464 research outputs found

    Lidar In Coastal Storm Surge Modeling: Modeling Linear Raised Features

    Get PDF
    A method for extracting linear raised features from laser scanned altimetry (LiDAR) datasets is presented. The objective is to automate the method so that elements in a coastal storm surge simulation finite element mesh might have their edges aligned along vertical terrain features. Terrain features of interest are those that are high and long enough to form a hydrodynamic impediment while being narrow enough that the features might be straddled and not modeled if element edges are not purposely aligned. These features are commonly raised roadbeds but may occur due to other manmade alterations to the terrain or natural terrain. The implementation uses the TauDEM watershed delineation software included in the MapWindow open source Geographic Information System to initially extract watershed boundaries. The watershed boundaries are then examined computationally to determine which sections warrant inclusion in the storm surge mesh. Introductory work towards applying image analysis techniques as an alternate means of vertical feature extraction is presented as well. Vertical feature lines extracted from a LiDAR dataset for Manatee County, Florida are included in a limited storm surge finite element mesh for the county and Tampa Bay. Storm surge simulations using the ADCIRC-2DDI model with two meshes, one which includes linear raised features as element edges and one which does not, verify the usefulness of the method

    Mapping three-dimensional geological features from remotely-sensed images and digital elevation models.

    Get PDF
    Accurate mapping of geological structures is important in numerous applications, ranging from mineral exploration through to hydrogeological modelling. Remotely sensed data can provide synoptic views of study areas enabling mapping of geological units within the area. Structural information may be derived from such data using standard manual photo-geologic interpretation techniques, although these are often inaccurate and incomplete. The aim of this thesis is, therefore, to compile a suite of automated and interactive computer-based analysis routines, designed to help a the user map geological structure. These are examined and integrated in the context of an expert system. The data used in this study include Digital Elevation Model (DEM) and Airborne Thematic Mapper images, both with a spatial resolution of 5m, for a 5 x 5 km area surrounding Llyn Cow lyd, Snowdonia, North Wales. The geology of this area comprises folded and faulted Ordo vician sediments intruded throughout by dolerite sills, providing a stringent test for the automated and semi-automated procedures. The DEM is used to highlight geomorphological features which may represent surface expressions of the sub-surface geology. The DEM is created from digitized contours, for which kriging is found to provide the best interpolation routine, based on a number of quantitative measures. Lambertian shading and the creation of slope and change of slope datasets are shown to provide the most successful enhancement of DEMs, in terms of highlighting a range of key geomorphological features. The digital image data are used to identify rock outcrops as well as lithologically controlled features in the land cover. To this end, a series of standard spectral enhancements of the images is examined. In this respect, the least correlated 3 band composite and a principal component composite are shown to give the best visual discrimination of geological and vegetation cover types. Automatic edge detection (followed by line thinning and extraction) and manual interpretation techniques are used to identify a set of 'geological primitives' (linear or arc features representing lithological boundaries) within these data. Inclusion of the DEM data provides the three-dimensional co-ordinates of these primitives enabling a least-squares fit to be employed to calculate dip and strike values, based, initially, on the assumption of a simple, linearly dipping structural model. A very large number of scene 'primitives' is identified using these procedures, only some of which have geological significance. Knowledge-based rules are therefore used to identify the relevant. For example, rules are developed to identify lake edges, forest boundaries, forest tracks, rock-vegetation boundaries, and areas of geomorphological interest. Confidence in the geological significance of some of the geological primitives is increased where they are found independently in both the DEM and remotely sensed data. The dip and strike values derived in this way are compared to information taken from the published geological map for this area, as well as measurements taken in the field. Many results are shown to correspond closely to those taken from the map and in the field, with an error of < 1°. These data and rules are incorporated into an expert system which, initially, produces a simple model of the geological structure. The system also provides a graphical user interface for manual control and interpretation, where necessary. Although the system currently only allows a relatively simple structural model (linearly dipping with faulting), in the future it will be possible to extend the system to model more complex features, such as anticlines, synclines, thrusts, nappes, and igneous intrusions

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Northern Tornadoes Project 2018/19 Report

    Get PDF
    Three years ago, we set our sights on finding at least a few undocumented tornado tracks in the remote forests of northern Ontario. We have covered greater distances and nurtured bigger ambitions since then. From northern Ontario to all of Canada, from aircraft surveys to drones and satellites, from on-the- ground damage investigations to artificial intelligence analyses, the Northern Tornadoes Project is one of the most comprehensive tornado research projects in the country. It aims to better detect tornado occurrences throughout Canada, improve communication of tornado science and risk, and mitigate against harm to people and property. NTP also seeks to increase knowledge of tornado climatology to better understand trends due to climate change. This report is our journey through the past three years. It tells you where we have been, and where we are headed. The Northern Tornadoes Project took off through generous donations from Toronto-based social impact fund ImpactWX and Western University. The funds got the project started, and helped expand it from one province to the whole nation. We also acquired cutting-edge technology, and built an expert team of researchers, engineers, and meteorologists. This includes collaborations with Environment and Climate Change Canada, and research groups in Canada, United States, and the United Kingdom

    The application of Earth Observation for mapping soil saturation and the extent and distribution of artificial drainage on Irish farms

    Get PDF
    Artificial drainage is required to make wet soils productive for farming. However, drainage may have unintended environmental consequences, for example, through increased nutrient loss to surface waters or increased flood risk. It can also have implications for greenhouse gas emissions. Accurate data on soil drainage properties could help mitigate the impact of these consequences. Unfortunately, few countries maintain detailed inventories of artificially-drained areas because of the costs involved in compiling such data. This is further confounded by often inadequate knowledge of drain location and function at farm level. Increasingly, Earth Observation (EO) data is being used map drained areas and detect buried drains. The current study is the first harmonised effort to map the location and extent of artificially-drained soils in Ireland using a suite of EO data and geocomputational techniques. To map artificially-drained areas, support vector machine (SVM) and random forest (RF) machine learning image classifications were implemented using Landsat 8 multispectral imagery and topographical data. The RF classifier achieved overall accuracy of 91% in a binary segmentation of artifically-drained and poorly-drained classes. Compared with an existing soil drainage map, the RF model indicated that ~44% of soils in the study area could be classed as “drained”. As well as spatial differences, temporal changes in drainage status where detected within a 3 hectare field, where drains installed in 2014 had an effect on grass production. Using the RF model, the area of this field identified as “drained” increased from a low of 25% in 2011 to 68% in 2016. Landsat 8 vegetation indices were also successfully applied to monitoring the recovery of pasture following extreme saturation (flooding). In conjunction with this, additional EO techniques using unmanned aerial systems (UAS) were tested to map overland flow and detect buried drains. A performance assessment of UAS structure-from-motion (SfM) photogrammetry and aerial LiDAR was undertaken for modelling surface runoff (and associated nutrient loss). Overland flow models were created using the SIMWE model in GRASS GIS. Results indicated no statistical difference between models at 1, 2 & 5 m spatial resolution (p< 0.0001). Grass height was identified as an important source of error. Thermal imagery from a UAS was used to identify the locations of artifically drained areas. Using morning and afternoon images to map thermal extrema, significant differences in the rate of heating were identified between drained and undrained locations. Locations of tiled and piped drains were identified with 59 and 64% accuracy within the study area. Together these methods could enable better management of field drainage on farms, identifying drained areas, as well as the need for maintenance or replacement. They can also assess whether treatments have worked as expected or whether the underlying saturation problems continues. Through the methods developed and described herein, better characterisation of drainage status at field level may be achievable

    Congiungere la modellazione dei movimenti di massa alla realtĂ 

    Get PDF
    I flussi di massa sono pericoli naturali di tipo gravitativo tipici delle zone montane che causano ogni anno perdite economiche e vittime. I modelli numerici sono strumenti per prevedere la propagazione di potenziali eventi di flussi di massa su una determinata topografia, ma questi richiedono diversi input. Gli input e i processi che sostanzialmente influenzano i risultati dei modelli sono rappresentati dalla dal volume, dalle condizioni di innesco e dalle interazioni topografia – flusso di massa. Pertanto, l'obiettivo principale della tesi è quello di migliorare la quantificazione del volume coinvolto in un evento di flusso di massa e di aumentare la rappresentazione dell’interazione tra il flusso e la topografia. Quindi, sono stati studiati due tipi di flussi di massa: debris flow e valanghe di neve. Per quanto riguarda i debris flow, la tesi vuole migliorare l'affidabilità dei modelli analizzando l'aumento del volume del flusso attraverso l'erosione del letto del canale e il collasso di strutture di mitigazione. Per le valanghe di neve, lo studio ha come obbiettivo quello di migliorare l'identificazione delle possibili aree di distacco. La tesi è strutturata come una raccolta di articoli dei quali tre sono stati pubblicati e uno è in fase di revisione. Il primo articolo ha migliorato la rappresentazione dei fenomeni erosivi nei modelli numerici grazie ai dati di un evento di debris flow avvenuto nel bacino del rio Gere (Veneto, IT). Una funzione basata sui valori di pendenza è stata definita per calcolare il coefficiente di erosione, successivamente utilizzato per riprodurre l’erosione osservata nel canale. I risultati sono utili per migliorare l'accuratezza di futuri scenari da debris flow per i quali l'erosione è un importante processo nella dinamica del flusso. Il secondo studio ha definito una procedura per simulare l'effetto del collasso delle briglie di consolidamento in un evento di debris flow. La metodologia è stata sviluppata nel rio Rotian (Trentino, IT), dove un evento di pioggia estrema ha innescato un debris flow che ha provocato il collasso di una serie di 15 briglie. La metodologia sviluppata può essere direttamente applicata per mappare il rischio residuo dei canali da debris flow in cui siano presenti opere o dove la mancanza di manutenzione delle misure di mitigazione può diminuire la loro stabilità. Il terzo progetto riguarda lo studio della rugosità del terreno. Sette algoritmi di calcolo della rugosità sono stati testati in due aree studio al fine di identificare quale algoritmo possa rappresentare nel modo più appropriato le tipologie del terreno che interagiscono con i fenomeni di massa. I risultati hanno mostrato che il miglior algoritmo è risultato il vector ruggedness e che l’utilizzo di una risoluzione maggiore non ha migliorato le performance. Il quarto progetto ha analizzato la capacità di protezione delle foreste colpite da tempeste di vento. Due nuovi algoritmi per valutare le caratteristiche degli alberi abbattuti sono stati sviluppati. I risultati hanno evidenziato che il momento di protezione minimo delle foreste contro le valanghe di neve è dopo 10 anni l'evento di tempesta. Inoltre, gli algoritmi possono essere applicati direttamente su scala regionale per la gestione e il monitoraggio delle aree forestali colpite da tempeste. I diversi studi hanno analizzato i processi di erosione, l'effetto del collasso di briglie e l'identificazione di potenziali aree di innesco. I risultati dei quattro progetti hanno risposto ai corrispondenti obbiettivi, migliorando la comprensione dei flussi di massa e quindi la previsione di eventi futuri. Inoltre, i progetti forniscono importanti risultati metodologici e nuovi metodi sono stati sviluppati e testati al fine di migliorare la stima del volume dei flussi di massa. Tali metodi sono inoltre applicabili al di fuori delle aree di studio prese in esame, dando supporto a diversi stakeholder nella gestione dei rischi naturali.Mass flows are gravitational natural hazards typical of mountain areas causing economic losses and fatalities every year. Numerical models are a way to predict the propagation of potential mass flow events over a certain topography. To appropriately reproduce future events, models required different inputs. Inputs and processes consistently affecting the outcomes of mass flow models regard the released volume, the triggering conditions and the interaction with the topography and the features on the ground once the flow is in motion. Therefore, the main objective of the thesis is to improve the quantification of the input volume and to improve the implementation of processes of interaction with the basal topography. In this context, the focus has been placed on two types of mass flows: debris flows and snow avalanches. Regarding debris flows, the study aims to improve the reliability of models to capture the increase in flow volume through channel bed erosion and mitigation structure collapse. For snow avalanches, the study wants to improve the identification of possible avalanche release areas taking into account the role of different types of vegetation structures. The thesis was structured as a collection of articles of which three have been published and one is currently under review. The first paper investigated the improvement of debris flow erosion in computational models thanks to data of a severe event occurred in the Gere catchment (Veneto, IT). A function based on a smoothed terrain slope map was calibrated to derive the erosion coefficient, successively used to reproduce the observed erosion process occurred in the channel. Results can improve the reliability of future scenarios related to debris flows for which bed erosion plays an important role in volume increase. The second study defined a procedure to simulate the effect of check dam collapse in a debris flow event. The methodology was developed in the rio Rotian (Trentino, IT) where an extreme rainfall event triggered a debris flow that collapsed a series of 15 check dams. The adopted methodology can be straight applied to map the residual risk of mountain channels or where the lack of maintenance may decrease torrent countermeasure stability. The third project involves the study of terrain roughness. We tested seven algorithms computing terrain roughness in two study areas with the aim to identify which roughness algorithm can represent in the most appropriate way the features on the ground interacting with natural hazards. Outcomes showed that the best algorithm resulted the vector ruggedness and that the increase in data resolution did not improve the classification performance. Results can improve the reliability of mass flow propagation models over natural areas. The fourth project analysed the protection capacity of forests affected by windstorms. We developed and tested two algorithms to assess the characteristics of abated trees. Results assessed that the time of minimum level of forest protection against snow avalanches in 10 years after the storm event. The developed algorithms can be straight applied at regional scale to monitor and improve the management of windthrow areas. The projects investigated entrainment processes, effect of mitigation structure failures and the identification of potential triggering areas. Outcomes of the four projects filled the respective gaps of knowledge, improving the understanding of mass flows and then the prediction of future events. Furthermore, the projects have strong methodological outcomes and new methods to improve the volume estimation of mass flows have been developed and tested. Such methods are further applicable outside of the study areas, supporting different stakeholders in the management of natural hazards of mountain areas

    Congiungere la modellazione dei movimenti di massa alla realtĂ 

    Get PDF
    I flussi di massa sono pericoli naturali di tipo gravitativo tipici delle zone montane che causano ogni anno perdite economiche e vittime. I modelli numerici sono strumenti per prevedere la propagazione di potenziali eventi di flussi di massa su una determinata topografia, ma questi richiedono diversi input. Gli input e i processi che sostanzialmente influenzano i risultati dei modelli sono rappresentati dalla dal volume, dalle condizioni di innesco e dalle interazioni topografia – flusso di massa. Pertanto, l'obiettivo principale della tesi è quello di migliorare la quantificazione del volume coinvolto in un evento di flusso di massa e di aumentare la rappresentazione dell’interazione tra il flusso e la topografia. Quindi, sono stati studiati due tipi di flussi di massa: debris flow e valanghe di neve. Per quanto riguarda i debris flow, la tesi vuole migliorare l'affidabilità dei modelli analizzando l'aumento del volume del flusso attraverso l'erosione del letto del canale e il collasso di strutture di mitigazione. Per le valanghe di neve, lo studio ha come obbiettivo quello di migliorare l'identificazione delle possibili aree di distacco. La tesi è strutturata come una raccolta di articoli dei quali tre sono stati pubblicati e uno è in fase di revisione. Il primo articolo ha migliorato la rappresentazione dei fenomeni erosivi nei modelli numerici grazie ai dati di un evento di debris flow avvenuto nel bacino del rio Gere (Veneto, IT). Una funzione basata sui valori di pendenza è stata definita per calcolare il coefficiente di erosione, successivamente utilizzato per riprodurre l’erosione osservata nel canale. I risultati sono utili per migliorare l'accuratezza di futuri scenari da debris flow per i quali l'erosione è un importante processo nella dinamica del flusso. Il secondo studio ha definito una procedura per simulare l'effetto del collasso delle briglie di consolidamento in un evento di debris flow. La metodologia è stata sviluppata nel rio Rotian (Trentino, IT), dove un evento di pioggia estrema ha innescato un debris flow che ha provocato il collasso di una serie di 15 briglie. La metodologia sviluppata può essere direttamente applicata per mappare il rischio residuo dei canali da debris flow in cui siano presenti opere o dove la mancanza di manutenzione delle misure di mitigazione può diminuire la loro stabilità. Il terzo progetto riguarda lo studio della rugosità del terreno. Sette algoritmi di calcolo della rugosità sono stati testati in due aree studio al fine di identificare quale algoritmo possa rappresentare nel modo più appropriato le tipologie del terreno che interagiscono con i fenomeni di massa. I risultati hanno mostrato che il miglior algoritmo è risultato il vector ruggedness e che l’utilizzo di una risoluzione maggiore non ha migliorato le performance. Il quarto progetto ha analizzato la capacità di protezione delle foreste colpite da tempeste di vento. Due nuovi algoritmi per valutare le caratteristiche degli alberi abbattuti sono stati sviluppati. I risultati hanno evidenziato che il momento di protezione minimo delle foreste contro le valanghe di neve è dopo 10 anni l'evento di tempesta. Inoltre, gli algoritmi possono essere applicati direttamente su scala regionale per la gestione e il monitoraggio delle aree forestali colpite da tempeste. I diversi studi hanno analizzato i processi di erosione, l'effetto del collasso di briglie e l'identificazione di potenziali aree di innesco. I risultati dei quattro progetti hanno risposto ai corrispondenti obbiettivi, migliorando la comprensione dei flussi di massa e quindi la previsione di eventi futuri. Inoltre, i progetti forniscono importanti risultati metodologici e nuovi metodi sono stati sviluppati e testati al fine di migliorare la stima del volume dei flussi di massa. Tali metodi sono inoltre applicabili al di fuori delle aree di studio prese in esame, dando supporto a diversi stakeholder nella gestione dei rischi naturali.Mass flows are gravitational natural hazards typical of mountain areas causing economic losses and fatalities every year. Numerical models are a way to predict the propagation of potential mass flow events over a certain topography. To appropriately reproduce future events, models required different inputs. Inputs and processes consistently affecting the outcomes of mass flow models regard the released volume, the triggering conditions and the interaction with the topography and the features on the ground once the flow is in motion. Therefore, the main objective of the thesis is to improve the quantification of the input volume and to improve the implementation of processes of interaction with the basal topography. In this context, the focus has been placed on two types of mass flows: debris flows and snow avalanches. Regarding debris flows, the study aims to improve the reliability of models to capture the increase in flow volume through channel bed erosion and mitigation structure collapse. For snow avalanches, the study wants to improve the identification of possible avalanche release areas taking into account the role of different types of vegetation structures. The thesis was structured as a collection of articles of which three have been published and one is currently under review. The first paper investigated the improvement of debris flow erosion in computational models thanks to data of a severe event occurred in the Gere catchment (Veneto, IT). A function based on a smoothed terrain slope map was calibrated to derive the erosion coefficient, successively used to reproduce the observed erosion process occurred in the channel. Results can improve the reliability of future scenarios related to debris flows for which bed erosion plays an important role in volume increase. The second study defined a procedure to simulate the effect of check dam collapse in a debris flow event. The methodology was developed in the rio Rotian (Trentino, IT) where an extreme rainfall event triggered a debris flow that collapsed a series of 15 check dams. The adopted methodology can be straight applied to map the residual risk of mountain channels or where the lack of maintenance may decrease torrent countermeasure stability. The third project involves the study of terrain roughness. We tested seven algorithms computing terrain roughness in two study areas with the aim to identify which roughness algorithm can represent in the most appropriate way the features on the ground interacting with natural hazards. Outcomes showed that the best algorithm resulted the vector ruggedness and that the increase in data resolution did not improve the classification performance. Results can improve the reliability of mass flow propagation models over natural areas. The fourth project analysed the protection capacity of forests affected by windstorms. We developed and tested two algorithms to assess the characteristics of abated trees. Results assessed that the time of minimum level of forest protection against snow avalanches in 10 years after the storm event. The developed algorithms can be straight applied at regional scale to monitor and improve the management of windthrow areas. The projects investigated entrainment processes, effect of mitigation structure failures and the identification of potential triggering areas. Outcomes of the four projects filled the respective gaps of knowledge, improving the understanding of mass flows and then the prediction of future events. Furthermore, the projects have strong methodological outcomes and new methods to improve the volume estimation of mass flows have been developed and tested. Such methods are further applicable outside of the study areas, supporting different stakeholders in the management of natural hazards of mountain areas

    Interdisciplinary applications and interpretations of ERTS data within the Susquehanna River Basin (resource inventory, land use, and pollution)

    Get PDF
    The author has identified the following significant results. An interdisciplinary group at Penn State University is analyzing ERTS-1 data. The geographical area of interest is that of the Susquehanna River Basin in Pennsylvania. The objectives of the work have been to ascertain the usefulness of ERTS-1 data in the areas of natural resources and land use inventory, geology and hydrology, and environmental quality. Specific results include a study of land use in the Harrisburg area, discrimination between types of forest resources and vegetation, detection of previously unknown geologic faults and correlation of these with known mineral deposits and ground water, mapping of mine spoils in the anthracite region of eastern Pennsylvania, and mapping of strip mines and acid mine drainage in central Pennsylvania. Both photointerpretive techniques and automatic computer processing methods have been developed and used, separately and in a combined approach
    • …
    corecore