13,567 research outputs found

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    Comparing P2PTV Traffic Classifiers

    Get PDF
    Peer-to-Peer IP Television (P2PTV) applications represent one of the fastest growing application classes on the Internet, both in terms of their popularity and in terms of the amount of traffic they generate. While network operators require monitoring tools that can effectively analyze the traffic produced by these systems, few techniques have been tested on these mostly closed-source, proprietary applications. In this paper we examine the properties of three traffic classifiers applied to the problem of identifying P2PTV traffic. We report on extensive experiments conducted on traffic traces with reliable ground truth information, highlighting the benefits and shortcomings of each approach. The results show that not only their performance in terms of accuracy can vary significantly, but also that their usability features suggest different effective aspects that can be integrate

    Data Models for Moving Objects in Road Networks – Implementation and Experiences

    Get PDF
    Paper deals with the specific LBS scenario – Fleet management (FM) and more specifically with systems for Automatic vehicle location (AVL). Well designed and implemented spatial data model for moving objects is one of the most significant elements of any AVL system. In practical applications the results of the latest scientific research are seldom applied, despite the fact that this area has been developing intensively for more than 20 years. The reasons for this are analysed in the paper. Short analysis of functionality of these systems is presented considering the impact of these functionalities on the implemented data model for moving objects and more specifically their impact on spatio-temporal component of the model. The paper especially reviews the possibility of using road networks as a basis for the representation of moving objects data models and a fact that these models are rarely used in practical applications. A solution overcoming this situation is proposed. The solution assumes transition from the system that is not based on road network to the system that is based on network. There are quite few research papers dealing with OSM data models. Therefore, a significant space in this paper is dedicated to the description of these models since OSM data can be valuable for this type of applications

    Disaster Site Structure Analysis: Examining Effective Remote Sensing Techniques in Blue Tarpaulin Inspection

    Get PDF
    This thesis aimed to evaluate three methods of analyzing blue roofing tarpaulin (tarp) placed on homes in post natural disaster zones with remote sensing techniques by assessing the different methods- image segmentation, machine learning (ML), and supervised classification. One can determine which is the most efficient and accurate way of detecting blue tarps. The concept here was that using the most efficient and accurate way to locate blue tarps can aid federal, state, and local emergency management (EM) operations and homeowners. In the wake of a natural disaster such as a tornado, hurricane, thunderstorm, or similar weather events, roofs are the most likely to be damaged (Esri Events., 2019). Severe roof damage needs to be mitigated as fast as possible: which in the United States is often done at no cost by the Federal Emergency Management Agency (FEMA). This research aimed to find the most efficient and accurate way of detecting blue tarps with three different remote sensing practices. The first method, image segmentation, separates parts of a whole image into smaller areas or categories that correspond to distinct items or parts of objects. Each pixel in a remotely sensed image is then classified into categories set by the user. A successful segmentation will result when pixels in the same category have comparable multivariate, grayscale values and form a linked area, whereas nearby pixels in other categories have distinct values. Machine Learning, ML, a second method, is a technique that processes data depending on many layers for feature v identification and pattern recognition. ArcGIS Pro mapping software processes data with ML classification methods to classify remote sensing imagery. Deep learning models may be used to recognize objects, classify images, and in this example, classify pixels. The resultant model definition file or deep learning software package is used to run the inference geoprocessing tools to extract particular item positions, categorize or label the objects, or classify the pixels in the picture. Finally, supervised classification is based on a system in which a user picks sample pixel in an image that are indicative of certain classes and then tells image-processing software to categorize the other pixels in the picture using these training sites as references. To group pixels together, the user also specifies the limits for how similar they must be. The number of classifications into which the image is categorized is likewise determined by the user. The importance of tracking blue roofs is multifaceted. Structures with roof damage from natural disasters face many immediate dangers, such as further water and wind damage. These communities are at a critical moment as responding to the damage efficiently and effectively should occur in the immediate aftermath of a disaster. In part due to strategies such as FEMA and the United States Army Corps of Engineers’ (USACE) Operation Blue Roof, most often blue tarpaulins are installed on structures to prevent further damage caused by wind and rain. From a Unmanned Arial Vehicles (UAV) perspective, these blue tarps stand out amid the downed trees, devastated infrastructure, and other debris that will populate the area. Understanding that recovery can be one of the most important stages of Emergency Management, testing techniques vi for speed, accuracy, and effectiveness will assist in creating more effective Emergency Management (EM) specialists

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    A geo-database for potentially polluting marine sites and associated risk index

    Get PDF
    The increasing availability of geospatial marine data provides an opportunity for hydrographic offices to contribute to the identification of Potentially Polluting Marine Sites (PPMS). To adequately manage these sites, a PPMS Geospatial Database (GeoDB) application was developed to collect and store relevant information suitable for site inventory and geo-spatial analysis. The benefits of structuring the data to conform to the Universal Hydrographic Data Model (IHO S-100) and to use the Geographic Mark-Up Language (GML) for encoding are presented. A storage solution is proposed using a GML-enabled spatial relational database management system (RDBMS). In addition, an example of a risk index methodology is provided based on the defined data structure. The implementation of this example was performed using scripts containing SQL statements. These procedures were implemented using a cross-platform C++ application based on open-source libraries and called PPMS GeoDB Manager

    Can we identify non-stationary dynamics of trial-to-trial variability?"

    Get PDF
    Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial) to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation). This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies the observed trial-to-trial variability. Thus, the empirical tool developed within this study potentially allows us to infer the source of variability in in-vivo neural recordings
    corecore