310 research outputs found

    A case study for NoC based homogeneous MPSoC architectures

    Get PDF
    The many-core design paradigm requires flexible and modular hardware and software components to provide the required scalability to next-generation on-chip multiprocessor architectures. A multidisciplinary approach is necessary to consider all the interactions between the different components of the design. In this paper, a complete design methodology that tackles at once the aspects of system level modeling, hardware architecture, and programming model has been successfully used for the implementation of a multiprocessor network-on-chip (NoC)-based system, the NoCRay graphic accelerator. The design, based on 16 processors, after prototyping with field-programmable gate array (FPGA), has been laid out in 90-nm technology. Post-layout results show very low power, area, as well as 500 MHz of clock frequency. Results show that an array of small and simple processors outperform a single high-end general purpose processo

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    Content addressable memory project

    Get PDF
    A parameterized version of the tree processor was designed and tested (by simulation). The leaf processor design is 90 percent complete. We expect to complete and test a combination of tree and leaf cell designs in the next period. Work is proceeding on algorithms for the computer aided manufacturing (CAM), and once the design is complete we will begin simulating algorithms for large problems. The following topics are covered: (1) the practical implementation of content addressable memory; (2) design of a LEAF cell for the Rutgers CAM architecture; (3) a circuit design tool user's manual; and (4) design and analysis of efficient hierarchical interconnection networks

    Control Plane for Embedded DSP

    Get PDF
    This project is sponsored by MITRE Corporation to develop a scalable and reusable control plane architecture for VLSI design. The main goal of this project is to develop a communication platform for a wide range of applications to reduce the development and testing time associated with the design of a interconnect system. Thorough research has been conducted in the area of network-on-chip designs that are suitable for these types of applications. The necessary components are built and verified in hardware description language. The deliverable components are packaged as reusable and parameterized SystemVerilog code

    RAID-2: Design and implementation of a large scale disk array controller

    Get PDF
    We describe the implementation of a large scale disk array controller and subsystem incorporating over 100 high performance 3.5 inch disk drives. It is designed to provide 40 MB/s sustained performance and 40 GB capacity in three 19 inch racks. The array controller forms an integral part of a file server that attaches to a Gb/s local area network. The controller implements a high bandwidth interconnect between an interleaved memory, an XOR calculation engine, the network interface (HIPPI), and the disk interfaces (SCSI). The system is now functionally operational, and we are tuning its performance. We review the design decisions, history, and lessons learned from this three year university implementation effort to construct a truly large scale system assembly

    Scaling High-Performance Interconnect Architectures to Many-Core Systems.

    Full text link
    The ever-increasing demand for performance scaling has made multi-core (2-8 cores) chips prevalent in today’s computing systems and foreshadows the shift toward many-core (10s- 100s of cores) chips in the near future. Although the potential performance gains from many-core systems remain appealing, the widespread adoption of these systems hinges on their ability to scale performance while simultaneously satisfying Quality-of-Service (QoS) and energy-efficiency constraints. This work makes the case that the interconnect for these many-core systems has a significant impact on the aforementioned scalability issues. The impact of interconnects on many-core systems is illustrated by observing that the degree of the interconnect has a signicant effect on system scalability and demonstrating that the architecture of high-radix, many-core systems are feasible, energy-efficient, and high-performance. The feasibility of high-radix crossbars for many-core systems is first shown through a new circuit-level building block called the Swizzle-Switch which can operate at frequencies up to 1.5GHz for 128-bit, radix-64 crossbars. This work then shows how a many-core system called the Swizzle-Switch Network (SSN) can use the Swizzle-Switch as the central building block for a flat crossbar interconnect. The SSN is shown to be advantageous to traditional Network-on-Chip (NoC) for systems up to 64 cores. The SSN performance by 21% relative to a Mesh while also providing a 25% energy savings over the Mesh. The Swizzle-Switch is also leveraged as a building block for high-radix NoC topologies that can support many-core architectures. The Swizzle-Switch-based Flattened Butterfly topology is demonstrated to provide a 15% speedup and 10% energy savings over the Mesh. Finally, the impact that 3D stacking technology has on many-core scalability is evaluated for bus and crossbar interconnects. A 3D-optimized Swizzle-Switch Network is able to leverage frequency gains to achieve a 15-28% speedup over a 2D-Swizzle-Switch Network when using memory- intensive benchmarks. Additionally, a bus-based 64-core architecture is shown to provide an average speedup of 49× over a baseline uniprocessor system when using 3D technology.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/93980/1/ksewell_1.pd

    Network-on-Chip Topologies: Potentials, Technical Challenges, Recent Advances and Research Direction

    Get PDF
    Integration technology advancement has impacted the System-on-Chip (SoC) in which heterogeneous cores are supported on a single chip. Based on the huge amount of supported heterogeneous cores, efficient communication between the associated processors has to be considered at all levels of the system design to ensure global interconnection. This can be achieved through a design-friendly, flexible, scalable, and high-performance interconnection architecture. It is noteworthy that the interconnections between multiple cores on a chip present a considerable influence on the performance and communication of the chip design regarding the throughput, end-to-end delay, and packets loss ratio. Although hierarchical architectures have addressed the majority of the associated challenges of the traditional interconnection techniques, the main limiting factor is scalability. Network-on-Chip (NoC) has been presented as a scalable and well-structured alternative solution that is capable of addressing communication issues in the on-chip systems. In this context, several NoC topologies have been presented to support various routing techniques and attend to different chip architectural requirements. This book chapter reviews some of the existing NoC topologies and their associated characteristics. Also, application mapping algorithms and some key challenges of NoC are considered

    Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip

    Get PDF
    The sustained demand for faster, more powerful chips has been met by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the onchip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation performs a design space exploration of network-on-chip architectures, in order to point-out the trade-offs associated with the design of each individual network building blocks and with the design of network topology overall. The design space exploration is preceded by a comparative analysis of state-of-the-art interconnect fabrics with themselves and with early networkon- chip prototypes. The ultimate objective is to point out the key advantages that NoC realizations provide with respect to state-of-the-art communication infrastructures and to point out the challenges that lie ahead in order to make this new interconnect technology come true. Among these latter, technologyrelated challenges are emerging that call for dedicated design techniques at all levels of the design hierarchy. In particular, leakage power dissipation, containment of process variations and of their effects. The achievement of the above objectives was enabled by means of a NoC simulation environment for cycleaccurate modelling and simulation and by means of a back-end facility for the study of NoC physical implementation effects. Overall, all the results provided by this work have been validated on actual silicon layout
    • …
    corecore