1,983 research outputs found

    On Mobility Management in Multi-Sink Sensor Networks for Geocasting of Queries

    Get PDF
    In order to efficiently deal with location dependent messages in multi-sink wireless sensor networks (WSNs), it is key that the network informs sinks what geographical area is covered by which sink. The sinks are then able to efficiently route messages which are only valid in particular regions of the deployment. In our previous work (see the 5th and 6th cited documents), we proposed a combined coverage area reporting and geographical routing protocol for location dependent messages, for example, queries that are injected by sinks. In this paper, we study the case where we have static sinks and mobile sensor nodes in the network. To provide up-to-date coverage areas to sinks, we focus on handling node mobility in the network. We discuss what is a better method for updating the routing structure (i.e., routing trees and coverage areas) to handle mobility efficiently: periodic global updates initiated from sinks or local updates triggered by mobile sensors. Simulation results show that local updating perform very well in terms of query delivery ratio. Local updating has a better scalability to increasing network size. It is also more energy efficient than ourpreviously proposed approach, where global updating in networks have medium mobility rate and speed

    On Mobility Management in Multi-Sink Sensor Networks for Geocasting of Queries

    Get PDF
    In order to efficiently deal with location dependent messages in multi-sink wireless sensor networks (WSNs), it is key that the network informs sinks what geographical area is covered by which sink. The sinks are then able to efficiently route messages which are only valid in particular regions of the deployment. In our previous work (see the 5th and 6th cited documents), we proposed a combined coverage area reporting and geographical routing protocol for location dependent messages, for example, queries that are injected by sinks. In this paper, we study the case where we have static sinks and mobile sensor nodes in the network. To provide up-to-date coverage areas to sinks, we focus on handling node mobility in the network. We discuss what is a better method for updating the routing structure (i.e., routing trees and coverage areas) to handle mobility efficiently: periodic global updates initiated from sinks or local updates triggered by mobile sensors. Simulation results show that local updating perform very well in terms of query delivery ratio. Local updating has a better scalability to increasing network size. It is also more energy efficient than ourpreviously proposed approach, where global updating in networks have medium mobility rate and speed

    Simplifying Context-Aware Agent Coordination Using Context-Sensitive Data Structures

    Get PDF
    Context-aware computing, an emerging paradigm in which applications sense and adapt their behavior to changes in their operational environment, is key to developing dependable agent-based soft-ware systems for use in the often unpredictable settings of ad hoc net-works. However, designing an application agent which interacts with other agents to gather, maintain, and adapt to context can be a difficult undertaking in an open and continuously changing environment, even for a seasoned programmer. Our goal is to simplify the programming task by hiding the details of agent coordination from the programmer, allowing one to quickly and reliably produce a context-aware application agent for use in large-scale ad hoc networks. With this goal in mind, we introduce a novel abstraction called context-sensitive data structures (CSDS). The programmer interacts with the CSDS through a familiar programming interface, without direct knowledge of the context gathering and maintenance tasks that occur behind the scenes. In this paper, we define a model of context-sensitive data structures, and we identify key requirements and issues associated with building an infrastructure to support the development of context-sensitive data structures

    Supporting service discovery, querying and interaction in ubiquitous computing environments.

    Get PDF
    In this paper, we contend that ubiquitous computing environments will be highly heterogeneous, service rich domains. Moreover, future applications will consequently be required to interact with multiple, specialised service location and interaction protocols simultaneously. We argue that existing service discovery techniques do not provide sufficient support to address the challenges of building applications targeted to these emerging environments. This paper makes a number of contributions. Firstly, using a set of short ubiquitous computing scenarios we identify several key limitations of existing service discovery approaches that reduce their ability to support ubiquitous computing applications. Secondly, we present a detailed analysis of requirements for providing effective support in this domain. Thirdly, we provide the design of a simple extensible meta-service discovery architecture that uses database techniques to unify service discovery protocols and addresses several of our key requirements. Lastly, we examine the lessons learnt through the development of a prototype implementation of our architecture

    Occupancy Patterns Scoping Review Project

    No full text
    Understanding the occupancy and heating patterns of UK domestic consumers is important for understanding the role of demand-side technologies, such as occupancy-based smart heating controls to manage energy consumption more efficiently.The research undertakes a systematic scoping review to identify and assess the quality of the UK and international evidence on occupancy patterns, to critically review the common methods of measuring occupancy, and to discuss the potential role of occupancy-based smart heating controls in meeting energy savings, thermal comfort and usability requirements.This report was prepared by a team at the University of Southampton and commissioned by the former Department of Energy and Climate Change (DECC).<br/

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area

    Wearable artificial intelligence for anxiety and depression: A scoping review

    Get PDF
    Background: Anxiety and depression are the most common mental disorders worldwide. Owing to the lack of psychiatrists around the world, the incorporation of AI and wearable devices (wearable artificial intelligence (AI)) have been exploited to provide mental health services. Objective: The current review aimed to explore the features of wearable AI used for anxiety and depression to identify application areas and open research issues. Methods: We searched 8 electronic databases (MEDLINE, PsycINFO, EMBASE, CINAHL, IEEE Xplore, ACM Digital Library, Scopus, and Google Scholar). Then, we checked studies that cited the included studies, and screened studies that were cited by the included studies. Study selection and data extraction were carried out by two reviewers independently. The extracted data were aggregated and summarized using the narrative synthesis. Results: Of the 1203 citations identified, 69 studies were included in this review. About two thirds of the studies used wearable AI for depression while the remaining studies used it for anxiety. The most frequent application of wearable AI was diagnosing anxiety and depression while no studies used it for treatment purposes. The majority of studies targeted individuals between the ages of 18 and 65. The most common wearable devices used in the studies were Actiwatch AW4. The wrist-worn devices were most common in the studies. The most commonly used data for model development were physical activity data, sleep data, and heart rate data. The most frequently used dataset from open sources was Depresjon. The most commonly used algorithms were Random Forest (RF) and Support Vector Machine (SVM). Conclusions: Wearable AI can offer great promise in providing mental health services related to anxiety and depression. Wearable AI can be used by individuals as a pre-screening assessment of anxiety and depression. Further reviews are needed to statistically synthesize studies’ results related to the performance and effectiveness of wearable AI. Given its potential, tech companies should invest more in wearable AI for treatment purposes for anxiety and depression

    Sink-Independent Model in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks generally support users that send queries and receive data via the sinks. The user and the sinks are mostly connected to each other by infrastructure networks. The users, however, should receive the data from the sinks through multi-hop communications between disseminating sensor nodes if such users move into the sensor networks without infrastructure networks. To support mobile users, previous work has studied various user mobility models. Nevertheless, such approaches are not compatible with the existing routing algorithms, and it is difficult for the mobile users to gather data efficiently due to their mobility. To improve the shortcomings, we propose a view of mobility for wireless sensor networks and propose a model to support a user mobility that is independent of sinks
    corecore