4 research outputs found

    Models and Heuristics for the Flow-Refuelling Location Problem

    Get PDF
    Purpose of this paper: Firstly, the paper serves as an overview of the emerging field of flow-refuelling location, which mainly occurs in the context of locating alternative-fuel (hydrogen, electric, liquefied natural gas and hybrid) vehicle refuelling stations. We aim to review and explain models and solution approaches, with a particular focus on mathematical programming formulations. Secondly, we propose a new heuristic for this problem and investigate its performance. Design/methodology/approach: The subject scope of this paper is the flow-refuelling location model (FRLM). While in most location problems demand arises at customer locations, in so-called flow-capturing models it is associated with journeys (origin-destination pairs). What makes the FRLM even more challenging is that due to the limited driving range of alternative-fuel vehicles, more than one facility may be required to satisfy the demand of a journey. There are currently very few such refuelling stations, but ambitious plans exist for massive development – making this an especially ripe time for researchers to investigate this problem. There already exists a body of work on this problem; however different authors make different model assumptions, making comparison difficult. For example, in some models facilities must lie on the shortest route from origin to destination, while in others detours are allowed. We aim to highlight difference in models in our review. Our proposed methodology is built on the idea of solving the relaxation of the mixed-integer linear programming formulation of the problem, identifying promising variables, fixing their values and solving the resulting (so-called restricted) problems optimally. It is somewhat similar to Kernel Search which has recently gained popularity. We also use a parallel computing strategy to simultaneously solve a number of restricted problems with less computation effort for large-sized instances. Findings: Our experimental results show that the proposed heuristic can find optimal solutions in a reasonable amount of time, outperforming other heuristics from the literature. Value: We believe the paper is of value to both academics and practitioners. The review should help researchers new to this field to orient themselves in the maze of different problem versions, while helping practitioners identify models and approaches applicable to their particular problem. The heuristic proposed can be directly used by practitioners; we hope it will spark further works on this area of logistics but also on other optimisation problems where Kernel Search type methods can be applied. Research limitations: This being the first paper applying a restricted-subproblem approach to this problem it is necessarily limited in scope. Applying a traditional Kernel Search method would be an interesting next step. The proposed heuristic should also be extended to cover for more than just one FRLM model: certainly the capacitated FRLM, the FRLM with deviation, the fixed-charge FRLM and the multi-period FRLM should be investigated. Practical implications: Our work adds to a body of research that can inform decisionmakers at governmental or international level on strategic decisions relating to the establishment or development of alternative-fuel refuelling station networks

    How many fast-charging stations do we need along European highways?

    Get PDF
    For a successful market take-up of plug-in electric vehicles, fast-charging stations along the highway network play a significant role. This paper provides results from a first study on estimating the minimum number of fast-charging stations along the European highway network of selected countries (i.e., France, Germany, the Benelux countries, Switzerland, Austria, Denmark, the Czech Republic, and Poland) and gives an estimate on their future profitability. The combination of a comprehensive dataset of passenger car trips in Europe and an efficient arc-coverpath-cover flow-refueling location model allows generating results for such a comprehensive transnational highway network for the first time. Besides the minimum number of required fastcharging stations which results from the applied flow-refueling location model (FRLM), an estimation of their profitability as well as some country-specific results are also identified. According to these results the operation of fast-charging stations along the highway will be attractive in 2030 because the number of customers per day and their willingness to pay for a charge is high compared to inner-city charging stations. Their location-specific workloads as well as revenues differ significantly and a careful selection of locations is decisive for their economic operation

    LNG Bunkering Network Design in Inland Waterways

    Get PDF
    Growing awareness of the environment and new regulations of the International Maritime Organization and the European Union are forcing ship-owners to reduce pollution. The use of liquefied natural gas (LNG) is one of the most promising options for achieving a reduction in pollution for inland shipping and short sea shipping. However, the infrastructure to facilitate the broad use of LNG is yet to be developed. We advance and analyze models that suggest LNG infrastructure development plans for refueling stations that support pipeline-to-ship and truck-to-ship bunkering, specifying locations, types, and capacities, and that take into account the characteristics of LNG, such as boil-off during storage and loading. We develop an effective primal heuristic, based on Lagrangian relaxation, for the solution of the models. We validate our approach by performing a computational study for the waterway network in the Arnhem-Nijmegen region in the West-European river network, including, among others, multi-year scenarios in which capacity expansion and reduction are possible

    Sustainable supply chains in the world of industry 4.0

    Get PDF
    corecore