floriani and Hui, 2005].

A topological data structure over a cell complex encodes a sub-
set of its topological relations and supports the efficient recon-
struction of local topological connectivity over its cells. Topolog-
ical data structures can be classified according to: (i) the dimen-
sion of the cell complex, (ii) the domain to be approximated, i.e.,
manifolds versus non-manifold shapes, (iii) the subset of topo-
logical information directly encoded, and (iv) the organization of
topological information directly encoded, i.e., explicit or implicit
data structures.

The explicit cells and topological relations can either be allo-
cated on demand using small local data structures, such as linked
lists, or contiguously, e.g. using arrays. In the former case,
pointers are used to reference the elements, which can be use-
ful when the data structure needs to support frequent updates to
the underlying cells or their connectivity. In the latter case, in-
dexes of the cells within the array can be used to efficiently ref-
erence the elements. Recently, an approach has been proposed in
[Nguyen et al., 2017] to reconstruct topological relations on de-
mand and to cache them for later reuse.

Broadly speaking, topological data structures can be cat-
egorized as incidence-based or adjacency-based. Whereas
incidence-based data structures primarily encode their topolog-
ical connectivity through incidence relations over all the com-
plex’s cells, adjacency-based data structures primarily encode
their connectivity through adjacency relations over its top cells.

The Incidence Graph (IG) [Edelsbrunner, 1987] is the pro-
totypical incidence-based data structure for cell complexes in
arbitrary dimension. The IG explicitly encodes all cells of
a given cell complex Γ, and for each p-cell γ, its imme-
diate boundary and co-boundary relations (i.e., Rp,p−1 and
Rp,p+1). Several compact representations with the same expres-
sive power as the IG have been developed for simplicial com-
plexes [De Floriani et al., 2004, De Floriani et al., 2010], which
typically require less than half the storage space as the
IG [Canino and De Floriani, 2014].

Several incidence-based data structures have been developed

3

for manifold 2-complexes, which encode the incidences among
edges. The half-edge data structure [Mantyla, 1988] is the most
widely data structure of this type [CGAL, 2020, OML, 2015].
Design tradeoffs for data structures based on half-
edges are discussed in [Sieger and Botsch, 2011]. Half-
faces [Kremer et al., 2013] generalize the notion of a
half-edge to polyhedral complexes, while combinatorial
maps [Lienhardt, 1994, Damiand and Lienhardt, 2014] general-
ize this notion to higher dimensions.

Indexed data structures [Lawson, 1977] provide a more com-
pact alternative by explicitly encoding only vertices, top cells and
the boundary relations from top cells to their vertices. Since
the cells of a CP complex are entirely determined by their or-
dered list of vertices, this provides sufficient information to ef-
ficiently extract all boundary relations among the cells, but not
the co-boundary or adjacency relations. The Indexed data struc-
ture with Adjacencies (IA) [Paoluzzi et al., 1993, Nielson, 1997]
extends the indexed representation to manifold simplicial com-
plexes of arbitrary dimension by explicitly encoding adjacency
relation Rd,d, giving rise to an adjacency-based representation.
All remaining topological relations can be efficiently recovered
if we also encode a top simplex in the star of each vertex (i.e., a
subset of relation R0,d).

The Corner-Table (CoT) data structure [Rossignac et al., 2001]
is also adjacency-based. It is defined only for triangle meshes,
where it has the same representational power as the IA data
structure. It uses corners as a conceptual abstraction to repre-
sent individual vertices of a triangle and encodes topological re-
lations among corners and their incident vertices and triangles.
Several efficient extensions of the Corner-Table data structure
have been proposed that exploit properties of manifold triangle
meshes [Gurung et al., 2011, Luffel et al., 2014]. The Sorted Op-
posite Table (SOT) data structure [Gurung and Rossignac, 2009]
extends the Corner-Table data structure to tetrahedral meshes and
introduces several storage optimizations. Notably, it supports the
reconstruction of boundary relation Rd,0 from co-boundary re-
lations R0,d (implicitly encoded) and Rd,d relations (explicitly
encoded), reducing its topological overhead by nearly a factor of
two. Since modifications to the mesh require non-local recon-
structions of the associated data structures, this representation is
suitable for applications on static meshes.

The Generalized Indexed data structure with Adjacencies
(IA∗ data structure) [Canino et al., 2011] extends the repre-
sentational domain of the IA data structure to arbitrary non-
manifold and mixed dimensional simplicial complexes. The
IA∗ data structure is compact, in the sense that it gracefully
degrades to the IA data structure in locally manifold neigh-
borhoods of the mesh, and has been shown to be more com-
pact than incidence-based data structures, especially as the
dimension increases [Canino and De Floriani, 2014]. A simi-
lar data structure for non-manifold complexes was presented
in [Dyedov et al., 2015]. A detailed description can be found in
Section 8.2.

The Simplex tree [Boissonnat and Maria, 2014] also encodes
general simplicial complexes of arbitrary dimension. It explicitly
stores all simplices of the complex within a trie [Fredkin, 1960]
whose nodes are in bijection with the simplices of the com-
plex. A public domain implementation is available in the

GUDHI library [GUDHI, 2018]. We provide a detailed de-
scription of this data structure in Section 8.2. Boisson-
nat et al. [Boissonnat et al., 2017] also propose two top-based
data structures targeting a compact Simplex tree representation.
The Maximal Simplex Tree (MST) is an induced subgraph of
the Simplex tree, in which only the paths corresponding to top
simplices are encoded, but most operations require processing
the entire complex. The Simplex Array List (SAL) is a hybrid
data structure computed from the top simplices of a simplicial
complex Σ that improves processing efficiency by increasing the
storage overhead. Both the MST and the SAL are interest-
ing structures from a theoretical point-of-view, but, as described
in [Boissonnat et al., 2017], the model does not currently scale to
large datasets and results are limited to complexes with only a
few thousand vertices. Moreover, to the best of our knowledge,
there is no public domain implementation currently available.

The Skeleton-Blocker data structure [Attali et al., 2012] en-
codes simplicial complexes that are close to flag complexes, sim-
plicial complexes whose top simplices are entirely determined
from the structure of their 1-skeleton, i.e., the vertices and edges
of the complex, and has been successfully employed for exe-
cuting edge contractions on such complexes. It encodes the 1-
skeleton and the blockers, simplices that are not in Σ, but whose
faces are. Its generation procedure is computationally intensive
for general simplicial complexes since identifying the blockers
requires inserting simplices of all dimensions.

We compare the Stellar tree representation with the IA, CoT,
and SOT data structures as well as with the Simplex tree, and IA∗

data structure in Section 8.2.

3.2 Hierarchical spatial indexes

A spatial index is a data structure used for indexing spatial infor-
mation, such as points, lines or surfaces in the Euclidean space.
Spatial indexes form a decomposition of the embedding space
into regions. This can be driven by: (i) an object-based or a
space-based criterion for generating the decomposition; and (ii) a
hierarchical or a non-hierarchical (flat) organization of the re-
gions. These properties are independent, and, thus, we can have
hierarchical object-based decompositions as well as flat space-
based ones.

We now consider how the regions of a decomposition can inter-
sect. In an overlapping decomposition the intersection between
the regions can be non-empty on both the interiors and on the
boundary of their domain, while, in a non-overlapping decom-
position, intersections can only occur on region boundaries. We
say that a region is nested within another region if it is entirely
contained within that region. In the remainder of this section,
we focus primarily on hierarchical spatial indexes, which can be
classified by the dimensionality of the underlying ambient space
and by the types of entities indexed.

Hierarchical spatial indexes for point data are provided by
Point Region (PR) quadtrees/octrees and kD-trees [Samet, 2006].
In these indexes, the shape of the tree is independent of the order
in which the points are inserted, and the points are only indexed
by leaf blocks. The storage requirements of these data structures
can be reduced by allowing leaf blocks to index multiple points,
as in the bucket PR quadtree/octree [Samet, 2006], whose buck-

4

eting threshold determines the number of points that a leaf block
can index before it is refined.

Several data structures have been proposed for spatial index-
ing of polygonal maps (PM), including graphs and planar tri-
angle meshes. PM quadtrees [Samet and Webber, 1985] extend
the PR quadtrees to represent polygonal maps considered as a
structured collection of edges. While there are several vari-
ants (PM1, PM2, PM3 and the randomized PMR), which differ
in the criterion used to refine leaf blocks, all maintain within
the leaf blocks a list of intersecting edges from the mesh. The
PM2-Triangle quadtree [De Floriani et al., 2008] specializes PM
quadtrees over triangle meshes and has been applied to terrain
models. The PM index family has also been extended to PM-
octrees encoding polyhedral objects in 3D [Carlbom et al., 1985,
Navazo, 1989, Samet, 2006], where the subdivision rules have
been adjusted to handle edges and polygonal faces of the mesh
elements. Another proposal for triangulated terrain models are
Terrain trees [Fellegara et al., 2017], that are a spatial index fam-
ily for the efficient representation and analysis of large-scale
triangulated terrains generated from LiDAR (Light Detection
and Ranging) point clouds. A collection of spatial indexes
for tetrahedral meshes called Tetrahedral trees was developed
in [De Floriani et al., 2010, Fellegara et al., 2020a].

We note that data structures in the PM family are spatial data
structures optimized for efficient spatial queries on a complex
(e.g., point location, containment and proximity queries) and are
not equipped to reconstruct the connectivity of the complex. In
contrast, the PR-star octree [Weiss et al., 2011] is a topological
data structure for tetrahedral meshes embedded in 3D space. It
augments the bucket PR octree with a list of tetrahedra incident in
the vertices of its leaf blocks, i.e., those in the star of its vertices.

In this paper, we have generalized the PR-star data structure
to handle a broader class of complexes (CP complexes) in arbi-
trary dimensions and with an arbitrary domain (i.e., non-manifold
and non-pure complexes). At the same time, our new leaf block
encoding exploits the spatial coherence of the mesh, yielding a
significant storage saving compared to PR-star trees (see Sec-
tion 8.1). As we discuss in Section 10, Stellar trees have been
shown to be effective in several geometrical and topological
applications including local curvature estimation, mesh valida-
tion and simplification [Weiss et al., 2011], morphological fea-
ture extraction [Weiss et al., 2013] and morphological simplifica-
tion [Fellegara et al., 2014], among others.

3.3 Optimized data layouts

Considerable effort has been devoted to reindexing meshes to
better exploit their underlying spatial locality, for example, to
support streamed processing [Isenburg and Lindstrom, 2005],
better cache locality [Yoon et al., 2005] or com-
pression [Yoon and Lindstrom, 2007]. Cignoni et
al. [Cignoni et al., 2003b] introduce an external memory
spatial data structure for triangle meshes embedded in E3.
Whereas our aim is to enable efficient topological operations on
the elements of general simplicial and CP complexes, the objec-
tive of [Cignoni et al., 2003b] is to support compact out-of-core
processing of massive triangle meshes. Since the data structure
in [Cignoni et al., 2003b] is dimension-specific, by exploiting

geometric and topological properties of triangle meshes in E3,
it would be difficult to generalize to CP complexes or to higher
dimensions. Dey et al. [Dey et al., 2010] use an octree to index a
large triangle mesh for localized Delaunay remeshing. Due to the
significant overhead associated with their computations, the oc-
trees in [Dey et al., 2010] are typically shallow, containing very
few octree blocks. In the context of interactive rendering and
visualization of large triangulated terrains and polygonal models,
Cignoni et al. [Cignoni et al., 2003a, Cignoni et al., 2004b] asso-
ciate patches of triangles with the simplices of a multiresolution
diamond hierarchy [Weiss and De Floriani, 2011].

3.4 Distributed mesh data structures

Stellar decompositions and Stellar trees are also related
to distributed mesh data structures [Devine et al., 2009,
Ibanez et al., 2016], which partition large meshes across
multiple processors for parallel processing e.g. in numer-
ical simulations [Anderson et al., 2021, Kirk et al., 2006,
Edwards et al., 2010]. In the latter, each computational do-
main maintains a mapping between its boundary elements
and their counterparts on neighboring domains. To reduce
inter-process communication during computation, each domain
might also include one or more layers of elements from other
domains surrounding its elements, typically referred to as ghost,
rind or halo layers [Poirier et al., 2000, Lawlor et al., 2006,
Ollivier-Gooch et al., 2010]. Although each region of a Stellar
decomposition (or tree) can be seen as a computational domain
in a distributed data structure with a single ghost layer (i.e., the
elements in the star of its boundary vertices), Stellar trees are
aimed at providing efficient processing on coherent subsets of
the mesh (regions), where users can generate optimized local
topological data structures. In a distributed regime, we envision
Stellar trees helping more with fine-grained (intra-domain)
parallelism than with coarse-grained multi-domain partitions.

4 Stellar decomposition

The Stellar decomposition is a model for data structures repre-
senting Canonical Polytope (CP) complexes. We denote a CP
complex as Σ, its ordered lists of vertices as ΣV and of top CP
cells as ΣT . We provide a definition of the Stellar decomposition
in Section 4.1, and describe its encoding in Section 4.2.

4.1 Definition

Given a CP complex Σ, a decomposition ∆ of its vertices ΣV

is a collection of subsets of ΣV such that every vertex v ∈ ΣV

belongs to one of these subsets. We will refer to the elements of
decomposition ∆ as regions, which we will denote as r.

A Stellar decomposition SD defines a map from the regions of
a decomposition ∆ of its vertex set ΣV to the vertices and top CP
cells of complex Σ. Formally, a Stellar decomposition is defined
by three components:

1. a CP complex Σ;
2. a decomposition ∆ whose regions cover the vertices of Σ;
3. a map Φ from regions of ∆ to entities of Σ.

5

(a) (b)

Figure 3: Example mapping function ΦV ERT in 2D. An initial
set of points (a) is associated with the regions of a decomposition
∆ (b).

Thus, a Stellar decomposition is a triple SD = (Σ,∆,Φ). Since
Σ is entirely characterized by its vertices, and top CP cells, we
define map Φ in terms of the two components: ΦV ERT , the map-
ping to vertices and ΦTOP , the mapping to top CP cells.

For the vertices, we have a map from ∆ to ΣV based on an
application-dependent ‘belongs to’ property. Formally, ΦV ERT :
∆→ P(ΣV) is a map from ∆ to the powerset of ΣV where

∀r ∈ ∆,ΦV ERT (r) = {v ∈ ΣV : v ‘belongs to’ r}.

Figure 3 illustrates an example decomposition ∆ over a point set
where mapping function ΦV ERT associates points with regions
of ∆. In this paper, we will assume that each vertex in ΣV is
uniquely associated with a single region r in ∆.

The Stellar decomposition gets its name from the properties of
its top cell map ΦTOP . For each region r of ∆, ΦTOP (r) is the
set of all top CP cells of ΣT incident in one or more vertices of
ΦV ERT (r). In other words, ΦTOP (r) is defined by the union of
cells in the star of the vertices in ΦV ERT (r). Formally, ΦTOP :
∆→ P(ΣT) is a function from ∆ to the powerset of ΣT , where

∀r ∈ ∆,ΦTOP (r) = {σ ∈ ΣT |∃v ∈ Rk,0 (σ) : v ∈ ΦV ERT (r)}.
(1)

Figure 4 illustrates mapping ΦTOP for two regions of the de-
composition of Figure 3(b) on a triangle mesh defined over its
vertices. Note that ΦTOP is based on a topological rather than a
spatial property: A top CP cell σ is only associated with a region
r when one (or more) of its vertices is associated with r under
ΦV ERT .

To characterize this representation, we define the spanning
number χσ of a top CP cell in a Stellar decomposition as the
number of regions to which it is associated.

Definition 4.1 Given Stellar decomposition SD = (Σ,∆,Φ), the
spanning number χσ of a top CP cell σ ∈ ΣT is the number of
regions in ∆ that map to σ. Formally,

∀σ ∈ ΣT , χσ = |{r ∈ ∆|σ ∈ ΦTOP (r)}|. (2)

A consequence of the unique mapping of each vertex in ΦV ERT

is that it provides an upper bound on the spanning number of a
top CP cell in a Stellar decomposition. Specifically, the spanning
number χσ of a top CP cell σ is bounded by the cardinality of its
vertex incidence relation Rk,0: 1 ≤ χσ ≤ |Rk,0(σ)|.

It is also interesting to consider the average spanning number
χ as a global characteristic of the efficiency of a Stellar decom-
position over a complex, measuring the average number of times
each top CP cell is represented.

Definition 4.2 The average spanning number χ of a Stellar de-
composition SD is the average number of regions indexing its top
cells. Formally,

χ =

(∑
σ∈ΣT

χσ

)
/|ΣT | =

(∑
r∈∆

|ΦTOP (r) |

)
/|ΣT |. (3)

4.2 Encoding
In this section, we describe how we represent the two components
of a Stellar decomposition, providing a detailed description of the
data structures for representing a CP complex (subsection 4.2.1),
and a compressed encoding for the regions of the partitioning
(subsection 4.2.2). We do not describe how the decomposition
∆ is represented, as this is specific to each concrete realization of
the Stellar decomposition model.

4.2.1 Indexed representation of the CP complex

We represent the underlying CP complex as an indexed com-
plex [Lawson, 1977], which encodes the vertices, top CP k-cells
and the boundary relation Rk,0 of each top k-cell in Σ. In the
following, we assume a d-dimensional CP complex Σ embedded
in En.

We use an array-based representation for the vertices and for
the top cells of Σ. Since the arrays are stored contiguously, each
vertex v has a unique position index iv in the vertex array, that we
denote as ΣV . Similarly, each top CP cell σ has a unique position
index iσ . The top CP cells of Σ are encoded using separate arrays
ΣTk

for each dimension k ≤ d that has top CP cells in Σ. ΣTk

encodes the boundary connectivity from the top CP k-cells of Σ
to their vertices, i.e., relation Rk,0 in terms of the indices iv of the
vertices of its cells within ΣV . This requires |Rk,0(σ)| references
for a top k-cell σ, e.g., k+1 vertex indices for a k-simplex and 2k

references for a k-cube. Thus, the total storage cost of ΣT is:

d∑
k=1

∑
σ∈ΣTk

|Rk,0(σ)|. (4)

We note that when Σ is pure (i.e., its top CP cells all have the
same dimension d), the encoding of Σ requires only two arrays:
one for the vertices and one for the top cells. For simplicity, we
refer to the top cell arrays collectively as ΣT .

4.2.2 A compressed region representation

In this subsection, we discuss two encoding strategies for the data
maps in each region of the partition ∆. We begin with a simple
strategy that explicitly encodes the arrays of vertices and top CP
cells associated with each region and work our way to a com-
pressed representation of these arrays. Coupling this compressed
representation with a reorganization of the vertices and cells of
the CP complex (as we will describe in Section 4.3) yields a sig-
nificant reduction in storage requirements. We will demonstrate

6

(a) (b) (c)

Figure 4: Mapping function ΦTOP for the decomposition ∆ from Figure 3. Given a triangle mesh (a) and a vertex map ΦV ERT
on ∆, ΦTOP associates the triangles in the star of the vertices in ΦV ERT (r) to ΦTOP (r). (b) and (c) highlight the triangles (green)
associated with two different regions (blue) of ∆.

1

23

7

32

19
12

34 58

6

89 99

10

37

144572

87

9

98

7786

55

15
40

37

9

(a)

12 14 19 23 321 6 7 9 10

9 15 37 40 55 86

triangles array (size 20)

77 87 89 98 9934 37 45 58 72

vertices array (size 6)

(b)

Figure 5: EXPLICIT encoding for triangles within a region (dot-
ted square). The arrays explicitly encode the 6 vertices and 20
triangles in the region.

this claim in Section 8.1 on a data structure instantiating the Stel-
lar decomposition.

Recall that under Φ, each region r in ∆ maps to an array of
vertices and an array of top CP cells from the complex Σ which
we denote as rV and rT , respectively. A straightforward strategy
would be to encode arrays of vertices and top CP cells that ex-
plicitly enumerate the associated elements for each region r. We
refer to this as the EXPLICIT Stellar decomposition encoding. An
example of this encoding for a single region with six vertices in
rV and twenty triangles in rT is shown in Figure 5.

It is apparent that the above encoding can be very expensive
due to the redundant encoding of top CP cells with vertices in
multiple regions. A less obvious redundancy is that it does not
account for the ordering of the elements.

We now consider a COMPRESSED Stellar decomposition en-
coding that compacts the vertex and top CP cells arrays in each
region r by exploiting the locality of the elements within r. The
COMPRESSED encoding reduces the storage requirements within
region arrays by replacing runs of incrementing consecutive se-
quences of indices using a generalization of run-length encoding
(RLE) [Held and Marshall, 1991]. RLE is a form of data com-
pression in which runs of consecutive identical values are en-
coded as pairs of integers representing the value and repetition
count, rather than as multiple copies of the original value. For
example, in Figure 6a, the four entries with value ‘2’ are com-

3 3 3 3 5

0 2 2 2 2

0 -2 3 -3 3 5

(a) RLE

10 11 12 13 18

1 2 3 4 7

-1 3 7 -10 3 18

(b) SRE

Figure 6: Compressed arrays of non-negative integers using (a)
Run Length Encoding (RLE) and (b) Sequential Range Encoding
(SRE).

pacted into a pair of entries [-2, 3], where a negative first number
indicates the start of a run and its value, while the second number
indicates the remaining elements of the run in the range.

While we do not have such duplicated runs in our indexed rep-
resentation, we often have increasing sequences of indexes, such
as {40,41,42,43,44}, within a local vertex array rV or top CP
cells array rT . We therefore use a generalized RLE scheme to
compress such sequences, which we refer to as Sequential Range
Encoding (SRE). SRE encodes a run of consecutive non-negative
indexes using a pair of integers, representing the starting index,
and the number of remaining elements in the range. As with RLE,
we can intersperse runs (sequences) with non-runs in the same
array by negating the starting index of a run (e.g. [-40, 4] for the
above example). Thus, it is easy to determine whether or not we
are in a run while we iterate through a sequential range encoded
array. A nice feature of this scheme is that it allows us to dynami-
cally append individual elements or runs to an SRE array without
any storage overhead (other than occasional array reallocations).
Furthermore, we can easily expand a compacted range by replac-
ing its entries with the first two values of the range and appending
the remaining values to the end of the array. After the updates are
finished, we can sort the array and reapply SRE compaction to
recover space. Figure 6b shows an example SRE array over an
array, where, e.g., sequence {1,2,3,4} is represented as [-1, 3].

To facilitate comparisons between the EXPLICIT and COM-
PRESSED representations of a Stellar decomposition, we intro-
duce a global characteristic that measures the average storage re-
quirements to represent a top CP cell.

7

1

51

17

44

30
38

41 42

3

14 15

2

50

4540

43

16

52

536

8

5 4 7

3

(a)

-3 5

triangles array (size 10)
-14 3 30-1 4 38 -50 3-40 4

vertices array (size 2)

(b)

Figure 7: COMPRESSED encoding within a region (dotted square)
after reindexing the vertices and triangles of the mesh from Fig-
ure 5.

Definition 4.3 The average reference number µ of a Stellar de-
composition is the average number of references required to en-
code a top CP cell in the rT arrays of the regions in ∆. Formally:

µ =

(∑
r∈∆

|rT |

)
/|ΣT | (5)

where |rT | is the size of the top CP cells array in a region r.

In contrast to the average spanning number χ, which is a property
of the decomposition, the average reference number µ is a prop-
erty of how the decomposition is encoded. An EXPLICIT repre-
sentation is equivalent to a COMPRESSED representation without
any compressed runs, and, thus, it is always the case that µ ≤ χ.
In the EXPLICIT representation (i.e., without any sequence-based
compression), µ = χ, while in the COMPRESSED representation,
µ decreases as the compression of the rV and rT arrays becomes
more effective. Figure 7 illustrates a COMPRESSED representa-
tion of the mesh from Figure 5 after its vertex and triangle arrays
have been reordered (in an external process) and highlights its
sequential ranges, where rV is encoded by a single run and rT
is encoded by four sequential runs as well as several non-run in-
dices.

4.3 Generating a Stellar decomposition
We now describe how to generate a COMPRESSED Stellar decom-
position from an indexed CP complex Σ and a given partition ∆
on its vertices ΣV . This process consists of three phases:

1. reindex the vertices of Σ following a traversal of the regions
of ∆ and SRE-compress the rV arrays;

2. insert the top CP cells of Σ into ∆;
3. reindex the top CP cells of Σ based on locality within com-

mon regions of ∆ and SRE-compress the regions rT arrays.
As it can be noted, the generation process ignores how the par-

titioning on the vertices is obtained, since this step is defined by
the data structure instantiating a Stellar decomposition. The rein-
dexing of the vertices follows a traversal of the regions of ∆ in
such a way that all vertices associated with a region have a con-
tiguous range of indices in the reindexed global vertex array ΣV

(as detailed in the Appendix A.1).
The second phase inserts each top CP k-cell σ, with index iσ in

ΣTk
, into all the regions of ∆ that index its vertices. This is done

(a) (b)

Figure 8: A mapping function ΦV ERT over a nested spatial de-
composition ∆. The vertices (a) are partitioned into regions by
∆’s leaf blocks (b) using a bucketing threshold, kV = 4, i.e. at
most 4 vertices can be in a region.

by iterating through the vertices of σ and inserting iσ into the rT
array of each region r whose vertex map ΦV ERT (r) contains at
least one of these vertices. As such, each top CP k-cell σ appears
in at least one and at most |Rk,0(σ)| regions of ∆. Due to the
vertex reindexing of step 1, this operation is extremely efficient.
Determining if a vertex of a given cell lies in a block requires
only a range comparison on its index iv .

Finally, we reindex the top CP cell arrays ΣT to better exploit
the locality induced by the vertex-based partitioning and com-
press the local rT arrays using a sequential range encoding over
this new index. The reindexing and the compression of the top
CP cells is obtained following a traversal of the regions of ∆ in
such a way that all top CP cells associated with the same set of
regions have a contiguous range of indices in the reindexed ar-
rays ΣT . This last step is detailed in the Appendix A.2 and B. As
we demonstrate in Section 8, this compression yields significant
storage savings in a wide range of mesh datasets.

5 Stellar trees
The Stellar decomposition is a general model that is agnostic
about how the partitioning is attained and about its relationship
with the underlying CP complex. Thus, for example, we can de-
fine a Stellar decomposition using Voronoi diagrams, or based on
a nearest neighbor clustering of the vertices of a given CP com-
plex. In this section, we introduce Stellar trees as a class of Stel-
lar decompositions defined over nested spatial decompositions of
the CP complex and discuss some of our design decisions. Before
defining a Stellar tree (Section 5.1), its encoding (Section 5.2) and
its generation procedure (Section 5.3), we review some underly-
ing notions.

The ambient space A is the subset of En in which the data is
embedded. We consider the region bounding the ambient space
to be a hyper-rectangular axis-aligned bounding block, which
we refer to simply as a block. A k-dimensional closed block
r in En, with k ≤ n, is the Cartesian product of closed in-
tervals [li, ui] where exactly k of them are non-degenerate, i.e.,
r = {(x1, . . . , xn) ∈ En | xi ∈ [li, ui]} and |{i | li < ui}| = k.

Given two blocks r := [li, ui] and r′ := [l′i, u
′
i], r′ is a face

of r if, for each dimension i, either their intervals overlap (i.e.,
l′i = li and u′

i = ui) or the i-th interval of r′ is degenerate (i.e.,
l′i = u′

i = li, or l′i = u′
i = ui). Given a block r, we refer

8

to its 0-dimensional face of degenerate intervals xi = li as its
lower corner and to its 0-dimensional face where xi = ui as
its upper corner. The above block definition describes closed
blocks. It can be useful to allow some faces of r to be open,
especially on faces of neighboring blocks that overlap only on
their boundaries. A k-dimensional half-open block r in En is
defined as r = {(x1, . . . , xn) ∈ En | xi ∈ [li, ui)} and |{i | li <
ui}| = k. Note that the faces of a half-open block r incident in
its lower corner are closed, while all other faces of r are open.

We now focus on nested decompositions, hierarchical space-
based decompositions whose overlapping blocks are nested and
whose leaf blocks ∆L (i.e., those without any nested blocks) form
a non-overlapping cover of the ambient space A. The nesting re-
lationship defines a containment hierarchy H, which can be de-
scribed using a rooted tree. The tree’s root HROOT covers the
ambient space A; the tree’s leaves HL encode the regions of the
decomposition ∆; and its internal nodes HI provide access to the
regions of the decomposition.

Nested decompositions can adopt different hierarchical refine-
ment strategies. Among the most popular are those based on regu-
lar refinement and bisection refinement of simple primitives (e.g.,
simplices and cubes). An n-dimensional block r is regularly re-
fined by adding vertices at all edge and face midpoints of r and
replacing r with 2n disjoint blocks covering r. This generates
quadtrees in 2D, and octrees in 3D [Samet, 2006]. In bisection
refinement, a block is bisected along an axis-aligned hyperplane
into two blocks, generating kD-trees [Bentley, 1975].

5.1 Definition

Since a Stellar tree ST is a type of Stellar decomposition, it con-
sists of three components: (1) a CP complex Σ embedded in an
ambient space A; (2) a nested decomposition ∆ covering the do-
main of Σ; and (3) a map Φ from blocks of ∆ to entities of Σ. The
nested decomposition is described by a containment hierarchy H,
represented by a tree whose blocks use the half-open boundary
convention to ensure that every point in the domain is covered by
exactly one leaf block.

Since Stellar trees are defined over nested spatial decomposi-
tions that cover the ambient space, we customize the vertex map-
ping function ΦV ERT to partition the vertices of Σ according to
spatial containment: each vertex is associated with its single con-
taining leaf block. Formally,

∀r ∈ ∆L,ΦV ERT (r) = {v ∈ ΣV : v ∩ r ̸= ∅}. (6)

A two-dimensional example is shown in Figure 8, where a
set of points are associated with the leaf blocks of ∆ through
ΦV ERT .

The top CP cells mapping function ΦTOP for a Stellar tree has
the same definition as for the Stellar decomposition (see Equa-
tion 1). Figure 9 shows the mapping ΦTOP for two blocks of
the nested kD-tree decomposition of Figure 8(b) over the triangle
mesh from Figure 4.

Since the nested decomposition ∆, and, consequently, the tree
H describing it, are determined by the number of vertices indexed
by a block, we utilize a bucket PR tree [Samet, 2006] to drive
our decomposition. This provides a single tuning parameter, the

(a) (b)

Figure 9: Top cell mapping function ΦTOP for two blocks (blue)
of the nested decomposition from Figure 8 on the triangle mesh
from Figure 4. ΦTOP (r) maps the triangles in the star of the
vertices in ΦV ERT (r).

bucketing threshold kV , that uniquely determines the decomposi-
tion for a given complex Σ.

Recall that a (leaf) block r in a bucket PR-tree is considered
full when it indexes more than kV vertices (in our case, when
|ΦV ERT (r)| > kV). Insertion of a vertex into a full block causes
the block to refine and to redistribute its indexed vertices among
its children. As such, the domain decomposition of a Stellar tree
depends only on the bucketing threshold kV . Smaller values of
kV yield deeper hierarchies whose leaf blocks index relatively
few vertices and top CP cells, while larger values of kV yield
shallower hierarchies with leaf blocks that index more vertices
and top CP cells. Thus, kV and the average spanning number χ
of a Stellar tree are inversely correlated.

In practice, we use different spatial indexes to represent H
based on the dimension n of the ambient space A. In lower di-
mensions, we use a quadtree-like subdivision, i.e., a quadtree in
2D, and an octree in 3D, while in higher-dimensions, we switch
to a kD-tree subdivision. As discussed in [Samet, 2006], while
quadtree-like subdivisions are quite efficient in low dimensions,
the data becomes sparser in higher dimensions (due to the curse of
dimensionality [Bellman, 1966]), and tends to be better encoded
by kD-trees.

5.2 Encoding
We represent the containment hierarchy H using an explicit
pointer-based data structure, in which the blocks of H use a type
of Node structure that changes state from leaf to internal block
during the generation process of a Stellar tree.

We use a brood-based encoding [Hunter and Willis, 1991],
where each block in H encodes a pointer to its parent block and
a single pointer to its brood of children. This reduces the over-
all storage since leaves do not need to encode pointers to their
children, and also allows us to use the same representation for
n-dimensional quadtrees and kD-trees. We explicitly encode all
internal blocks, but only represent leaf blocks r in H with non-
empty maps Φ(r).

The mapped entities of the CP complex Σ are encoded in the
leaf blocks HL using the mapping arrays Φ. Note that each leaf
block r encodes the arrays of vertices rV and of top CP cells rT
in terms of the indices iv and iσ , respectively, that identify v and
σ in the ΣV and ΣT arrays. For each block r, we have: (1) three

9

c d

ba

1

8

13

2

5

11

7

6

4

10

12

3

9

(a) Vertices inserted

c d

ba

12

1

2

3

4

5

6

8

13

7

9

11

10

(b) Vertices reindexed

Figure 10: Generating a nested hierarchy H with kV = 4 over
vertices. After inserting the vertices (a), we reindex ΣV accord-
ing to HL (b).

pointers for the hierarchy: one to its parent, another to its list of
children and it is pointed to by one parent; (2) a pointer to an array
of vertices rV and the size of this array; (3) a pointer to an array
of top CP cells rT and the size of this array. Thus, the hierarchy
H of a Stellar tree requires 7|H| storage.

By considering the encodings, defined in Section 4.2.2, for the
CP complex Σ, and for the vertices and top cp-cells associated
with the regions of H, we can estimate the storage requirements
for the EXPLICIT and COMPRESSED Stellar trees. An EXPLICIT
Stellar tree requires a total of |ΣV | references for its vertex arrays,
since each vertex is indexed by a single leaf block, and a total of
χ|ΣT | references for all top CP cells arrays. Thus, the total cost of
the EXPLICIT Stellar tree, including the hierarchy (but excluding
the cost of the indexed mesh) is: 7|H|+ |ΣV |+ χ|ΣT |.

Conversely, in a COMPRESSED Stellar tree, we can reindex the
vertex array ΣV in such a way that all vertices associated with
the same leaf block are indexed consecutively (see Section A.1
in the Appendix for additional details). Thus, we can encode
the rV arrays using only two integers per leaf block for a total
cost of 2|HL| rather than |ΣV |. Moreover, since leaf blocks no
longer need to reference an arbitrary array, these two references
can be folded into the block’s hierarchical representation for rV :
instead of a pointer to a array and a size of the array, we simply
encode the range of vertices in the same space. As the cost of
representing the rT arrays is µ|ΣT |, the total cost for encoding
a COMPRESSED Stellar tree (excluding the cost of the indexed
mesh representation) is: 7|H|+ µ|ΣT |.

5.3 Generating a Stellar tree

In this section, we describe how to generate a COMPRESSED Stel-
lar tree from an indexed CP complex Σ and a given bucketing
threshold kV . We can also deal with input complexes that are not
already indexed. For example, if our input is a “soup” of CP cells
in which each CP cell is specified by a list of coordinates, we can
generate an indexed representation of the complex as we insert
the vertices and generate the decomposition.

First, given a user-defined bucketing threshold kV , we gener-
ate a bucket PR-tree over the vertices of Σ. The procedure for
inserting a vertex v with index iv in ΣV into H is recursive. We
use the geometric position of v to traverse the internal blocks to
reach the unique leaf block r containing v. After adding v to r

(i.e., appending iv into the rV array of r), we check if this causes
an overflow in r. If it does, we refine r and reinsert its indexed
vertices into its children. Once all the vertices in Σ have been
inserted, the decomposition is fixed.

The rest of the Stellar tree generation process follows the strat-
egy described in Section 4.3 and detailed in the Appendix A.
One key optimization between a generic partitioning on the ver-
tices and a nested hierarchical decomposition relates to extracting
the vertex index ranges. In a Stellar tree, this step is performed
through a depth-first traversal of the tree, which, for each leaf
block r, generates a contiguous range of indices for the vertices
in r, and, for each internal block, provides a single contiguous in-
dex range for the vertices in all descendant blocks. For example,
in Figure 10, after executing this step on leaf block b, we have
vs = 4 and ve = 7. Similarly, at the end of this step the root
HROOT has vs = 1 and ve = 13.

We provide an experimental evaluation of the timings for gen-
erating a Stellar tree in Section 8.3.

6 Processing paradigm for Stellar trees

Mesh processing applications rarely process individual mesh el-
ements. Rather, they typically operate on the entire complex, or
on large regions of interest within the complex. The structure of a
Stellar tree naturally supports a batched processing strategy, i.e.,
a strategy in which portions of the complex are reconstructed and
processed within each block of the tree. As these local blocks
are processed, their representation and extracted topological rela-
tions can be customized to suit the needs of the application. This
helps in amortizing the reconstruction costs and, thus, processing
the entire complex efficiently.

The general paradigm for executing application algorithms on
a Stellar tree is to iterate through the leaf blocks of hierarchy
H, locally processing the encoded complex in a streaming man-
ner. For each leaf block r in H, a local topological data structure
catered to the application’s needs is constructed and used to pro-
cess the indexed subcomplex. We refer to this local data structure
in a block r as an expanded leaf-block representation, and we de-
note it as rE . Once we finish processing leaf block r, we discard
rE and begin processing the next block.

For efficiency and at relatively low storage overhead, we can
cache the expanded leaf block representation rE , using a Least-
Recent-Used (LRU) cache. This is especially advantageous in
applications that require processing portions of the complex in
neighboring leaf blocks. Adopting a fixed-size cache allows us to
amortize the extraction costs of the local data structures, with a
controllable storage overhead.

Algorithm 1 outlines the general strategy for processing a Stel-
lar tree. The algorithm recursively visits all the blocks of the
hierarchy H. For each leaf block r, we either recover rE from
the LRU cache (rows 5–8), or construct the desired application-
dependent local topological data structure rE . After using this
local data structure to process the local geometry in r (row 9), we
either cache or discard rE (rows 10–13).

Within this general processing paradigm, we can have two dif-
ferent approaches, that we call local and global, depending on
how auxiliary data structures are encoded and maintained. In

10

Table 1: Overview of experimental datasets. For each CP complex Σ, we list the number of vertices |ΣV | and of top CP-cells |ΣT |.
N

E
P

T
U

N
E

S
TA

T
U

E
T

T
E

L
U

C
Y

N
E

P
T

U
N

E

S
TA

T
U

E
T

T
E

L
U

C
Y

B
O

N
S

A
I

V
IS

M
A

L
E

F
O

O
T

F
16

S
A

N
F

E
R

N

V
IS

M
A

L
E

5D 7D 40
D

V
IS

M
A

L
E

7D

F
O

O
T

10
D

L
U

C
Y

34
D

TRIANGULAR QUADRILATERAL TETRAHEDRAL HEXAHEDRAL PROBABILISTIC V-RIPS

|ΣV | 2.00M 5.00M 14.0M 12.0M 30.0M 84.1M 4.25M 4.65M 5.02M 27.9M 61.3M 136M 385K 239K 204K 4.65M 5.02M 14.0M
|ΣT | 4.01M 10.0M 28.1M 12.0M 30.0M 84.2M 24.4M 26.5M 29.5M 25.4M 55.9M 125M 26.5M 258M 16.5M 6.39M 63.9M 41.1M

Algorithm 1 STELLAR TREE PROCESSING PARADIGM(r, c)
Input: r is a block in H
Input: c is a fixed-size LRU-cache

1: if r is an internal block in H then
2: for all blocks rC in CHILDREN(r) do
3: STELLAR TREE PROCESSING PARADIGM(rC ,c)
4: else // r is a leaf block in H
5: if r is in c then
6: rE ← GET(c,r)
7: else
8: rE ← EXPAND(r) // expand r into rE
9: execute application algorithm using rE

10: if MAX SIZE(c) > 0 then // we are using a cache
11: save rE in c
12: else
13: discard rE

a local approach, the scope of these auxiliary data structures is
limited to that of a single leaf block r, or to a restricted subset of
its neighbors. In general, a local approach is preferred for appli-
cations that extract, or analyze local features, such as those that
depend only on the link or star of cells. These includes, for in-
stance, the extraction of geometric features, like the curvature at
a vertex, or the extraction of morphological features, like critical
points, when the complex is a discretization of the domain of a
scalar field. In these examples, the auxiliary data structures are
just needed within the scope of a leaf block r, and thus, imme-
diately discarded after extracting the corresponding feature in r.
Conversely, in a global approach, data structures are maintained
over the entire complex and updated during the visit of the tree.
A global approach can be preferable for applications that require
the analysis or the processing of the entire complex, like geomet-
ric simplification, morphological segmentation, or validation of
geometric and topological properties. In these examples, auxil-
iary data structures are used to represent partial results over the
complex.

The decision between using a local and global approach can
be driven by the needs of the application or as a tradeoff bal-
ancing memory usage and execution times. Due to the limited
scope of auxiliary data structures in the local approach, the stor-
age overhead is typically proportional to the complexity of the
local complex but requires an increased number of memory al-
locations compared to a global approach since each leaf block
expansion requires memory allocations. Conversely, while auxil-
iary data structures in the global approach are allocated only once,
these structures can require significantly more storage space com-
pared to the local approach.

In Section 10, we present applications on mesh processing and
analysis, based on Stellar trees, on which these two paradigms
have been extensively applied.

7 Experimental setup

In this section, we describe our experimental setup, including the
datasets used in our evaluation (Section 7.1). We also evaluate
how the bucketing threshold kV affects the quality of a Stellar
tree’s decomposition and its performance in extracting topologi-
cal queries (Section 7.2).

7.1 Experimental datasets

We have performed experiments on a range of CP complexes
consisting of triangle, quadrilateral, tetrahedral and hexahedral
meshes in E3 as well as pure non-manifold simplicial complexes
in higher dimensions and higher dimensional non-manifold sim-
plicial complexes (embedded in E3). Table 1 summarizes the
datasets used in our experiments and their numbers of vertices
and top cells.

Our triangle and tetrahedral meshes are native models ranging
from 4 to 28 million triangles and from 24 to 29 million tetrahe-
dra, where we use the term native to refer to models from public
domain repositories discretizing objects in space. Since we only
had access to relatively small native quadrilateral and hexahedral
meshes (with tens to hundreds of thousand elements), we have
generated some larger models ranging from 12 to 125 million el-
ements from our triangle and tetrahedral models. The generation
procedure refines each triangle into three quadrilaterals and each
tetrahedron into four hexahedra by adding vertices at the face cen-
troids.

To experiment with pure non-manifold models in higher di-
mensions, we have generated some models based on a process
that we call probabilistic Sierpinski filtering, where we regularly
refine all simplices in the complex and randomly remove a fixed
proportion of the generated simplices in each iteration. For our
experiments, we have created 5-, 7- and 40-dimensional mod-
els using different levels of refinement and a filtering threshold
of 65%, yielding pure simplicial complexes with 16.5 million to
258 million top simplices.

Finally, to experiment with general simplicial complexes
in higher dimensions, we have generated several (non-pure)
Vietoris-Rips complexes, which we embed in a lower dimensional
space. A Vietoris-Rips (V-Rips) complex is the flag complex de-
fined by a neighborhood graph over a point cloud whose arcs
connect pairs of points with distance less than a user-provided
parameter ϵ. Given the neighborhood graph, the simplices of
the V-Rips complexes are defined by its cliques, subsets of the
graph vertices that form a complete subgraph. We refer to
[Zomorodian, 2010] for further details. For our experiments, we
have generated V-Rips complexes over the vertices of a trian-

11

0 500 1,000 1,500
0.1

1

10

100

kS kL

block threshold (kv)

tim
e

(s
ec

on
ds

)

generation time
top co-boundary time

104

105

106

107

nu
m

be
ro

fb
lo

ck
s

generation time
top co-boundary time

number of blocks

(a) NEPTUNE triangle complex

0 500 1,000 1,500
0.1

1

10

100

kS kL

block threshold (kv)

tim
e

(s
ec

on
ds

)

104

105

106

107

nu
m

be
ro

fb
lo

ck
s

(b) BONSAI tetrahedral complex

0 500 1,000 1,500
0.1

1

10

100

kS kL

block threshold (kv)

tim
e

(s
ec

on
ds

)

generation time
top co-boundary time

104

105

106

107

nu
m

be
ro

fb
lo

ck
s

generation time
top co-boundary time

number of blocks

(c) VISMALE 7D V-Rips complex

Figure 11: Bucketing threshold calibration experiments comparing the number of Stellar tree blocks (red, right y-axis) and generation
and top-coboundary extraction times (blue, left y-axis) against bucket threshold values (kV). The vertical bars (gray) represent the
kV values selected for our experiments.

0 500 1,000 1,500

23

22

21

20

2−1

2−2

2−3

2−4

2−5

2−6

2−7

kS kL

block threshold (kv)

χ
µ

(a) NEPTUNE triangle complex

0 500 1,000 1,500

23

22

21

20

2−1

2−2

2−3

2−4

2−5

2−6

2−7

kS kL

block threshold (kv)

χ
µ

(b) BONSAI tetrahedral complex

0 500 1,000 1,500

23

22

21

20

2−1

2−2

2−3

2−4

2−5

2−6

2−7

kS kL

block threshold (kv)

χ
µ

(c) VISMALE 7D V-Rips complex

Figure 12: Bucketing threshold calibration experiments comparing the evolution of the average spanning number χ and of the
average reference number µ against bucket threshold values (kV) for three datasets. The vertical bars (gray) represent the kV values
we selected for our experiments on these datasets.

gle model (LUCY) and of two tetrahedral models (VISMALE and
FOOT) from our manifold datasets and set our distance threshold
ϵ to {0.1%, 0.5%, 0.4%} of the bounding box diagonal, respec-
tively. The range of top simplices in the generated complexes
goes from 6.4 million to 64 million and their dimension from 7 to
34. Although the generated complexes are synthetic, they provide
a good starting point to demonstrate the efficiency of the Stellar
tree in higher dimensions.

All tests have been performed on a PC equipped with a 3.2
gigahertz Intel i7-3930K CPU with 64 gigabytes of RAM. The
source code will be made available at [Fellegara, 2021].

7.2 Calibrating Stellar tree bucket thresholds
Spatial indexes typically involve a careful balance among index
generation times, storage costs and query performances. Stellar
trees provide users with a single tuning parameter kV to control
the maximum number of vertices indexed by each block of the
tree. In the following, we calibrate kV on a characteristic subset
of three of our experimental datasets: NEPTUNE triangle mesh,
BONSAI tetrahedral mesh, and VISMALE Vietoris-Rips complex.
For each dataset, we generated 195 Stellar trees using kV values
ranging from 1 to 1500 and compared Stellar tree generation and

query times as well as the number of blocks as a proxy for the
complexity of the generated tree. Within this range, we incre-
ment kV by 1 for values between 1 and 50, and by 10 for values
between 60 and 1500. This allows us to evaluate the decompo-
sition quality and the extraction performance for a fundamental
topological query at different scales. For the latter, we use the
vertex co-boundary extraction, i.e., the top cells incident in each
vertex (which we describe in Section 9.2).

The results are summarized in the charts of Figures 11 and 12,
which compare the complexity of the generated Stellar tree (in
terms of number of blocks), its generation and query times, and
the average spanning (χ) and reference (µ) numbers as a function
of the threshold value kV .

To better compare different units (i.e., number of blocks and
timings), each chart in Figure 11 has two logarithmic y-axes,
showing the time scale (blue curves using the left y-axes) and
the number of blocks (red curves using the right y-axes), respec-
tively. In this way, we can directly compare, for each dataset, how
the kV value influences the decomposition and the timing perfor-
mances. After an initial rapid decrease in the generation time and
block number, the curves begin to level off for increasingly large
kV values. While there are more than a million blocks when kV

12

is less than 10, the number of blocks rapidly decreases to hun-
dreds of thousands for kV ’s between 50 and 200, and grows even
smaller for large kV values (e.g., above 500), where the number
of blocks remains steadily in the thousands to tens of thousands.
This trend appears to be related to the point distribution within
each dataset, which induces finer decompositions for kV values
between 1 and 50, and coarser decompositions for larger kV val-
ues. This trend can also be observed for the generation times,
which reduce by a factor of two for kV values between 1 and
100, and by another factor of two for large bucketing thresholds.
While the topological extraction query is largely unaffected by
kV size, it gets slightly faster for larger kV values. When com-
paring the influence of kV on χ and µ (shown in Figure 12), we
observe that the behavior of these two variables is very similar to
that of the number of blocks. This is expected, since the top cells
distribution is directly linked to the number of blocks in the tree.
As mentioned in Section 4.1, the number of leaf blocks indexing
a top cell is bounded from above by the number of its vertices,
and this defines a topological upper bound that reduces the over-
all storage requirements. We note that the SRE compression is
able to reduce the number of references per top cell (µ), even for
very small kV values.

Our calibration experiments indicate that, while there are slight
differences in timing and storage costs, Stellar tree performance is
relatively stable over a wide range of kV values. However, thresh-
old values that are either too small or too large should be avoided,
since in the first case the storage requirements and time perfor-
mances are heavily affected, while in the latter case the benefit
of having a hierarchical decomposition is limited, as both storage
requirements and time performance are not clearly influenced by
it. In the rest of this paper, for every model, we build two Stel-
lar trees to compare how their performances depend on parameter
kV . These two kV values are chosen in order to: (i) have a hierar-
chical decomposition that still plays a critical role in the storage
requirements and time performances; and (ii) obtain trees with
different characteristics: one deeper and another relatively shal-
lower. In the following, we use kS to refer to the smaller kV
value and kL to the larger one. Since there is a direct correla-
tion between the decomposition quality and χ, these calibration
choices are also reflected in the χ values across our experimental
datasets. Table 2 summarizes statistics on the Stellar trees ob-
tained from each input data set by considering two values of the
vertex threshold kV , namely kS and kL. Figure 13 illustrates the
kS octree decomposition for the 4M triangle NEPTUNE dataset.

8 Evaluation of storage costs and gener-
ation times

In this section, we evaluate the storage costs and generation times
of Stellar trees. First, we compare the cost of different Stellar
tree encodings (Section 8.1), then we compare the Stellar tree
against several state-of-the-art topological mesh data structures
(Section 8.2), and, finally, we evaluate the generation times of the
Stellar tree (Section 8.3).

Table 2: Overview of our generated Stellar trees for each dataset.
For each Stellar tree, we list the thresholds kV , the number of
blocks in the index (total |H| and leaf |HL|) and the average span-
ning number χ.

Data kV |H| |HL| χ

NEPTUNE

T
R

I.

kS 100 73.7K 58.8K 1.37
kL 500 15.0K 12.2K 1.17

STATUETTE kS 100 182K 147K 1.36
kL 500 39.8K 32.7K 1.17

LUCY kS 100 464K 374K 1.35
kL 500 88.8K 70.3K 1.16

NEPTUNE

Q
U

A
D

. kS 100 407K 322K 1.47
kL 800 55.0K 44.3K 1.17

STATUETTE kS 100 1.10M 883K 1.47
kL 800 146K 120K 1.17

LUCY kS 100 3.53M 2.85M 1.54
kL 800 329K 265K 1.17

BONSAI

T
E

T
R

A
. kS 400 45.2K 39.5K 1.58

kL 800 17.9K 15.7K 1.44

VISMALE kS 400 32.8K 28.7K 1.52
kL 800 17.7K 15.5K 1.45

FOOT kS 400 88.8K 77.7K 1.75
kL 800 17.1K 15.0K 1.43

F16

H
E

X
A

. kS 100 1.11M 972K 3.08
kL 1000 113K 99.0K 1.90

SAN FERN kS 100 2.02M 1.77M 3.15
kL 1000 247K 216K 1.88

VISMALE kS 100 7.39M 6.46M 2.80
kL 1000 800K 700K 1.72

5D

P
R

O
B

. kS 100 37.4K 36.1K 4.39
kL 500 2.79K 2.68K 2.55

7D kS 100 10.8K 4.87K 4.98
kL 500 2.02K 1.00K 3.78

40D kS 100 15.2K 4.32K 36.2
kL 1000 1.56K 550 34.0

VISMALE 7D

V
-R

IP
S

kS 400 32.8K 28.7K 1.44
kL 800 17.7K 15.5K 1.37

FOOT 10D kS 400 88.8K 77.7K 2.02
kL 800 17.1K 15.0K 1.56

LUCY 34D kS 100 464K 374K 2.47
kL 500 88.8K 70.3K 1.73

8.1 Storage comparison among Stellar tree en-
codings

We begin by comparing the EXPLICIT and COMPRESSED
Stellar tree encodings as well as a VERTEX-COMPRESSED
encoding, similar to the PR-star encoding for tetrahedral
meshes [Weiss et al., 2011], that compresses the vertex array but
not the top cells arrays. Table 3 lists the storage costs for the in-
dexed representation of the complex (‘Base Complex’) as well as
the additional costs required for the three Stellar tree encodings,
in terms of megabytes (MBs). In the following, we assume that
pointers require 64 bits and indices 32 bits, the de-facto standard
in modern computing hardware. Stellar trees based on the COM-
PRESSED encoding are always the most compact.

We first consider the storage requirements of the hierarchical
structures with respect to our tuning parameter kV and observe
that higher values of kV always yield reductions in memory re-
quirements. As expected, this effect is more pronounced for the
COMPRESSED encoding than for the other two encodings. Specif-
ically, the EXPLICIT and VERTEX-COMPRESSED kL trees achieve
a 20-50% reduction in storage requirements compared to their kS
counterparts, while the COMPRESSED kL trees are a factor of 3-
10 smaller than their kS counterparts. For example, on the trian-
gular NEPTUNE dataset, storage requirements for the EXPLICIT
Stellar tree reduces from 32.0 MB (kS) to 26.2 MB (kL), while
the COMPRESSED Stellar trees reduces by more than a factor of 4
from 5.76 MB (kS) to 1.24 MB (kL).

13

Figure 13: Leaf blocks for a Stellar tree decompositions over
NEPTUNE triangle mesh. Each leaf block indexes up to kV = 100
mesh vertices.

When comparing the three encodings, we see that compress-
ing the vertices alone, as in the VERTEX-COMPRESSED represen-
tation, achieves only 10-20% reduction in storage requirements
compared to the EXPLICIT representation, in most cases. In con-
trast, compressing the vertices and top cells, as in our COM-
PRESSED representation, yields an order of magnitude improve-
ment, requiring a factor of 10-20 less storage than their EXPLICIT
counterparts. This trend is nicely tracked for each dataset by the
differences between its average references number µ and its aver-
age spanning number χ. This is particularly evident on our prob-
abilistic datasets, for which it is difficult to calibrate kV in order
to reduce χ values. However, after SRE compression, µ values
are always very small, leading to significant storage reductions in
the COMPRESSED representation.

Considering the hierarchical storage requirements against
those of the original indexed base complex, we observe that EX-
PLICIT Stellar trees require about 50% to 80% the storage of
the base complex, while COMPRESSED Stellar trees require only
around 10% (kS) and 1% (kL) the storage of the base complex.
Thus, for reasonable kV values, COMPRESSED Stellar trees im-
pose only a negligible storage overhead with respect to the un-
derlying indexed complex, which the Stellar tree representation
does not modify. In the remainder of this paper, we restrict our
attention to the COMPRESSED Stellar Tree, which we refer to as
the Stellar tree, for simplicity.

8.2 Storage comparison with respect to other data
structures

We compare the Stellar tree with several dimension-independent
topological data structures as well as dimension-dependent topo-
logical data structures for 2D and 3D simplicial complexes. Fig-
ures 14, 15 and 16 compare the storage requirements for the dif-
ferent data structures normalized against the storage costs of the
indexed base complex. The analysis compares the topological
overhead of the data structures, and thus, we omit the cost of the
geometry of the underlying complex, which is common to all the
data structures.

Based on our analysis of the literature (see Section 3.1),

Table 3: Storage costs (in MBs) and average spanning (χ) and
reference (µ) numbers for different Stellar tree encodings.

Data Base
Stellar tree

Complex EXPLICIT V COMPR. COMPR.
cost χ cost χ cost µ

NEPTUNE

T
R

I.

kS 45.9 32.0 1.37 24.3 1.37 5.76 0.16
kL 26.2 1.17 18.6 1.17 1.24 0.04

STATUETTE kS 114 79.2 1.36 60.2 1.36 14.6 0.17
kL 65.6 1.17 46.6 1.17 3.41 0.04

LUCY kS 321 220 1.35 166 1.35 34.5 0.12
kL 181 1.16 128 1.16 6.18 0.02

NEPTUNE

Q
U

A
D

. kS 183 132 1.47 86.0 1.47 28.0 0.20
kL 102 1.17 56.3 1.17 3.86 0.03

STATUETTE kS 458 333 1.47 219 1.47 76.0 0.22
kL 255 1.17 141 1.17 10.4 0.03

LUCY kS 1.3K 976 1.54 656 1.54 245 0.26
kL 710 1.17 389 1.17 23.1 0.03

BONSAI

T
E

T
R

A
. kS 373 166 1.58 150 1.58 6.55 0.05

kL 151 1.44 135 1.44 2.65 0.02

VISMALE kS 405 173 1.52 156 1.52 4.87 0.03
kL 165 1.45 147 1.45 2.69 0.02

FOOT kS 450 220 1.75 201 1.75 13.0 0.08
kL 181 1.43 161 1.43 2.60 0.02

F16

H
E

X
A

. kS 775 456 3.08 349 3.08 151 1.03
kL 296 1.90 189 1.90 18.0 0.13

SAN FERN kS 1.7K 999 3.15 765 3.15 275 0.86
kL 646 1.88 412 1.88 33.1 0.10

VISMALE kS 3.8K 2.2K 2.89 1.7K 2.89 887 1.15
kL 1.4K 1.72 858 1.72 106 0.15

5D

P
R

O
B

. kS 607 448 4.39 446 4.39 63.7 0.61
kL 259 2.55 258 2.55 3.57 0.03

7D kS 7.9K 4.9K 4.98 4.9K 4.98 101 0.10
kL 3.7K 3.78 3.7K 3.78 12.2 0.01

40D kS 2.6K 2.3K 36.2 2.3K 36.2 55.7 0.87
kL 2.1K 34.0 2.1K 34.0 0.45 0.01

VISMALE 7D
V

-R
IP

S
kS 134 56.2 1.44 37.0 1.44 7.38 0.26
kL 53.7 1.37 34.6 1.37 4.54 0.18

FOOT 10D kS 2.1K 604 2.02 586 2.02 65.1 0.33
kL 431 1.56 413 1.56 11.5 0.12

LUCY 34D kS 2.0K 416 2.47 363 2.47 86.2 0.92
kL 292 1.73 238 1.73 19.0 0.53

the most relevant dimension-independent topological data
structures that scale to our experimental datasets are:
the Incidence Graph (IG) [Edelsbrunner, 1987], the Inci-
dence Simplicial (IS) [De Floriani et al., 2010], the Simplex
tree [Boissonnat and Maria, 2014], and the Generalized Indexed
data structure with Adjacencies (IA∗) [Canino et al., 2011].
Since Canino et al. [Canino and De Floriani, 2014] demonstrated
that the IA∗ data structure is more compact than the IG and IS
data structures for low and high-dimensional datasets, we restrict
our comparisons to the IA∗ and Simplex tree data structures.

The IA∗ data structure has been defined for dimension-
independent simplicial complexes, and for our experiments, we
have extended it to dimension-independent CP complexes. It
explicitly encodes all vertices and top CP k-cells in Σ, with
0 < k ≤ d, as well as the following topological relations:

(i) boundary relation Rk,0(σ), for each top CP k-cell σ;
(ii) adjacency relation Rk,k(σ), for each top CP k-cell σ;

(iii) co-boundary relation Rk−1,k(τ), for each non-manifold
(k−1)-cell τ bounding a top CP k-cell;

(iv) partial co-boundary relation R∗
0,k(v), for each vertex v, con-

sisting of an arbitrary top CP k-cell σ from each k-cluster in
the star of v. A k-cluster is a (k−1)-connected component
of the star of v restricted to its top CP k-cells.

Note that for pure CP complexes, the non-manifold co-boundary
relation Rk−1,k is empty. Further, for pseudo-manifold com-
plexes, the partial vertex co-boundary relation R∗

0,k has car-

14

0 1 2 3

PROB.5D
(607 MB)

PROB.7D
(7.9 GB)

⊙⊗

PROB.40D
(2.6 GB)
⊙⊗ >

VISMALE7D
(134 MB)

FOOT10D
(2.1 GB)

⊙

LUCY34D
(2.0 GB)
⊙⊗ >

1.1

1.01

1

1.06

1.05

1.05

1

1

1

1.04

1

1.05

11.7

19.62

5.54

73.88

180

4,925.9

1.98

2

2

2.13

2

2.05

|Σ|

IA∗

Simplex tree
kL Stellar tree
kS Stellar tree

Figure 14: Storage costs for high dimensional probabilistic-
refinement simplicial complexes (PROB.5D, PROB.7D and
PROB.40D) and V-Rips simplicial complexes (VISMALE7D,
FOOT10D and LUCY34D). Costs (labels to right of each bar) are
normalized to the indexed mesh representation (listed along y-
axis). Note that: (1) the x-axis is truncated to a factor of 3; (2)
datasets marked with ⊙ or ⊗ could not be directly generated on
our test machine for the Simplex tree or IA∗ (respectively); and
(3) the Simplex tree results for the PROB.40D and LUCY34D
dataset are partial (>).

dinality 1, and the IA∗ is identical to the IA data struc-
ture [Paoluzzi et al., 1993].

The Simplex tree encodes all j-simplices in Σ, with 0 ≤ j ≤ d,
like the IG, while storing a subset of the incidence relations en-
coded by the IG. The Simplex tree is defined over a total order
on the vertices of Σ, and thus, each simplex σ is uniquely rep-
resented as an ordered path in a trie whose nodes correspond to
the boundary vertices of σ. Thus, the nodes are in bijection with
the simplices of the complex, and a Simplex tree over a simplicial
complex with |Σ| simplices (of any dimension) contains exactly
|Σ| nodes. This provides an efficient representation for extract-
ing all boundary relations of simplices in Σ. We compare the
Stellar tree to the implementation of the Simplex tree provided
in [GUDHI, 2018], where each node of a Simplex tree requires a
reference to the label of the vertex and three references to the tree
structure (pointers to the parent node, to the first child and to the
next sibling node) for a total of 4|Σ| references.

Note that the Stellar tree and our extended IA∗ data struc-
ture can both represent CP complexes in arbitrary dimension and,
thus, have the same expressive power, while the Simplex tree can
represent only simplicial complexes. Another difference is that
Stellar trees require the complex to be embedded in an ambient
space A, while the other data structures are purely topological
and do not require a spatial embedding. We note, however, that
while this is a requirement for Stellar trees, it is not a requirement
for the more general Stellar decomposition.

In terms of storage requirements, the Stellar tree is always

0 0.5 1 1.5 2

NEPTUNE
(183 MB)

STATUETTE
(458 MB)

LUCY
(1.3 GB)

F16
(775 MB)

SAN FERN
(1.7 GB)

VISMALE
(3.8 GB) ⊗

1.15

1.17

1.15

1.19

1.18

1.24

1.02

1.02

1

1.02

1

1.03

2.26

2.18

2.23

1.94

1.88

1.89

|Σ|

IA∗

kL Stellar tree
kS Stellar tree

Figure 15: Storage costs for manifold quadrilateral (NEPTUNE,
STATUETTE and LUCY) and hexahedral (BONSAI, VISMALE and
FOOT) complexes. Costs (labels to right of each bar) are nor-
malized to the indexed mesh representation (listed along y-axis).
Datasets marked with ⊗ could not be directly generated on our
test machine using the standalone IA∗.

more compact than the IA∗ data structure, requiring approxi-
mately half of the storage, nearly all of which is used for encoding
boundary relation Rk,0 for the top cells (i.e., the indexed repre-
sentation that they share in common). It is worth noting that we
were unable to directly generate the IA∗ data structure for several
of our larger datasets on our 64 GB test machine. We generated
the IA∗ data structure on these datasets indirectly using our Stel-
lar tree representation (see Section C in the Appendix) and we
have marked these datasets with an ⊗ in Figures 14 and 15.

When comparing the Stellar tree to the Simplex tree, we ob-
serve that the Stellar tree is significantly more compact: by an
order of magnitude on manifold and pure models, and by two or-
ders of magnitude or more on non-manifold models. Here too, we
were unable to generate Simplex trees for several of the higher
dimensional models on our test machine. For these datasets
(marked with ⊙ in Figure 14), we estimated the storage require-
ments based on the number of simplices of each dimension in the
model. On two of these datasets, PROB 40D and LUCY 34D, we
were unable to extract all simplices in all dimensions (even indi-
rectly, see Section 9.1), and thus, the storage shown in Figure 14
is a lower bound of the real storage requirements. In contrast,
we had no difficulty generating Stellar Trees for any of our test
datasets.

For our dimension-dependent comparisons on manifold sim-
plicial complexes, we also considered the Corner Table
(CoT) [Rossignac et al., 2001] and the Sorted Opposite Table
(SOT) [Gurung and Rossignac, 2009] data structures, both de-
fined only for manifold triangle and tetrahedral complexes. The
CoT data structure is similar to the IA data structure and explic-
itly encodes boundary relation Rd,0(σ) and adjacency relation
Rd,d(σ) of each top d-simplex σ. The SOT extends the CoT
by implicitly encoding boundary relation Rd,0(σ). It only explic-
itly encodes adjacency relation Rd,d(σ).

When comparing the Stellar tree to corner-based data struc-

15

0 2 4 6 8

NEPTUNE
(45.9 MB)

STATUETTE
(114 MB)

LUCY
(321 MB)

BONSAI
(373 MB)

VISMALE
(405 MB)

FOOT
(450 MB)

1.13

1.14

1.11

1.02

1.01

1.03

1.02

1.04

1.02

1.01

1.01

1.01

6.98

7.03

6.85

7.51

7.65

7.56

1

1

1

1

1

1

2

2

2

2

2

2

2.15

2.18

2.17

2.04

2.16

2.04

|Σ|

IA∗

CoT
SOT
Simplex tree
kL Stellar tree
kS Stellar tree

Figure 16: Storage costs for manifold triangle (NEPTUNE, STAT-
UETTE and LUCY) and tetrahedral (BONSAI, VISMALE and
FOOT) complexes. Costs (labels to right of each bar) are nor-
malized to the indexed mesh representation (listed along y-axis).

tures, we observe that the CoT data structure has similar storage
requirements as the IA and is roughly twice as large as the Stel-
lar tree, while the SOT has similar storage requirements as the
Stellar tree, requiring about 1% to 10% less space.

Finally, we consider the effect of different bucketing threshold
on the size and efficiency of the Stellar tree representation. For
our experimental datasets, there was only about a 10% difference
in storage requirements between the large (kL) and small (kS)
bucketing factors. Clearly, this is not always true, especially in
the limit cases, i.e., with kV = 1 and kV = ∞. Very low buck-
eting thresholds (with kV near 1) yield deeper trees whose leaf
blocks index only a few entities, leading to a high topological
overhead but more efficient execution for individual mesh pro-
cessing operations. Conversely, really large bucketing threshold
values lead to lower storage overhead at the expense of increased
query and execution times for individual operations. At the limit,
when kV = ∞, the Stellar tree is effectively identical to the in-
dexed representation.

These results confirm that the Stellar tree can efficiently repre-
sent both low- and high-dimensional complexes with only a slight
storage overhead relative to that of the indexed base complex.
This is largely due to the Stellar tree’s exploitation of the com-
plex’s spatial locality via SRE compression.

Table 4: Generation timings (in seconds) for the Stellar tree.

Data kV
Timings

vertices top CP cells total
insert reindex insert reindex

NEPTUNE

T
R

I.

kS 4.52 0.68 1.64 3.23 10.1
kL 3.83 0.67 1.24 2.77 8.51

STATUETTE kS 11.6 1.77 3.42 7.99 24.8
kL 10.1 1.74 2.74 6.70 21.3

LUCY kS 34.6 1.32 8.85 21.9 66.7
kL 30.3 0.48 7.45 18.1 56.3

NEPTUNE

Q
U

A
D

. kS 32.2 4.39 6.64 11.3 54.5
kL 27.5 4.36 4.63 8.58 45.1

STATUETTE kS 82.7 12.3 14.0 29.1 138
kL 73.8 12.2 10.7 22.7 119

LUCY kS 263 2.17 37.0 61.8 364
kL 223 2.02 29.5 35.5 290

BONSAI

T
E

T
R

A
. kS 6.69 1.66 7.99 20.8 37.2

kL 6.25 1.65 7.12 19.3 34.3

VISMALE kS 7.25 1.82 8.35 22.1 39.6
kL 6.96 1.81 7.88 21.2 37.8

FOOT kS 8.55 2.00 10.8 27.9 49.2
kL 7.34 1.97 8.52 23.4 41.2

F16

H
E

X
A

. kS 103 14.2 77.7 53.9 249
kL 94.1 13.9 46.7 35.1 190

SAN FERN kS 154 27.6 52.1 102 336
kL 140 27.5 37.1 67.8 273

VISMALE kS 337 72.8 118 222 751
kL 324 71.8 85.3 147 628

5D

P
R

O
B

. kS 0.50 0.58 40.9 53.0 95.0
kL 0.37 0.58 20.9 32.7 54.5

7D kS 0.55 5.98 332 612 950
kL 0.45 5.97 203 471 681

40D kS 1.32 1.73 972 769 1.7K
kL 1.02 1.73 529 448 980

VISMALE 7D

V
-R

IP
S

kS 7.20 1.80 2.65 3.04 13.0
kL 6.94 1.81 2.50 2.75 12.3

FOOT 10D kS 9.01 1.99 41.0 57.1 108
kL 7.91 1.98 30.6 35.9 75.2

LUCY 34D kS 35.9 1.63 36.8 42.2 117
kL 30.7 0.81 28.7 24.3 84.5

8.3 Evaluation of Stellar tree generation times

In this section, we evaluate the generation times for the Stellar
tree. Table 4 shows the timings of the four generation phases and
the overall total timings. The two insert columns show the time
for creating the base indexing structure H over the vertices ΣV of
the complex Σ, or the time for inserting the top cells ΣT into H,
while reindex columns show the timings for reordering and SRE
compressing the indexed lists and arrays in H and Σ.

We first consider the relative cost of each of the generation
phases. In general, the vertex reindexing phase consumes less
than 10% of the overall timings. For the triangle, quadrilateral,
hexahedral complexes, and the lower dimensional Vietoris-Rips
complex, generating H is the most expensive phase, while for the
tetrahedral, probabilistic-refinement and the two higher dimen-
sional Vietoris-Rips models, reindexing the top cells is the most
expensive phase. These results can be understood by considering
the relative sizes of ΣV and ΣT . When the number of vertices is
greater than or equal to the number of top cells, it is more expen-
sive to generate the spatial hierarchy H. Otherwise, reindexing
and compressing the top cells arrays dominates.

Finally, considering the effect of the bucketing thresholds (kV)
on generation times, we find that Stellar trees with higher bucket-
ing thresholds (kL) can be generated in less time than those with
lower bucketing thresholds (kS). This is expected since high val-
ues of kV tend to produce coarser spatial subdivisions with lower
average spanning numbers χ.

16

Algorithm 2 EXTRACT P CELLS(p,r,Σ)

Input: p is the cell dimension to extract
Input: r is a leaf block in H
Input: Σ is the CP complex indexed by H
Variable: m p maps a p-cell vertex tuple to its local index
Require: Extract boundary p-cells of top k-cells, 0<p≤k≤d

1: for all top CP k-cells σ in ΦTOP (r) (with index iσ in ΣT) do
2: for all p-faces τ in Rk,p(σ) (with face index iτ in σ) do

// Rearrange τ ’s vertices into a canonical order
3: v tuple← CANONICAL TUPLE(Rp,0(τ))

// If τ is indexed by r, add it to the local p-faces map
4: if there exists v ∈ Rp,0(τ) such that v ∈ ΦV ERT (r)

then
// Insert τ as a new p-cell, if not already present

5: if v tuple is not in m p then
6: idτ ← SIZE(m p) // idτ is τ ’s local index in r
7: m p[v tuple]← idτ

9 Topological queries on a Stellar tree
In this section, we describe how to perform topological queries
on a CP complex Σ in the Stellar tree representation. These
queries are the fundamental building blocks for locally travers-
ing and processing the underlying complex.

Since these queries often depend on all cells in the complex,
rather than just the explicitly represented top cells, we first de-
scribe how we obtain and represent the implicitly encoded bound-
ary cells of the complex from the Stellar tree representation (Sec-
tion 9.1). We then present algorithms for extracting the co-
boundary (Section 9.2). For brevity, we omit a description of
how to extract adjacency relations, but in the Appendix C we de-
scribe how to extract the Rd,d adjacency relations to generate the
IA∗ data structure from a Stellar tree.

9.1 Extracting boundary relations
The Stellar tree’s underlying indexed representation of a CP com-
plex Σ explicitly encodes only the vertices and top CP k-cells of
Σ for k ≤ d (see Section 4.2.1). However, many applications re-
quire access to non-top cells within the complex. Since they are
implicitly encoded within the Stellar tree representation, we must
create a local (explicit) representation to support algorithms for
processing and attaching data to such cells.

Our strategy for extracting all p-cells is to iterate through the
top k-cells of a leaf block for each dimension k, 0 < p ≤ k ≤ d
and to extract an ordered set of p-cells (see Algorithm 2). We
use an associative array m p to track the unique set of encoun-
tered p-cells with at least one vertex indexed by r (row 4). Array
m p maps the tuple of vertices for a p-cell τ to an integer index
idτ in the set, accounting for changes in ordering and orienta-
tion through the CANONICAL TUPLE routine (row 3). In some
applications, it is useful to also explicitly maintain the boundary
relation Rp,0 for the p-cells and/or the incidence relations Rk,p

or Rp,k for the top k-cells. These are encoded using the local
indices within the ordered set of extracted p-cells.

We note that, for truly high-dimensional datasets, it is not fea-
sible to extract p-cells in all cases. For example, there are

(
41
21

)
20-

simplices within a single 40-simplex. Encoding these 269 billion
simplices would require more than 40TB of storage. However,

Table 5: Summed timings (seconds) and additional storage re-
quirements (number of references) to extract boundary p-cells
from Stellar tree, IA∗ and Simplex tree data structures. Datasets
marked with an⊗ could not be directly generated on our test ma-
chine by the IA∗.

Data kV
Time Storage

IA∗ Simplex Stellar IA∗ / Stellar
tree tree Simplex tree

NEPTUNE

T
R

I.

kS 4.93 1.82 1.90 12.0M 0.70K
kL 2.20 3.24K

STATUETTE kS 9.21 3.73 4.90 30.0M 0.72K
kL 5.55 3.22K

LUCY kS 25.3 9.94 13.8 84.1M 0.82K
kL 16.2 3.28K

NEPTUNE

Q
U

A
D

. kS 40.8 n/a 6.61 96.2M 0.52K
kL 7.43 3.37K

STATUETTE kS 91.3 n/a 15.9 240M 0.50K
kL 19.0 3.38K

LUCY kS 251 n/a 43.2 673M 0.53K
kL 53.4 3.41K

BONSAI

T
E

T
R

A
. kS 49.6 22.7 45.6 204M 20.9K

kL 47.8 42.5K

VISMALE kS 54.5 25.1 52.2 222M 21.4K
kL 53.7 36.5K

FOOT kS 59.5 29.7 50.9 246M 21.2K
kL 57.5 43.3K

F16

H
E

X
A

. kS OOM n/a 49.6 OOM 2.64K
kL 71.1 18.9K

SAN FERN kS OOM n/a 109 OOM 2.89K
kL 143 21.1K

VISMALE⊗ kS OOM n/a 263 OOM 1.77K
kL 340 17.4K

5D

P
R

O
B

. kS 456 123 316 970M 152K
kL 425 1.94M

7D⊗ kS OOM OOM 21.2K OOM 51.3M
kL 24.6K 167M

VISMALE 7D
V

-R
IP

S kS 179 149 156 1.43B 267K
kL 162 318K

FOOT 10D kS OOM OOM 16.6K OOM 12.0M
kL 21.4K 15.9M

even on these datasets, we can still extract the lowest and highest
dimensional p-cells. This highlights an advantage of only encod-
ing the top cells of the complex (as in the Stellar tree and IA∗ data
structure) compared to representations that encode all cells of the
complex (as in the IG or Simplex tree). Stellar trees have no diffi-
culty encoding and processing such high-dimensional complexes,
despite the combinatorial explosion in the number of overall cells.

Experimental results We now analyze the effectiveness of the
Stellar tree representation for (batched) p-cell extractions against
our implementation of the IA∗ data structure and the Simplex
tree (as implemented in the GUDHI framework [GUDHI, 2018]).
Table 5 lists the aggregate times and storage requirements for ex-
tracting all non-top p-cells from our experimental datasets. No-
tice that we do not consider the higher dimensional probabilistic
dataset and the LUCY 34D V-Rips complex, as extracting all p-
cells on these datasets is unfeasible due to its computational and
storage requirements.

First, we analyze the influence of the bucketing threshold kV
for Stellar trees. Smaller kV values lead to faster extractions on
all our experimental datasets. This speedup increases with the
dimension of the complex since the auxiliary data structure en-
coding a p-face type becomes smaller, and thus, checking for the
presence of duplicates has a lower computational cost.

The IA∗ data structure follows a similar strategy as the Stellar
trees for extracting its implicit p-cells since both data structures
use an indexed representation for encoding the boundary relations

17

of a CP complex. Table 5 demonstrates the computational and
storage advantages of the Stellar tree over the IA∗ for this task.
Namely, Stellar trees require from 20% to 55% less time for the
two-dimensional datasets and approximately 10% less time on
the higher dimensional ones. Notice, however, that the IA∗ data
structure is a global data structure over the entire complex and
runs out of memory (OOM) on our hexahedral datasets and on the
7D probabilistic and FOOT 10D V-Rips datasets. In addition, the
Stellar tree’s auxiliary storage requirements are negligible com-
pared to those of the IA∗ data structure.

The Simplex tree explicitly encodes all simplices of a simpli-
cial complex, thus, its p-cells can be enumerated by traversing
all simplices at the p-th level of the tree. Explicitly encoding
boundary relation Rp,0 would require the same auxiliary storage
as the IA∗ data structure, since both data structures require global
structures. Table 5 demonstrates that Stellar trees are slower than
Simplex trees at boundary cell extraction, but, still, competitive
with respect to a representation that explicitly encodes all cells.
This is possible thanks to the smaller local auxiliary data struc-
tures used by Stellar trees. Note that the Simplex tree runs out
of memory (OOM) on our workstation for the 7D probabilistic
dataset and the FOOT 10D V-Rips complex. Since a Simplex tree
can only represent simplicial complexes, it does not support p-
cell extraction on quad and hexahedral datasets.

9.2 Extracting co-boundary relations

Co-boundary queries arise in a variety of mesh process-
ing applications, including those requiring mesh sim-
plification and refinement [Garland and Heckbert, 1997,
Natarajan and Edelsbrunner, 2004, Zorin, 2000], or the dual of a
complex [Hirani, 2003, Mullen et al., 2011, Weiss et al., 2013].

Co-boundary queries are naturally supported by the Stellar de-
composition model. By definition, all regions of the decomposi-
tion that contain at least one vertex of a CP cell τ must index all
CP cells in the star of τ (see Equation 1). Since the top cells are
explicitly represented in Σ, we first describe how to extract the
vertex co-boundary relation R0,k restricted to the top k-cells of
Σ, which we will refer to as the restricted co-boundary relation
R0,k. We will then discuss how to extend this to extract vertex
co-boundary relation R0,p over all p-cells in Σ, and the general
co-boundary relation Rp,q with 0 ≤ p < q ≤ d.

The restricted vertex co-boundary relation R0,k in a leaf block
r is generated by inverting boundary relation Rk,0 on the top CP
k-cells in ΦTOP (r). Since the indexed vertices in the leaf blocks
of a COMPRESSED Stellar tree are contiguous, with indices in
the range [vs, ve), we encode our local data structure using an
array of size |ΦV ERT (r)| = ve − vs. Each position in the array
corresponds to a vertex indexed by r and points to an (initially
empty) list of indexes from ΣT . As shown in Algorithm 3, we
populate these arrays by iterating through relation Rk,0 of the
top CP k-cells in ΦTOP (r). For each cell σ such that relation
Rk,0(σ) contains a vertex v with index iv ∈ [vs, ve), the index of
σ is added to vertex v’s list.

Extending the vertex co-boundary relation to all p-cells in r is
complicated by the fact that we only have an explicit representa-
tion for the top cells in Σ. A simple strategy we have developed
for extracting R0,p on all p-cells in r is to first extract the explicit

Algorithm 3 EXTRACT RESTRICTED VERTEX CBDRY(r,Σ)

Input: r is a leaf block in H
Input: Σ is the mesh indexed by H
Variable: r 0 k encodes R0,k relation for the vertices in r
Ensure: Relation R0,k is locally reconstructed ∀σ ∈ ΦV ERT (r)

1: for all top k-simplex σ in ΦTOP (r) (with index iσ in ΣT) do
2: for all vertices v in σ (with index iv in ΣV) do
3: if v ∈ ΦV ERT (r) then
4: add iσ to r 0 k[iv]

set of all p-cells in r, as in Algorithm 2 (see Section 9.1). We then
invert Rp.0 to obtain the complete relation R0,p for the vertices in
r.

In some applications, we prefer to express R0,p entirely in
terms of top cells from Σ. Thus, another strategy we have de-
veloped is to extract the restricted co-boundary relation R0,k for
all top k-cells in r, with p ≤ k ≤ d. This redundant represen-
tation is thus used as an intermediate representation for R0,p(v)
since each k-cell in R0,k(v) contains one (or more) p-face in the
co-boundary of v. For example, this provides a convenient rep-
resentation for the star of a vertex v as a union of restricted co-
boundary relations R0,k(v), where 1 ≤ k ≤ d.

Similarly, we have defined and implemented a strategy for gen-
erating the general co-boundary relation Rp,q , where p < q. First,
the sets of all q-cells, which is expressed as Rq,0, is extracted.
This implicitly provides also boundary relation Rq,p. Then, co-
boundary relation Rp,q is extracted by inverting Rq,p.

Experimental results We now analyze the effectiveness of the
Stellar tree representation for co-boundary extractions. Specifi-
cally, since the main co-boundary extraction in our applications
(see Section 10) is the restricted vertex co-boundary relation and
most of the other co-boundary extractions can be posed in terms
of this primitive extraction, we compare the performance of the
Stellar tree against our implementation of the IA∗ data struc-
ture for this query and against the Simplex tree. Table 6 lists
the extraction times and storage requirements for the vertex co-
boundary relation R0,d on our manifold (triangular, quad, tetra-
hedral and hex) and pure (probabilistic) complexes and the sum
of extraction times for the restricted vertex co-boundary relations
R0,k for each dimension k with top cells on our non-manifold
(V-RIPS) complexes.

We first consider the influence of the bucketing threshold kV
for Stellar trees. While there is not much difference in extrac-
tion times for the two-dimensional complexes, larger kV values
lead to faster extractions for three-dimensional and non-manifold
datasets in most cases. While this comes with a slight increase in
storage requirements for encoding the relation (see right column
in Table 6), the overall storage cost per block is pretty low, re-
quiring at most a few megabytes for the probabilistic models, and
a few kilobytes in all other cases.

The IA∗ data structure extracts co-boundary relations through
a traversal along the face adjacencies of its top cells (encoded in
the Rk,k adjacency relation). The traversal for a given vertex v
is seeded by one top k-cell per k-cluster (encoded by partial rela-
tion R∗

0,k(v), see Section 8.2; we refer to [Canino et al., 2011] for
more details). Since each such traversal is run on demand, there is

18

Table 6: Times (seconds) and additional storage requirements
(number of references) for restricted co-boundary relations R0,k

extractions from Stellar tree and IA∗ representations. Datasets
marked with an⊗ could not be directly generated on our test ma-
chine by the IA∗.

Data kV Time Storage
IA∗ Stellar Stellar

NEPTUNE
T

R
I.

kS 5.02 0.66 0.61K
kL 0.64 3.00K

STATUETTE kS 10.2 1.66 0.61K
kL 1.58 3.01K

LUCY kS 24.8 4.20 0.61K
kL 4.17 3.01K

NEPTUNE

Q
U

A
D

. kS 27.5 2.86 0.41K
kL 2.65 3.21K

STATUETTE kS 63.6 7.04 0.41K
kL 7.22 3.22K

LUCY kS 156 20.4 0.42K
kL 19.3 3.22K

BONSAI

T
E

T
R

A
. kS 14.5 3.10 9.58K

kL 2.81 18.5K

VISMALE kS 16.1 3.38 9.57K
kL 3.07 18.2K

FOOT kS 17.3 3.83 9.62K
kL 3.32 18.6K

F16

H
E

X
A

. kS 145 11.8 0.83K
kL 10.8 7.51K

SAN FERN kS 157 26.9 0.93K
kL 22.0 8.51K

VISMALE⊗ kS 254 44.5 0.75K
kL 47.7 7.54K

5D

P
R

O
B

. kS 17.9 4.88 33.0K
kL 2.73 243K

7D⊗ kS 415 46.1 1.62M
kL 35.7 9.01M

40D⊗ kS 206 56.1 2.64M
kL 51.4 14.3M

VISMALE 7D

V
-R

IP
S

kS 25.8 2.22 3.20K
kL 2.16 5.04K

FOOT 10D kS 376 19.0 55.7K
kL 16.0 72.6K

LUCY 34D⊗ kS 334 22.9 13.0K
kL 23.2 43.8K

a negligible memory impact for this query. Table 6 demonstrates
that Stellar trees are significantly faster at extracting R0,k rela-
tions, which can be performed in about one tenth of the time in
most cases. However, it is important to note that the Stellar tree
extraction is batch-based (by leaf blocks of H), and individual
co-boundary extractions would likely be faster on the IA∗ data
structure.

The Simplex tree extracts co-boundary relations through a
traversal of the underlying trie. Given a vertex v, the procedure
for extracting its restricted co-boundary first identifies the sim-
plices incident in v (i.e., its star), and then extracts just the top
simplices from the star. The former requires a trie traversal, with
a worst-case complexity linear in the number of nodes in the trie,
since, as stated in the GUDHI documentation [GUDHI, 2018],
this corresponds to a depth-first search of the trie starting from
the node with value v. Identifying the top simplices in the star of
a vertex has a negligible cost on low dimensional meshes, while
it becomes a costly operation on higher-dimensional ones, where
it accounts for nearly 50% of the overall extraction time. As with

0 2 4 6

NEPTUNE

FIGHTER2

PROB.7D
SMALL

0.66

0.2

0.32

0.64

0.19

0.32

2.6 · 105

34,501

12,455

5.02

1.93

2.76

time (seconds)

IA∗

Simplex tree
kL Stellar tree
kS Stellar tree

Figure 17: Extraction times (in seconds) for the restricted vertex
co-boundary relations. The top dataset is the triangle mesh used
in our main comparison, the second is a tetrahedral mesh with 256
thousand vertices and 1.4 million tetrahedra, and the last dataset
is a probabilistic-refinement CP complex with 7-dimensional top
simplices.

the IA∗, since this traversal is done on demand, this query im-
poses negligible memory impact. On our experimental datasets,
the Simplex tree was able to complete the extraction of restricted
vertex co-boundary relations only on the smaller triangle mesh
NEPTUNE, for which it requires nearly 72 hours. To provide a
comprehensive performance comparison against the Stellar tree,
we consider two additional smaller datasets for this query: a tetra-
hedral mesh (FIGHTER2) with 256 thousand vertices and 1.4 mil-
lion tetrahedra, and a probabilistic-refinement CP complex with
six thousand vertices and two million top 7-simplices. The re-
sults, shown in Figure 17, highlight the Stellar tree’s significant
advantage over the Simplex tree for restricted vertex co-boundary
extraction (i.e., less than a second vs hours).

10 A brief tour of applications in the
Stellar universe

Stellar decompositions and Stellar trees have been successfully
applied in several mesh processing applications. In this sec-
tion, we provide a high-level overview of several such applica-
tions over large CP complexes with a focus on how Stellar trees
uniquely benefit the application. As we will describe, each such
application utilizes local topological data structures designed for
the underlying application. Due to the streamed processing ap-
proach discussed in Section 6, the storage requirements for these
data structures are proportional to the geometry indexed within a
leaf block of the tree and the generation costs are amortized over
all processed cells in the block.

10.1 Validation of geometric and topological
properties

Many popular topological mesh data structures are valid
only for a restricted class of complexes due to assumptions
they exploit in their encodings, such as the cardinality
of the adjacency relation among top cells. For exam-
ple, popular edge-based and adjacency-based data struc-
tures, such as the half-edge [Mantyla, 1988, CGAL, 2020,
OML, 2015], Corner-Table [Rossignac et al., 2001],

19

(a) 60% simplification (b) 90% simplification (c) 99% simplification (d) 99.9% simplification

Figure 18: Homology-preserving edge-contractions retain topological invariants of a complex, such as its number of loops, even after
extreme simplification. (a)-(d) Genus-3 NEPTUNE complex at various simplification percentages. Triangles within the same octree
block of the Stellar tree have the same color.

SOT [Gurung and Rossignac, 2009] and
IA [Paoluzzi et al., 1993, Nielson, 1997], require the under-
lying complex to be pseudo-manifold.

While one can verify such topological conditions using local
checks on the star or link of the vertices of the complex, it can be
infeasible to reconstruct such relations on large meshes without
the aid of an efficient topological data structure. On the other
hand, global approaches that directly build the required relations
do not scale to larger complexes.

In contrast, Stellar trees are ideally suited to verify topological
properties of large CP complexes, even in memory-limited envi-
ronments, since each leaf block of the Stellar tree only requires a
list of vertices and their incident top cells (i.e., those in the star
of the vertices). A simple local topological verification operation
was utilized in [Weiss et al., 2011] to mark boundary vertices of
a tetrahedral mesh by checking properties of its link, such as its
Euler number. This was extended in [Fellegara et al., 2016b] to
a full suite of topological checks on a CP complex, implemented
using global Stellar tree traversals. In particular, a graph traversal
of the 1-skeleton was used, in conjunction with a Union-Find data
structure [Tarjan, 1975], to count the connected components of a
pure simplicial complex. A similar traversal of the 1-skeleton of
its dual complex (i.e., the graph of the d-adjacency relation) was
used to verify the d-connectedness of the complex and whether
it is pseudo-manifold. Simplified checks for combinatorial mani-
folds (when applicable) were then performed on the links of each
vertex to check that they were locally homeomorphic to (d−1)-
spheres (for internal vertices) or to (d−1)-balls (for boundary ver-
tices).

10.2 Topology-preserving simplification

One of the earliest applications of the Stellar tree (actually, its
predecessor, the PR-star octree [Weiss et al., 2011]) was to ac-
celerate a mesh simplification algorithm for tetrahedral meshes
based on edge collapses. An edge collapse is a local topologi-
cal operation defined in terms of the stars of an edge’s two ver-
tices. This operation identifies the pair of vertices along an edge,
removes all tetrahedra in the star of that edge and updates the
mesh connectivity within this local region [Cignoni et al., 2004a].
Edge collapses are valid when they satisfy the so-called link con-

dition [Dey et al., 1999], which consists of local checks on the
links of the edge and its vertices.

The simplification procedure in [Weiss et al., 2011] was im-
plemented as an iterative process that alternated between:
(i) streaming through the Stellar tree blocks, where it col-
lapsed eligible candidates, and (ii) rebuilding the Stellar
tree’s index over the simplified mesh. It used discrete
distortion [Mesmoudi et al., 2008] and a quadric error met-
ric [Garland and Heckbert, 1997] to organize eligible edges into a
priority queue. Applying this simplification algorithm to the leaf
blocks of a Stellar tree rather than to the entire mesh provides
a significant space savings due to the reduced sizes of the edge
queues. In many cases, the simplification was 10-50% faster and
required only 0.1% of the additional memory for auxiliary data
structures. Moreover, this speedup was more pronounced as the
mesh size increased.

More recently, Stellar trees have been used to perform
homology-preserving edge-contractions on general simplicial
complexes of arbitrary dimension [Fellegara et al., 2020b]. The
core edge contraction algorithm was implemented using a cus-
tom local topological data structure over the top star of the ver-
tices and edges within each leaf block of the tree, similar to
the restricted co-boundary relations R0,k and R1,k (c.f. Sec-
tion 9.2). To avoid regenerating these topological relations, it
utilized an LRU cache for the expanded leaf blocks as it tra-
versed the tree. In this mesh simplification application, Stellar
trees were applied to datasets with dimensions up to 70 and were
able to remove more than 90% of the simplices of the mesh,
significantly reducing the dimensionality of the complex while
preserving important topological invariants of the dataset. Com-
pared to existing state-of-the-art data structures for edge con-
tractions [Attali et al., 2012], Stellar trees were able to simplify
complexes using comparable or less runtime and memory in all
cases, and requiring significantly less memory and/or processing
time in several cases. Notably, in one case, the Stellar tree was
able to successfully complete the simplification process in less
than 30 minutes, while [Attali et al., 2012] did not complete af-
ter more than 24 hours. Figure 18 shows simplified versions of
the genus-3 NEPTUNE triangle mesh. Each simplified mesh pre-
serves the homology of the complex, such as its number of con-
nected components, loops and cavities. We note that the above

20

Figure 19: Manifolds of a Morse complex can span vast regions
of the domain. This subset of the 4M triangle MAUI terrain
dataset highlights the 73K triangles of a single 2-manifold of the
Morse complex (shown in red on top) along with the Stellar tree
blocks indexing these triangles (rectangles on bottom, colored by
quadtree depth).

application incorporates only topological considerations into its
simplification error metric. Incorporating mesh quality consider-
ations into the error metric could significantly improve the mesh
quality [Garland and Heckbert, 1997].

10.3 Shape analysis and morphological feature
extraction

While topological validation and simplification operations
can be implemented in terms of local operations on the
star of a vertex, shape analysis applications, such as
watershed analysis [Roerdink and Meijster, 2000] and visi-
bility queries on terrain datasets [Bittner and Wonka, 2003,
De Floriani and Magillo, 2003] often require algorithms that are
seeded locally and span vast interwoven regions of the complex.
This section discusses how Stellar trees have aided in the genera-
tion and simplification of the discrete Morse gradient field and of
the associated Morse and Morse-Smale complexes of triangulated
terrains [Fellegara et al., 2014] and of tetrahedralized volumetric
data [Weiss et al., 2013].

The discrete Morse gradient field [Forman, 1998] is composed
of arrows (ordered pairs) between incident cells of the complex
and can be computed locally using scalar values associated with
cells incident in the star of a vertex [Robins et al., 2011]. Since
the encoding of [Weiss et al., 2013] compactly encodes the dis-
crete Morse gradient field as a scalar field on the top simplices
of the complex, the latter can be computed using a local traver-
sal of a Stellar tree’s blocks. Compared to an IA implementa-
tion, Stellar trees were able to extract the discrete Morse gra-
dient of scalar fields defined over tetrahedral meshes in about
half the time (see [Weiss et al., 2013] for details). While the
experiments in [Weiss et al., 2013] were performed on VERTEX-
COMPRESSED Stellar trees, yielding a 30% storage savings over
the IA data structure, a COMPRESSED Stellar tree encoding would
likely provide a 50% total memory savings while maintaining
similar performance improvements.

Extracting the Morse complex from a Stellar tree-based
encoding is more complicated since it involves traversing
the directed acyclic graphs (DAGs) induced by the discrete
Morse gradient field’s arrows. Specifically, in the encoding
of [Weiss et al., 2013], each k-dimensional critical point of the
discrete Morse gradient field corresponds to a k-cell of the d-
dimensional Morse complex. The disjoint regions of influence
of each such critical point, referred to as the k-manifolds of the
Morse complex, are extracted by traversing the DAG rooted at
a given critical point of the discrete Morse gradient field. Since
each such graph traversal can visit the blocks of a Stellar tree
multiple times, an LRU cache was used in [Weiss et al., 2013] to
support global extraction algorithms for each k-manifold of the
Morse complex.

Further, since the extraction algorithm for each dimension’s
manifolds depends on different topological connectivity rela-
tions, Morse complex extraction benefits from the Stellar tree’s
ability to generate customized local topological data structures.
For example, since extracting the 2-manifolds from a tetrahedral
complex requires only the R2,2 adjacency relation, its extraction
was optimized by directly starting from R2,2, rather than the R3,3

adjacency relation, as in the IA data structure.
This approach was extended to terrain datasets

in [Fellegara et al., 2014], which also introduced a persistence-
based simplification algorithm for noise removal. Figure 19
highlights the 73K triangles in the largest 2-manifold of the
Morse complex for the MAUI terrain dataset (in red) and the
blocks of the Stellar tree that were visited when extracting
this region (blue-green squares). While manifold extrac-
tion and persistence-based simplification operations were
slightly more expensive than their IA counterparts for volu-
metric [Weiss et al., 2013] and terrain [Fellegara et al., 2014]
datasets, the Stellar tree’s vast memory savings and hierarchical
encoding open the door to efficient parallel implementations on
huge datasets, which we hope to explore in future work.

11 Concluding remarks

We have introduced the Stellar decomposition as a model for
topological data structures over Canonical-Polytope (CP) com-
plexes, a class of complexes that includes simplicial complexes
and certain classes of cell complexes, like quadrilateral and hex-
ahedral meshes. Stellar decompositions cluster the vertices of a
complex into regions that contain sufficient information to locally
reconstruct the star of their vertices. The model is agnostic about
the domain of the complex (e.g., manifold, pure, non-manifold)
and we have demonstrated the scalability of this model to large
mixed-dimensional datasets in high dimension.

We introduced the Stellar tree as a concrete realization of the
Stellar decomposition model over spatially embedded CP com-
plexes. Stellar trees couple a spatial index H decomposing the
complex’s embedding space with a simple tuning parameter that
limits the number of vertices indexed by a leaf block.

Stellar trees effectively exploit the spatial coherence of a CP
complex Σ by using the clustering structure of H to reorder the
arrays of top cells of Σ and to compress the resulting ranges of se-
quential indexes within the lists of vertices and top cells in the leaf

21

blocks of H. We have demonstrated over a wide range of datasets
that this process typically produces COMPRESSED Stellar trees
that are only 1-10% larger than the original indexed base mesh
for Σ while still retaining sufficient information to efficiently re-
construct all topological connectivity relations. The source code
for our Stellar tree implementation will be released in the public
domain.

In terms of storage size, Stellar trees compare quite favor-
ably with state-of-the-art topological data structures. They
are consistently half the size of their IA∗ data structure
counterparts [Canino et al., 2011] and one to two orders
of magnitude smaller than their Simplex tree counter-
parts [Boissonnat and Maria, 2014]. This is especially notable for
high dimensional Vietoris-Rips complexes, a target application
for the Simplex tree, for which Stellar trees have very low over-
head. While Stellar trees support a much broader class of com-
plexes, they have similar storage requirements as the dimension-
specific SOT data structure [Gurung and Rossignac, 2009,
Gurung and Rossignac, 2010], which supports only static
pseudo-manifold triangle and tetrahedral complexes. In fu-
ture work, it would be interesting to compare the Stellar tree
against top-based extensions of the Simplex tree, such as the
MST and the SAL [Boissonnat et al., 2017], if public-domain
implementations become available.

Despite the simplicity of their leaf block representation, Stellar
trees provide a great deal of flexibility to customize the structure
and layout of their expanded topological data structures to meet
the needs of a given application. Such data structures are typically
constructed by composing several local topological incidence and
adjacency relations. We described efficient algorithms for recon-
structing these relations within the subcomplex indexed by the
leaf blocks of a Stellar tree and demonstrated the advantages of
this approach compared to similar algorithms on the IA∗ and Sim-
plex tree data structures. Stellar trees can also be used as an in-
termediary representation to generate topological data structures
in a memory-constrained environment. For example, we used
Stellar trees to generate IA∗ and Simplex tree representations for
several of our larger complexes in Section 8 (as we discuss in the
Appendix C). We also provided an overview of several mesh pro-
cessing applications, ranging from mesh validation, to topology
and shape preserving simplification and morphological analysis
that have benefited from the Stellar trees representation.

One direction of future work would involve extending the Stel-
lar tree representation to support a broader class of cell com-
plexes. For example, it would not be difficult to extend support
to indexed polyhedral cell complexes which define their cells in
terms of their boundary polyhedral faces which are, in turn, de-
fined by oriented lists of vertex indices [Muigg et al., 2011].

Another avenue for investigation is to extend our process-
ing algorithms for parallel, distributed and/or out-of-core envi-
ronments, which could be used for applications like multicore
homology computation [Lewis and Zomorodian, 2014] on point
cloud data. The Stellar tree’s compact leaf block representation
is already geared towards a parallel execution pattern since each
block already has sufficient resources to query the connectivity
of its local subcomplex. Preliminary results along this line look
promising. A simple unoptimized OpenMP [OpenMP, 2015]
adaptation of boundary and restricted vertex co-boundary queries

yielded a 3-4x speedup compared to our serial approach on our 6
core machine.

Finally, while Stellar trees require their underlying complex to
be spatially embedded, there is no such restriction on the Stel-
lar decomposition model. Thus, we plan to investigate Stellar
decompositions for abstract CP complexes, such as simplicial
complexes representing social networks. Social network repre-
sentation and processing poses new challenges in the social big
data domain, such as the identification of key-players and com-
munities in the dataset, as well as extracting topological proper-
ties of the network, like its homology or k-connectivity. Due to
the irregularities of non-spatial datasets, one key challenge would
be to define efficient decompositions (i.e., with a low average
spanning number χ) using only the complex’s connectivity infor-
mation. A preliminary attempt for geolocalized social networks
can be found in [Fellegara et al., 2016a], where the social net-
work was represented in terms of its maximal cliques, i.e., sets
of mutually related entities, corresponding to top simplices over
the network’s flag complex. The Stellar tree was built over the
2D embedding provided by the geospatial locations of the enti-
ties and simplified using homology-preserving edge-contractions
[Fellegara et al., 2020b], enabling a study of the network’s topo-
logical structure on a significantly reduced dataset.

Acknowledgments
This work has been developed while Riccardo Fellegara was
with University of Maryland at College Park, USA. This work
has been partially supported by the US National Science Foun-
dation under grant number IIS-1910766 and by the University
of Maryland under the 2017-2018 BSOS Dean Research Initia-
tive Program. It has also been performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344, and
of the German Aerospace Center (DLR) under Grant DLR-
SC-2467209. Datasets are courtesy of the Volvis repository
(BONSAI, F16 and FOOT) [Avila et al., 2015], the Volume Library
(VISMALE) [Roettger, 2015], CMU Unstructured Mesh Suite
(SAN FERNANDO) [CMUMeshSuite, 1996], Aim@Shape repos-
itory (LUCY, STATUETTE and NEPTUNE) [AIM@shape, 2015],
Virtual Terrain Project (V TP) (MAUI) [VTerrain, 2015], and
Claudio Silva (FIGHTER2).

References
[AIM@shape, 2015] AIM@shape (2015). Aim @ shape

repository. http://visionair.ge.imati.cnr.it/
ontologies/shapes [Accessed on August 2020].

[Anderson et al., 2021] Anderson, R., Andrej, J., Barker, A.,
Bramwell, J., Camier, J.-S., Cerveny, J., Dobrev, V., Dudouit,
Y., Fisher, A., Kolev, T., et al. (2021). MFEM: A modular fi-
nite element methods library. Computers & Mathematics with
Applications, 81(1):42–74.

[Attali et al., 2012] Attali, D., Lieutier, A., and Salinas, D.
(2012). Efficient data structure for representing and sim-
plifying simplicial complexes in high dimensions. Interna-

22

tional Journal of Computational Geometry & Applications,
22(04):279–303.

[Avila et al., 2015] Avila, R., He, T., Hong, L., Kaufman, A.,
Pfister, H., Silva, C., Sobierajski, L., and Wang, S. (2015).
Volvis library. http://www.volvis.org [Accessed on
June 2015].

[Bellman, 1966] Bellman, R. (1966). Dynamic programming.
Science, 153(3731):34–37.

[Bentley, 1975] Bentley, J. (1975). Multidimensional binary
search trees used for associative searching. Communications
of the ACM, 18(9):509–517.

[Bittner and Wonka, 2003] Bittner, J. and Wonka, P. (2003). Vis-
ibility in computer graphics. Environment and Planning B:
Planning and Design, 30(5):729–755.

[Boissonnat et al., 2017] Boissonnat, J.-D., Karthik, C. S., and
Tavenas, S. (2017). Building efficient and compact data struc-
tures for simplicial complexes. Algorithmica, 79(2):530–567.

[Boissonnat and Maria, 2014] Boissonnat, J.-D. and Maria, C.
(2014). The Simplex tree: An efficient data structure for gen-
eral simplicial complexes. Algorithmica, 70(3):406–427.

[Canino and De Floriani, 2014] Canino, D. and De Floriani, L.
(2014). Representing simplicial complexes with Mangroves.
In Proceedings of the 22nd International Meshing Roundtable,
pages 465–483. Springer.

[Canino et al., 2011] Canino, D., De Floriani, L., and Weiss, K.
(2011). IA∗: An adjacency-based representation for non-
manifold simplicial shapes in arbitrary dimensions. Comput-
ers & Graphics, 35(3):747–753.

[Carlbom et al., 1985] Carlbom, I., Chakravarty, I., and Vander-
schel, D. (1985). A hierarchical data structure for represent-
ing the spatial decomposition of 3d objects. IEEE Computer
Graphics and Applications, 5(4):24–31.

[Celes et al., 2005] Celes, W., Paulino, G. H., and Espinha, R.
(2005). Efficient handling of implicit entities in reduced mesh
representations. Journal of Computing and Information Sci-
ence in Engineering, 5(4):348–359.

[CGAL, 2020] CGAL (2020). Computational Geometry Algo-
rithms Library (CGAL). https://www.cgal.org/ [Ac-
cessed on August 2020].

[Cignoni et al., 2004a] Cignoni, P., De Floriani, L., Magillo, P.,
Puppo, E., and Scopigno, R. (2004a). Selective refinement
queries for volume visualization of unstructured tetrahedral
meshes. IEEE Transactions on Visualization and Computer
Graphics, 10(1):29–45.

[Cignoni et al., 2003a] Cignoni, P., Ganovelli, F., Gobbetti, E.,
Marton, F., Ponchio, F., and Scopigno, R. (2003a). BDAM
– Batched Dynamic Adaptive Meshes for high performance
terrain visualization. Computer Graphics Forum, 22(3):505–
514.

[Cignoni et al., 2004b] Cignoni, P., Ganovelli, F., Gobbetti, E.,
Marton, F., Ponchio, F., and Scopigno, R. (2004b). Adap-
tive tetrapuzzles: Efficient out-of-core construction and visu-
alization of gigantic multiresolution polygonal models. ACM
Transactions on Graphics, 23(3):796–803.

[Cignoni et al., 2003b] Cignoni, P., Montani, C., Rocchini, C.,
and Scopigno, R. (2003b). External memory management and
simplification of huge meshes. IEEE Transactions on Visual-
ization and Computer Graphics, 9(4):525–537.

[CMUMeshSuite, 1996] CMUMeshSuite (1996). CMU Un-
structured Mesh Suite. http://www.cs.cmu.edu/

˜quake/meshsuite.html [Accessed on August 2020].

[Damiand and Lienhardt, 2014] Damiand, G. and Lienhardt, P.
(2014). Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. CRC Press.

[De Floriani et al., 2008] De Floriani, L., Facinoli, M., Magillo,
P., and Dimitri, D. (2008). A hierarchical spatial index for tri-
angulated surfaces. In Proceedings of the Third International
Conference on Computer Graphics Theory and Applications
(GRAPP 2008), pages 86–91.

[De Floriani et al., 2010] De Floriani, L., Fellegara, R., and
Magillo, P. (2010). Spatial indexing on tetrahedral meshes.
In Proceedings of the 18th SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems, pages
506–509. ACM.

[De Floriani et al., 2004] De Floriani, L., Greenfieldboyce, D.,
and Hui, A. (2004). A data structure for non-manifold sim-
plicial d-complexes. In Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing,
pages 83–92. ACM.

[De Floriani and Hui, 2005] De Floriani, L. and Hui, A. (2005).
Data structures for simplicial complexes: An analysis and a
comparison. In Proceedings of the third Eurographics sym-
posium on Geometry processing, pages 119–es. Eurographics
Association.

[De Floriani et al., 2010] De Floriani, L., Hui, A., Panozzo, D.,
and Canino, D. (2010). A dimension-independent data struc-
ture for simplicial complexes. Proceedings of the 19th Inter-
national Meshing Roundtable, pages 403–420.

[De Floriani and Magillo, 2003] De Floriani, L. and Magillo, P.
(2003). Algorithms for visibility computation on terrains: A
survey. Environment and Planning B, 30(5):709–728.

[Devine et al., 2009] Devine, K., Diachin, L., Kraftcheck, J.,
Jansen, K. E., Leung, V., Luo, X., Miller, M., Ollivier-Gooch,
C., Ovcharenko, A., Sahni, O., Shephard, M. S., Tautges, T.,
Xie, T., and Zhou, M. (2009). Interoperable mesh components
for large-scale, distributed-memory simulations. In Journal of
Physics: Conference Series, volume 180. IOP Publishing.

[Dey et al., 1999] Dey, T., Edelsbrunner, H., Guha, S., and
Nekhayev, D. (1999). Topology preserving edge contrac-
tion. Publications de l’Institut Mathematique (Beograd),
60(80):23–45.

23

[Dey et al., 2010] Dey, T., Levine, J., and Slatton, A. (2010). Lo-
calized delaunay refinement for sampling and meshing. Com-
puter Graphics Forum, 29(5):1723–1732.

[Dyedov et al., 2015] Dyedov, V., Ray, N., Einstein, D., Jiao, X.,
and Tautges, T. J. (2015). AHF: Array-based half-facet data
structure for mixed-dimensional and non-manifold meshes.
Engineering with Computers, 31(3):389–404.

[Edelsbrunner, 1987] Edelsbrunner, H. (1987). Algorithms in
combinatorial geometry, volume 10. Springer Verlag.

[Edwards et al., 2010] Edwards, H. C., Williams, A. B.,
Sjaardema, G. D., Baur, D. G., and Cochran, W. K. (2010).
SIERRA toolkit computational mesh conceptual model. Tech-
nical Report SAND2010-1192, Sandia National Laboratories.

[Fellegara, 2021] Fellegara, R. (2021). Stellar tree code repos-
itory. https://github.com/UMDGeoVis/Stellar_
tree.

[Fellegara et al., 2020a] Fellegara, R., De Floriani, L., Magillo,
P., and Weiss, K. (2020a). Tetrahedral trees: A family of hier-
archical spatial indexes for tetrahedral meshes. ACM Transac-
tions on Spatial Algorithms and Systems, 6(4):23:1–23:34.

[Fellegara et al., 2016a] Fellegara, R., Fugacci, U., Iuricich, F.,
and De Floriani, L. (2016a). Analysis of geolocalized social
networks based on simplicial complexes. In Proceedings of
the 9th ACM SIGSPATIAL Workshop on Location-based So-
cial Networks, LBSN16, pages 5:1–5:8, New York, NY, USA.
ACM.

[Fellegara et al., 2020b] Fellegara, R., Iuricich, F., De Floriani,
L., and Fugacci, U. (2020b). Efficient homology-preserving
simplification of high-dimensional simplicial shapes. In Com-
puter Graphics Forum, volume 39, pages 244–259. Wiley On-
line Library.

[Fellegara et al., 2014] Fellegara, R., Iuricich, F., De Floriani, L.,
and Weiss, K. (2014). Efficient computation and simplifica-
tion of discrete Morse decompositions on triangulated terrains.
In Proceedings of the 22th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems.
ACM.

[Fellegara et al., 2017] Fellegara, R., Iuricich, F., and Floriani,
D. (2017). Efficient representation and analysis of triangulated
terrains. In Proceedings of the 25th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information
Systems. ACM.

[Fellegara et al., 2016b] Fellegara, R., Weiss, K., and De Flori-
ani, L. (2016b). An efficient approach for verifying manifold
properties of simplicial complexes. In Canann, S., editor, Pro-
ceedings of the 25th International Meshing Roundtable, IMR
’16, Washington, D.C.

[Forman, 1998] Forman, R. (1998). Morse theory for cell com-
plexes. Advances in Mathematics, 134:90–145.

[Fredkin, 1960] Fredkin, E. (1960). Trie memory. Communica-
tions of the ACM, 3(9):490–499.

[Garland and Heckbert, 1997] Garland, M. and Heckbert, P.
(1997). Surface simplification using quadric error metrics.
In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pages 209–216. ACM
Press/Addison-Wesley Publishing Co.

[GUDHI, 2018] GUDHI (2018). Geometric understanding in
higher dimensions (GUDHI). http://gudhi.gforge.
inria.fr/.

[Gurung et al., 2011] Gurung, T., Laney, D., Lindstrom, P., and
Rossignac, J. (2011). SQuad: Compact representation for
triangle meshes. In Computer Graphics Forum, volume 30,
pages 355–364. Wiley Online Library.

[Gurung and Rossignac, 2009] Gurung, T. and Rossignac, J.
(2009). SOT: A compact representation for tetrahedral
meshes. In Proceedings SIAM/ACM Geometric and Physical
Modeling, SPM ’09, pages 79–88, San Francisco, USA.

[Gurung and Rossignac, 2010] Gurung, T. and Rossignac, J.
(2010). SOT: Compact representation for triangle and tetrahe-
dral meshes. Technical Report GT-IC-10-01, College of Com-
puting, Georgia Institute of Technology, Atlanta, GA, USA.

[Held and Marshall, 1991] Held, G. and Marshall, T. (1991).
Data compression; techniques and applications: Hardware
and software considerations. John Wiley & Sons.

[Hirani, 2003] Hirani, A. N. (2003). Discrete exterior calculus.
PhD thesis, California Institute of Technology.

[Hunter and Willis, 1991] Hunter, A. and Willis, P. (1991). Clas-
sification of quad-encoding techniques. In Computer Graphics
Forum, volume 10, pages 97–112.

[Ibanez et al., 2016] Ibanez, D. A., Seol, E. S., Smith, C. W., and
Shephard, M. S. (2016). PUMI: Parallel Unstructured Mesh
Infrastructure. ACM Transactions on Mathematical Software
(TOMS), 42(3):17:1–17:28.

[Isenburg and Lindstrom, 2005] Isenburg, M. and Lindstrom, P.
(2005). Streaming meshes. In Proceedings IEEE Visualiza-
tion, pages 231–238. IEEE.

[Kirk et al., 2006] Kirk, B. S., Peterson, J. W., Stogner, R. H.,
and Carey, G. F. (2006). libMesh: A C++ library for parallel
adaptive mesh refinement/coarsening simulations. Engineer-
ing with Computers, 22(3–4):237–254.

[Kremer et al., 2013] Kremer, M., Bommes, D., and Kobbelt,
L. (2013). OpenVolumeMesh–a versatile index-based data
structure for 3d polytopal complexes. In Jiao, X. and Weill,
J.-C., editors, Proceedings of the 21st International Meshing
Roundtable, IMR, pages 531–548. Springer.

[Lawlor et al., 2006] Lawlor, O. S., Chakravorty, S., Wilmarth,
T. L., Choudhury, N., Dooley, I., Zheng, G., and Kalé, L. V.
(2006). ParFUM: A parallel framework for unstructured
meshes for scalable dynamic physics applications. Engineer-
ing with Computers, 22(3-4):215–235.

24

[Lawson, 1977] Lawson, C. L. (1977). Software for C1 surface
interpolation. In Rice, J., editor, Mathematical Software III,
pages 161–194. Academic Press.

[Lewis and Zomorodian, 2014] Lewis, R. H. and Zomorodian,
A. (2014). Multicore homology via Mayer Vietoris. arXiv
preprint arXiv:1407.2275.

[Lienhardt, 1994] Lienhardt, P. (1994). N-dimensional gen-
eralized combinatorial maps and cellular quasi-manifolds.
Int’l Journal of Computational Geometry and Applications,
4(3):275–324.

[Luffel et al., 2014] Luffel, M., Gurung, T., Lindstrom, P., and
Rossignac, J. (2014). Grouper: A compact, streamable triangle
mesh data structure. IEEE Transactions on Visualization and
Computer Graphics, 20(1):84–98.

[Mantyla, 1988] Mantyla, M. (1988). An Introduction to Solid
Modeling. Computer Science Press.

[Mesmoudi et al., 2008] Mesmoudi, M., De Floriani, L., and
Port, U. (2008). Discrete distortion in triangulated 3-
manifolds. Computer Graphics Forum, 27(5):1333–1340.

[Muigg et al., 2011] Muigg, P., Hadwiger, M., Doleisch, H., and
Groller, E. (2011). Interactive volume visualization of gen-
eral polyhedral grids. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2115–2124.

[Mullen et al., 2011] Mullen, P., Memari, P., de Goes, F., and
Desbrun, M. (2011). HOT: Hodge-optimized triangulations.
In ACM Transactions on Graphics (TOG), volume 30, pages
103:1–103:12. ACM.

[Natarajan and Edelsbrunner, 2004] Natarajan, V. and Edels-
brunner, H. (2004). Simplification of three-dimensional den-
sity maps. Visualization and Computer Graphics, IEEE Trans-
actions on, 10(5):587–597.

[Navazo, 1989] Navazo, I. (1989). Extended octree representa-
tion of general solids with plane faces: Model structure and
algorithms. Computer & Graphics, 13(1):5–16.

[Nguyen et al., 2017] Nguyen, T. T., Dahl, V. A., and Bærentzen,
J. A. (2017). Cache-mesh, a dynamics data structure for per-
formance optimization. Procedia Engineering, 203:193–205.

[Nielson, 1997] Nielson, G. M. (1997). Tools for triangulations
and tetrahedralizations and constructing functions defined over
them. In Nielson, G. M., Hagen, H., and Müller, H., editors,
Scientific Visualization: Overviews, Methodologies and Tech-
niques, chapter 20, pages 429–525. IEEE Computer Society,
Silver Spring, MD.

[Ollivier-Gooch et al., 2010] Ollivier-Gooch, C., Diachin, L.,
Shephard, M. S., Tautges, T., Kraftcheck, J., Leung, V., Luo,
X., and Miller, M. (2010). An interoperable, data-structure-
neutral component for mesh query and manipulation. ACM
Transactions on Mathematical Software (TOMS), 37(3):29:1–
29:28.

[OML, 2015] OML (2015). Openmesh library. http://www.
openmesh.org [Accessed on March 2015].

[OpenMP, 2015] OpenMP (2015). OpenMP API for parallel pro-
gramming, version 4.5. http://openmp.org/wp/.

[Paoluzzi et al., 1993] Paoluzzi, A., Bernardini, F., Cattani, C.,
and Ferrucci, V. (1993). Dimension-independent modeling
with simplicial complexes. ACM Transactions on Graphics
(TOG), 12(1):56–102.

[Poirier et al., 1998] Poirier, D., Allmaras, S., McCarthy, D.,
Smith, M., and Enomoto, F. (1998). The CGNS system. AIAA
Fluid Dynamics Conference.

[Poirier et al., 2000] Poirier, D., Bush, R., Cosner, R., Rumsey,
C., and McCarthy, D. (2000). Advances in the CGNS database
standard for aerodynamics and CFD. In 38th Aerospace Sci-
ences Meeting and Exhibit, page 681.

[Remacle and Shephard, 2003] Remacle, J. F. and Shephard,
M. S. (2003). An algorithm oriented mesh database. In-
ternational Journal for Numerical Methods in Engineering,
58(2):349–374.

[Robins et al., 2011] Robins, V., Wood, P., and Sheppard, A.
(2011). Theory and algorithms for constructing discrete Morse
complexes from grayscale digital images. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33(8):1646–
1658.

[Roerdink and Meijster, 2000] Roerdink, J. and Meijster, A.
(2000). The watershed transform: Definitions, algorithms, and
parallelization strategies. Fundamental Informaticae, 41:187–
228.

[Roettger, 2015] Roettger, S. (2015). The Volume Li-
brary. http://www9.informatik.uni-erlangen.
de/External/vollib [Accessed on June 2015].

[Rossignac et al., 2001] Rossignac, J., Safonova, A., and Szym-
czak, A. (2001). 3D compression made simple: Edge-Breaker
on a Corner Table. In Proceedings Shape Modeling Interna-
tional 2001, Genova, Italy. IEEE Computer Society.

[Samet, 2006] Samet, H. (2006). Foundations of Multidimen-
sional and Metric Data Structures. Morgan Kaufmann.

[Samet and Webber, 1985] Samet, H. and Webber, R. (1985).
Storing a collection of polygons using quadtrees. ACM Trans-
actions on Graphics (TOG), 4(3):182–222.

[Schoof and Yarberry, 1994] Schoof, L. A. and Yarberry, V. R.
(1994). EXODUS II: A finite element data model. Technical
Report SAND92-2137, Sandia National Laboratories, Albu-
querque, NM.

[Sieger and Botsch, 2011] Sieger, D. and Botsch, M. (2011). De-
sign, implementation, and evaluation of the surface mesh data
structure. In Quadros, W. R., editor, Proceedings of the 20th
International Meshing Roundtable, pages 533–550. Springer.

25

[Tarjan, 1975] Tarjan, R. E. (1975). Efficiency of a good but not
linear set union algorithm. Journal of the ACM, 22(2):215–
225.

[Tautges, 2010] Tautges, T. J. (2010). Canonical numbering sys-
tems for finite-element codes. International Journal for Nu-
merical Methods in Biomedical Engineering, 26(12):1559–
1572.

[VTerrain, 2015] VTerrain (2015). Virtual terrain project.
http://vterrain.org/BT [Accessed on August 2020].

[Weiss and De Floriani, 2011] Weiss, K. and De Floriani, L.
(2011). Simplex and diamond hierarchies: Models and ap-
plications. Computer Graphics Forum, 30(8):2127–2155.

[Weiss et al., 2011] Weiss, K., Fellegara, R., De Floriani, L.,
and Velloso, M. (2011). The PR-star octree: A spatio-
topological data structure for tetrahedral meshes. In Proceed-
ings of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pages 92–
101. ACM.

[Weiss et al., 2013] Weiss, K., Iuricich, F., Fellegara, R., and
De Floriani, L. (2013). A primal/dual representation for dis-
crete Morse complexes on tetrahedral meshes. In Computer
Graphics Forum, volume 32, pages 361–370.

[Yoon and Lindstrom, 2007] Yoon, S. and Lindstrom, P. (2007).
Random-accessible compressed triangle meshes. IEEE Trans-
actions on Visualization and Computer Graphics, 13(6):1536–
1543.

[Yoon et al., 2005] Yoon, S., Lindstrom, P., Pascucci, V., and
Manocha, D. (2005). Cache-oblivious mesh layouts. In ACM
Transactions on Graphics (TOG), volume 24 of Siggraph,
pages 886–893. ACM.

[Zomorodian, 2010] Zomorodian, A. (2010). Fast construc-
tion of the Vietoris-Rips complex. Computers & Graphics,
34(3):263–271.

[Zorin, 2000] Zorin, D. (2000). Subdivision zoo. Subdivision for
Modeling and Animation (ACM SIGGRAPH 2000 Conference
Course Notes), pages 65–102.

Appendix

A Generating a Stellar decomposition
In this section, we describe how to generate a COMPRESSED Stel-
lar decomposition from an indexed CP complex Σ and a given
partition ∆ on the vertices of Σ. This process consists of three
main phases:

1. reindex the vertices of Σ following a traversal of the regions
of ∆ and SRE-compress the rV arrays;

2. insert the top CP cells of Σ into ∆;

3. reindex the top CP cells of Σ based on locality within com-
mon regions of ∆ and SRE-compress the regions rT arrays.

Algorithm 4 COMPRESS AND REINDEX VERTICES(∆,Σ)

Input: ∆ is the decomposition defined on the vertices of Σ
Input: Σ is the CP complex
Variable: v perm is an array containing new vertex indices
Variable: current references the current vertex id
Variable: vs and ve are the range of vertex indices in region r

1: current← 0
// Step 1: Generate and apply new vertex index ranges

2: for all regions r in ∆ do
3: vs← current // vs is the first vertex index in r
4: for all vertices v in ΦV ERT (r) (with index iv in ΣV) do
5: v perm[iv]← current
6: current← current +1
7: ve ← current // ve is the first vertex index outside r

// Step 2: Update Rk,0 relation for all top CP k-cells in Σ
8: for all top CP cells σ in ΣT do
9: for j← 0 to |Rk,0(σ)| do

// the j-th entry of Rk,0(σ) has value iv
// v perm[iv] contains the new index of vertex v

10: Rk,0(σ)[j]← v perm[iv]
// Step 3: Update the vertex array in ΣV
// (see Algorithm 9 in B)

11: PERMUTE ARRAY(ΣV ,v perm)

As it can be noted, the generation process ignores how the par-
titioning on the vertices is obtained, since this step is defined by
the data structure instantiating a Stellar decomposition. The rein-
dexing of the vertices follows a traversal of the regions of ∆ in
such a way that all vertices mapped to a region have a contiguous
range of indices in the reindexed global vertex array ΣV (as de-
tailed in A.1). Figure 20 illustrates a reindexing of the vertices of
a triangle mesh in the plane into a decomposition defind by four
rectangular regions (dashed lines).

We then insert each top CP k-cell σ, with index iσ in ΣTk
,

into all the regions of ∆ that index its vertices. This is done by
iterating through the vertices of σ and inserting iσ into the rT
array of each region r whose vertex map ΦV ERT (r) contains at
least one of these vertices. As such, each top CP k-cell σ appears
in at least one and at most |Rk,0(σ)| regions of ∆. Due to the
vertex reindexing of step 1, this operation is extremely efficient.
Determining if a vertex of a given cell lies in a block requires
only a range comparison on its index iv .

Finally, we reindex the top CP cell arrays ΣT to better exploit
the locality induced by the vertex-based partitioning and com-
press the local rT arrays using a sequential range encoding over
this new index. The reindexing and the compression of the top
CP cells is obtained following a traversal of the regions of ∆ in
such a way that all top CP cells mapped from the same set of re-
gions have a contiguous range of indices in the reindexed arrays
ΣT . This last step is detailed in A.2 and in B. As we demonstrate
in the paper, this compression yields significant storage savings
in a wide range of mesh datasets.

A.1 Reindexing and compressing the vertices

After generating the partition ∆ and the vertex map ΦV ERT for
the Stellar decomposition, we reindex the vertex array ΣV to bet-
ter exploit the coherence induced by ∆. At the end of this pro-
cess, each region of ∆ has a consecutive range of indices within
the global vertex array ΣV , and thus it trivially compresses under

26

1

8

13

2

5

11

7

6

4

10

12

3

9

(a) Base mesh Σ:= (ΣV , ΣT)
c d

ba

1

8

13

2

5

11

7

6

4

10

12

3 9

(b) Vertices inserted into ∆

c d

ba

12

1

2

3

4

5

6

8

13

7

11

9 10

(c) Vertices reindexed

Figure 20: Generating a partition ∆ over the vertices of a triangle mesh (a). After inserting the vertices (b), we reindex ΣV according
to the regions of ∆ (c).

Algorithm 5 COMPRESS AND REINDEX CELLS(∆,Σ)

Input: ∆ is the decomposition defined on the vertices of Σ
Input: Σ is the CP complex
Variable: M is an associative array mapping an integer identifier

to each unique tuple of regions from ∆
Variable: I is an array associated with the unique tuples of re-

gions in M
Variable: t position is an array associated with the top CP cells

// Step 1: find unique tuples of regions and their counts
// (see Algorithm 6 in B)

1: EXTRACT TUPLES(∆,Σ,M,I,t position)
// Step 2: find new position indices for top CP cells
// (see Algorithm 7 in B)

2: EXTRACT CELL INDICES(I,t position)
// Step 3: reorder and SRE compress the top CP cells arrays
// (see Algorithm 8 in B)

3: COMPRESS CELLS(∆,t position)
// Step 4: update the top CP cells array in Σ
// (see Algorithm 9 in B)

4: PERMUTE ARRAY(ΣT ,t position)

SRE to two values per block. We denote the starting and ending
vertex indices as vs and ve, respectively.

This reindexing procedure is organized into three major steps,
as outlined in Algorithm 4. The first step performs a traversal of
the regions, which generates new indices for the vertices in Σ.
For a region r, it generates a contiguous range of indices for the
vertices in r. For example, in Figure 20, after executing step 1 on
region b, we have vs = 4 and ve = 7.

The new indexes are then incorporated into mesh Σ by updat-
ing the vertex indices in Rk,0 relations for all top k-cells in ΣTk

(see step 2 of Algorithm 4) and then permuting the vertices (de-
tailed in step 3 of Algorithm 9 in B). These updates take place in
memory without requiring any extra storage.

A.2 Reindexing and compressing the top CP cells
After inserting the top CP cells of ΣT into ∆, we reorder the top
CP cells array ΣT based on the partitioning and apply SRE com-
paction to the region arrays to generate our COMPRESSED encod-
ing. This reindexing exploits the coherence of top CP cells that
are indexed by the same set of regions, translating the proximity
in ∆ into index proximity in ΣT . This procedure is organized into
four main phases, as shown in Algorithm 5. A detailed descrip-

1
 4

7

8

17

12
 3

2

6

13

16

11

9

14

5

10

15

c d

ba

(a) Original triangles

5
 11

15

8

10

4
 1

2

12

17

16

14

13

9 3

6

7

c d

ba

(b) Reindexed triangles

Figure 21: Top cell indices before (a) and after (b) tuple-based
reindexing.

tion can be found in B.

The EXTRACT TUPLES procedure (see Algorithm 6 in B),
traverses the regions of ∆ to find the tuple of regions tb =
(r1, . . . , rn) in ∆ that index a top CP cell σ. Inverting this re-
lation provides the list of top cells from Σ mapped to each such
tuple of regions. As we iterate through regions, we ensure that
each top CP cell in the complex is processed by only one region
r, by skipping the top CP cells whose minimum vertex index iv
is not in ΦV ERT (r). For example in Figure 21(a), triangle 5 is
indexed by region a and b, and, thus, its tuple is tb = (a, b). The
complete list of triangles in tuple (a, b) is {2, 5, 12}.

We use this inverted relation in EXTRACT CELL INDICES (see
Algorithm 7 in B), to generate a new coherent order for the top CP
cells of ΣT . Specifically, the prefix sum of the tuple cell counts
provides the starting index for cells in that group. For example,
when considered in lexicographic order, the first three region tu-
ples, (a), (a, b) and (a, b, d) in Figure 21(b), with 1, 3 and 1 trian-
gles, respectively, get starting indices 1, 2 and 5. We then assign
increasing indices to the top CP cells of each group. Thus, e.g.,
the three triangles belonging to tuple (a, b) get indices {2, 3, 4}
after this reindexing.

Finally, in COMPRESS CELLS and PERMUTE ARRAY (Algo-
rithm 8 and 9 in B), we reorder and SRE-compact the rT region
arrays and the global top CP cells array ΣT .

27

Algorithm 6 EXTRACT TUPLES(∆,Σ,M, I, t position)

Input: ∆ is the decomposition defined on the vertices of Σ
Input: Σ is the CP complex
Input: M is a map associating a unique identifier to each tuple
Input: I is an array that tracks top CP cells in each tuple
Input: t position is an array linking top CP cells to tuples

1: for all regions r in ∆ do
2: for all σ in ΦTOP (r) (with index iσ in ΣT) do

// extract the minimum vertex index of σ
3: iv ← GET MIN VERTEX INDEX(σ)

// we visit σ if r indexes iv
4: if iv in ΦV ERT (r) then

// extract the tuple tr of regions indexing σ
5: tr ← EXTRACT TUPLE(∆,σ)

// get the tuple key in M (if not present insert it)
6: key←M[tr]

// increment the counter of this tuple in I
7: I[key]← I[key]+1

// associate the tuple key to the iσ entry in t position
8: t position[iσ]← key

Algorithm 7 EXTRACT CELL INDICES(I, t position)

Input: I is an array associated with the unique leaf tuples in M
Input: t position contains tuple index for top cell
Ensure: t position contains new top simplex position indexes
Variable: c is the counter variable of the current position index

// convert the cell counts in I into the starting indexes for top
CP cells grouped by the same tuple

1: for all key in I do
2: tmp← I[key] // I[key] contains cells count for tuple key
3: I[key]← c
4: c← c + tmp

// assign to each top CP cell its new position index in ΣT
5: for all σ in ΣT (with index iσ in ΣT) do
6: key← t position[iσ]
7: t position[iσ] = I[key] // set new position index for σ
8: I[key]← I[key]+1

B Algorithm details: reindexing and
compressing the top CP cells

This appendix provides details for reindexing the top CP cells
during the Stellar tree generation algorithm (Algorithm 5) as out-
lined in A.2. The reindexing exploits the coherence of top CP
cells that are indexed by the same set of regions by translating the
proximity in ∆ into index proximity in ΣT and depends on three
auxiliary data structures:

• an associative array, M, which maps an (integer) identifier to
each unique tuple of regions;

• an array of integers, I, having the same number of entries as
M. Initially, it is used to track the number of top CP cells
associated with each tuple of regions. In a successive phase,
it tracks the next index for a top CP cell in a tuple;

• an array of integers, t position, of size |ΣT |. Initially, it
is used to associate top CP cells with their region tuple
identifier. In a successive phase, it is used to store the new
coherent indices for the top CP cells.

Algorithm 8 COMPRESS CELLS(∆, t position)

Input: ∆ is the decomposition defined on the vertices of Σ
Input: t position contains the new top CP cell position indices

1: for all regions r in ∆ do
2: rT aux← ΦTOP (r) // copy the top CP cells array of r
3: ΦTOP (r)← ∅ // reset that array

// update the indices in rT aux with those from t position
4: for id← 0 to |rT aux| do
5: rT aux[id]← t position[rT aux[id]]
6: SORT(rT aux)
7: start id← rT aux.FIRST()
8: counter← 0
9: for id← 1 to |rT aux| do

// if we find consecutive indexes
10: if rT aux[id]+1 = rT aux[id+1] then
11: counter← counter+1
12: else
13: if counter > 1 then // found a run of indices

// create a run in rT of r
14: CREATE SRE RUN(r,start id,counter)
15: else // simply add the top CP cell index in rT
16: r.ADD TOP(start id)

// reset the two auxiliary variable
17: start id← rT aux.NEXT()
18: counter← 0

Algorithm 9 PERMUTE ARRAY(array, permutation)

Input: array is the simplex array to update
Input: permutation is the array containing the new position in-

dices
1: for id← 0 to |array| do

// current vertex is in correct position or updated already
2: if permutation[id] = id then
3: permutation[id]← −1 // mark id as updated
4: else // id is not updated already

// iteratively update vertices positions
5: while permutation[id] ̸= id do

// swap id and permutation[id] entries in array
6: SWAP(array,id,permutation[id])

// mark id as updated in permutation
// then, get the id of the next vertex to update

7: id← MARK AND GET NEXT(id,permutation)
8: permutation[id]← -1 // mark id as updated

The remainder of this appendix summarizes the four major
steps of Algorithm 5. Figure 22 illustrates this reorganization
process over a triangle mesh.

EXTRACT TUPLES In Algorithm 6, we generate map M, count
the number of top CP cells associated with each tuple of regions
in array I and initialize the t position array entries with its tuple
identifier:

• for each region r in ∆, we visit the top CP cells σ in
ΦTOP (r) whose minimum vertex index iv (row 4) is indexed
in r. This ensures that each top CP cell is processed only
once. Regions of ∆ are uniquely indexed by the index of
their starting vertex vs;

• for each such top CP cell σ with index iσ , we traverse the
partitioning on the vertices to find the tuple of regions from
∆ that index σ (row 5 function EXTRACT TUPLE). We then
look up its unique identifier key in M (or create a new one

28

1
 4

7

8

17

12
 3

2

6

13

16

11

9

14

5

10

15

c d

ba

(a) Original triangles

t_position
1 --> 3
2 --> 2
3 --> 1
4 --> 7
5 --> 2
6 --> 7
7 --> 8
8 --> 5
9 --> 7
10 --> 4
11 --> 7
12 --> 2
13 --> 9
14 --> 6
15 --> 4
16 --> 9
17 --> 6

M
a
a b
a b d
a c
a c d
b
b d
c d
d

I
1 --> 1
2 --> 3
3 --> 1
4 --> 2
5 --> 1
6 --> 2
7 --> 4
8 --> 1
9 --> 2

--> 1
--> 2
--> 3
--> 4
--> 5
--> 6
--> 7
--> 8
--> 9

(b) After Step 1

t_position
1 --> 5
2 --> 2
3 --> 1
4 --> 11
5 --> 3
6 --> 12
7 --> 15
8 --> 8
9 --> 13
10 --> 6
11 --> 14
12 --> 4
13 --> 16
14 --> 9
15 --> 7
16 --> 17
17 --> 10

I
1 --> 2
2 --> 5
3 --> 6
4 --> 8
5 --> 9
6 --> 11
7 --> 15
8 --> 16
9 --> 18

(c) After Step 2

5
 11

15

8

10

4
 1

2

12

17

16

14

13

9 3

6

7

c d

ba

(d) Reindexed triangles

Figure 22: Top cell reindexing. (a) initial tree with four leaf blocks a, b, c, d (b,c) auxiliary data structures after Steps 1 and 2 (d)
reindexed tree.

and insert it into M) (row 6). We then increment the count
for this tuple, and associate σ with this tuple (rows 7 and 8).

At the end of the traversal of ∆, each entry of t position contains
the identifier of the tuple of regions indexing its corresponding
top cell and I contains the number of top CP cells indexed by
each tuple. M is no longer needed and we can discard it.

The content of auxiliary data structures, after this step, is il-
lustrated in Figure 22(b). For example, triangle 5 is indexed by
regions a and b, whose key in M is 2. This tuple contains two
triangles other than 5, as indicated by the corresponding counter
in I.

EXTRACT CELL INDICES In Algorithm 7, we use the I and
t position arrays to find the updated index for each top CP cell
in ΣT , which is computed in place in t position.

First, we convert the cell counts in array I into starting indexes
for the top CP cells grouped by the same set of regions, by taking
the prefix sum of array I (rows 1 to 4).

Then, we use array I to update t position array by iterating over
the top CP cells, and replacing the tuple identifier in t position
with the next available index from I and increment the counter in
I (rows 5 to 8). At this point, t position is a permutation array
that encodes a more coherent ordering for the top CP cells and I
is no longer needed.

The content of auxiliary data structures after this step, is shown
in Figure 22(c). At the end, each entry of I contains the first index
of the next tuple, while t position the new position for the i-th
triangle.

COMPRESS TREE CELLS In Algorithm 8, we apply this order
to the arrays rT of top CP cells of each region r and compact
the rT arrays using the SRE compression. This procedure itera-
tively visits all regions of a Stellar decomposition. Within each
region r, an auxiliary array, called rT aux, is used, encoding, ini-
tially, a copy of the array of top CP cells position indices encoded
by r (row 2). Then, these indices are updated with the coherent
ones from t permutation (rows 4 and 5), and, finally, by sorting
this array we have sequential indices in consecutive position of
rT aux (row 6).

Next, we identify consecutive index runs by iterating over
rT aux array (rows 7 to 18). In this phase, we use two auxil-

iary variables, a counter, encoding the size of the current run, and
a variable, called start id, encoding the starting index of the cur-
rent run. If we find two consecutive indices, we simply increment
counter. Otherwise, we check if we have a run (row 13), or if we
have to simply add the index in start id to rT array of r (row 16).
If we have to encode a run in rT (procedure CREATE SRE RUN,
row 17), we apply the strategy, described in Section 4.2.2, for
encoding it.

PERMUTE ARRAY Finally, in Algorithm 9, we update the
global top CP cells array ΣT . This is done by iteratively swap
the entries in ΣT (rows 5 to 8), applying the new coherent indices
encoded in permutation array. This procedure does in place
updates and, thus, does not require any additional auxiliary data
structure.

C Generating topological data structures
As a proxy for more complicated mesh processing workflows,
this section describes how Stellar trees can be used to generate an
existing topological data structure over CP complexes: the IA∗

data structure. The IA∗ data structure is the most compact data
structure in the class of connectivity-based representations since
it encodes only the vertices and the top cells of a CP complex
Σ, as well as a subset of topological relations connecting these
cells. As with other topological data structures, the IA∗ over Σ
is typically generated directly from the indexed representation of
Σ by extracting its adjacency and co-boundary relations. How-
ever, this direct approach could present issues when scaling to
large complexes on commodity hardware due to the high storage
requirements for auxiliary data structures needed to reconstruct
these relations.

This application demonstrates the versatility of the Stellar tree
representation and exercises many of the operations necessary for
other mesh processing tasks. We define customized topological
relations and auxiliary data structures as we stream through the
leaf blocks of the tree and take either a global approach, to re-
construct the full topological data structure, or a local approach,
which reconstructs coherent subsets of the full data structure re-
stricted to the portion of the complex indexed within each leaf
block. In the former case, Stellar trees enable generating the
global topological data structures using a fraction of the memory

29

Algorithm 10 EXTRACT Rd,d MANIFOLD(r,Σ)

Input: r is a leaf block in H
Input: Σ is the CP complex indexed by H
Variable: d 1 cell top encodes Rd−1,d for the (d−1)-cells in r

1: for all top CP d-cells σ in ΦTOP (r) do
2: for all (d−1)-cells τ in Rd,d−1(σ) do
3: add σ to d−1 cell top[τ]
4: for all (d−1)-cells τ in d 1 cell top do
5: if |d 1 cell top[τ]| = 2 then
6: {σ1, σ2} ← d 1 cell top[τ]
7: set σ1 as adjacent d-cell for σ2 in τ
8: set σ2 as adjacent d-cell for σ1 in τ
9: else // |d 1 cell top[τ]| = 1

10: mark cell τ of σ as a boundary cell

as would be required to directly generate them from an indexed
representation. In the latter case, the local approach can be used
to adapt local regions of the Stellar tree’s underlying complex to
algorithms defined for existing topological data structures.

In the following, we present a local generation algorithm over
a single leaf block of the Stellar tree, and compare the local and
global generation algorithms against a direct approach that gen-
erates the data structure from the original indexed mesh represen-
tation. We do this within the Stellar tree framework by setting
the bucketing threshold to infinity, since kV =∞ produces a tree
that indexes the entire complex Σ in its root block.

Recall from Section 8.2 of the paper that the IA∗ data struc-
ture is an adjacency-based topological data structure defined over
non-manifold d-dimensional CP complexes that gracefully de-
grades to the IA representation over manifold complexes. The IA
data structure is defined over pseudo-manifolds, and, thus, each
(d−1)-cell can be incident in at most two top CP d-cells. We first
describe how to generate the IA data structure from the Stellar
tree, and then extend this to the IA∗ data structure.

The IA data structure encodes the following topological rela-
tions: (i) boundary relation Rd,0(σ), (ii) partial co-boundary re-
lation R∗

0,d(v) for each vertex v, consisting of one arbitrarily se-
lected top CP d-cell in the star of v, and (iii) adjacency relation
Rd,d(σ), for each top CP d-cell σ. If σ1 is adjacent to σ2 through
(d−1)-cell τ , and τ is the i-th face of σ1, then σ2 will be in posi-
tion i in the ordered list of Rd,d(σ1).

Since the Stellar tree explicitly encodes the Rd,0 relations for
all top CP d-cells, the generation of a local IA data structure con-
sists of extracting R∗

0,d(v), for each v in ΦV ERT (r), and Rd,d(σ),
for each top CP d-cell σ in ΦTOP (r). For vertices in ΦV ERT (r),
the former is computed by iterating over the top CP d-cells in
ΦTOP (r), and selecting the first top CP cell incident in v that we
find.

Algorithm 10 provides a description of a local strategy for ex-
tracting Rd,d(σ) relations within block r of the tree. Note that it
finds only the adjacencies across (d-1)-faces that have at least one
vertex in ΦV ERT (r). While we can locally reconstruct the full ad-
jacency relation for top CP d-cells with d vertices in ΦV ERT (r), a
top CP d-cell σ with fewer vertices in ΦV ERT (r) might be miss-
ing at least one adjacency. For example, in Figure 23, we can
completely reconstruct the adjacency relations of the triangles
having two vertices in r (in yellow), while we can only partially

Figure 23: Local adjacency reconstruction finds adjacencies
across faces with a vertex in the leaf block r (dashed). For yellow
triangles, all edges have a vertex in r, while some edges of gray
triangles do not.

reconstruct the adjacencies of triangles having just one vertex in
r (in gray). Adjacencies on the edges opposite to the vertices in
red cannot be reconstructed inside r for gray triangles.

The algorithm first iterates on the top CP d-cells in ΦTOP (r)
(rows 1–3). Given a top CP d-cell σ, we cycle over the d-tuples
of the vertices of σ, where each d-tuple defines a (d−1)-cell on
the boundary of σ. The auxiliary data structure d 1 cell top en-
codes, for each d-tuple τ , the top d-cells sharing τ , correspond-
ing to the Rd−1,d relation of τ . Then, the algorithm iterates
over d 1 cell top to initialize adjacency relations Rd,d. Given
a (d−1)-cell τ , if τ has two d-cells in its co-boundary (row 5),
namely σ1 and σ2, we set σ1 and σ2 as adjacent along τ (rows
7–8). Due to its local nature, the Stellar tree adjacency recon-
struction provides considerable storage savings compared to its
global counterpart: the storage requirements are proportional to
the number of top CP d-cells in r, rather than those in ΣT .

Extending this algorithm to generate a global IA data structure
requires only a few modifications. Aside from encoding the aux-
iliary data structures at a global level, the other major difference
with respect to the local approach is that, within each leaf block
r, Rd−1,d relations are extracted only for those (d−1)-cells τ for
which the two top CP d-cells sharing τ have not been already
initialized.

The IA∗ data structure extends the IA data structure to arbitrary
non-manifold CP k-complexes, with 0 < k ≤ d. Recall that, in
addition to the relations stored in the IA data structure, it encodes:
(i) adjacency relation Rk,k(σ), for each top CP k-cell σ; (ii) co-
boundary relation R0,1(v) restricted to the top 1-cells, for each
vertex v; (iii) augmented partial co-boundary relation (R∗

0,k(v)),
1 < k ≤ d, for each vertex v, consisting of one arbitrarily selected
top CP k-cell from each k-cluster in the star of v, where a k-
cluster is a (k−1)-connected component of the star of v restricted
to its top CP k-cells; and (iv) co-boundary relation Rk−1,k(τ),
for each non-manifold (k−1)-cell τ bounding a top CP k-cell.

Extracting Rk,k relations, when k < d, and Rk−1,k relations
for non-manifold (k−1)-cells is performed by a suitable exten-
sion of Algorithm 10. Augmented partial co-boundary relation
R∗

0,k(v), for k > 1, is computed by extracting the restricted star
of v (Algorithm 3 in the paper) and by using Rk,k relation for the
top CP cells in the star of v to identify the (k−1)-connected com-
ponents incident in v. R0,1(v) is initialized by iterating over the
top 1-cells in the restricted star of v.

30

Experimental results In Table 7, we compare the time, and
storage requirements to generate an IA or IA∗ data structure, de-
pending on whether the complex has a manifold or non-manifold
domain, using the Stellar tree or directly extracting it from the
indexed representation. For each dataset, we compare the Stel-
lar trees generated by using thresholds kS and kL and by using
a local and a global algorithm against the direct approach on the
original indexed representation of the complex. For the manifold
(triangular, quadrilateral, tetrahedral and hexahedral) and pure
(probabilistic) datasets, where all top cells have dimension d, we
used Algorithm 10 to compute the adjacencies.

When comparing execution times, we find that the global Stel-
lar tree approach is about 25% faster than the direct approach in
most cases. However, due in part to the redundant lookups in
the adjacency calculation, the local approach is slightly slower
than the global approach, but still 10% faster than the direct ap-
proach in most cases. For example, it is almost twice as fast on
F16, on par on Lucy and slower on the 5D probabilistic dataset.
Considering the effects of the bucket threshold kV , we observe
little discernible difference on the global Stellar tree approach.
However, a larger bucketing threshold (kL) yielded up to a 25%
speedup in the local approach on our larger datasets, compared to
its smaller (kS) counterpart.

Lastly, we consider the storage requirements for generating the
IA / IA∗ data structure. For both the local and global Stellar tree
tree approaches, the auxiliary storage requirements are limited
to the complexity of each leaf block, requiring only a few KBs
of auxiliary storage for the manifold and non-manifold datasets,
and a few MBs for the pure (probabilistic) datasets. In contrast,
the direct approach requires hundreds of MBs for the medium
sized datasets. We were not able to generate the IA∗ data struc-
tures using the direct approach on our largest datasets, which ran
out of memory (OOM) on our workstation, despite its 64 GB of
available RAM.

Table 7: Generation times (seconds) and storage (number of ref-
erences) for the IA∗ data structure from Stellar trees (kS and kL)
and the direct approach (dir.) on the original indexed represen-
tation of the complex. With the exception of V-RIPS complexes,
the IA∗ is equivalent to the IA representation on these datasets.

Data kV Time
Storage

IA/IA∗ aux.
local global local global d.s.

NEPTUNE

T
R

I.

kS 6.88 5.69 0.36K
6.01M

0.70K
kL 6.51 5.84 1.65K 3.24K
dir. 9.69 12.0M

STATUETTE
kS 17.5 14.5 0.38K

15.0M
0.72K

kL 17.0 14.9 1.62K 3.22K
dir. 20.7 30.0M

LUCY
kS 47.4 39.6 0.42K

42.0M
0.82K

kL 49.0 40.7 1.64K 3.28K
dir. 50.6 84.1M

NEPTUNE

Q
U

A
D

.

kS 36.6 31.6 0.27K
24.0M

0.52K
kL 35.0 31.3 1.70K 3.37K
dir. 44.1 48.1M

STATUETTE
kS 92.2 78.9 0.26K

60.0M
0.50K

kL 90.4 79.4 1.74K 3.38K
dir. 102 120M

LUCY
kS 250 218 0.27K

168M
0.53K

kL 250 221 1.74K 3.40K
dir. 252 336M

BONSAI
T

E
T

R
A

.
kS 56.5 38.5 3.20K

28.6M
10.2K

kL 49.4 38.8 6.29K 20.6K
dir. 60.0 97.7M

VISMALE
kS 61.2 42.0 3.22K

31.1M
10.4K

kL 53.3 43.0 5.52K 17.4K
dir. 66.3 106M

FOOT
kS 72.6 47.2 3.21K

34.5M
10.3K

kL 58.7 47.1 6.42K 21.0K
dir. 72.7 118M

F16

H
E

X
A

.

kS 152 102 0.32K
53.3M

0.83K
kL 129 103 2.38K 6.42K
dir. 237 152M

SAN FERN
kS 380 217 0.38K

117M
1.05K

kL 273 219 2.64K 7.31K
dir. 285 336M

VISMALE
kS 844 459 0.23K 261M 0.59K
kL 591 477 2.13K 5.82K
dir. OOM – –

5D

P
R

O
B

.

kS 209 77.6 15.3K
26.9M

84.2K
kL 148 75.0 95.3K 535K
dir. 108 159M

7D
kS 4.84K 1.63K 1.05M 258M 7.66M
kL 3.89K 1.53K 4.30M 32.5M
dir. OOM – –

40D
kS 30.1K 24.3K 1.36M 16.7M 55.3M
kL 28.3K 22.9K 5.04M 205M
dir. OOM – –

VISMALE 7D

V
-R

IP
S

kS 45.8 42.1 2.24K
11.0M

4.59K
kL 47.3 42.4 3.36K 6.29K
dir. 43.3 35.2M

FOOT 10D
kS 694 595 13.6K

68.9M
88.8K

kL 528 558 17.4K 115K
dir. 899 552M

LUCY 34D
kS 804 763 5.44K 55.1M 23.2K
kL 688 615 12.6K 58.3K
dir. OOM – –

31

