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ABSTRACT 
 

A method for extracting linear raised features from laser scanned altimetry (LiDAR) 

datasets is presented.  The objective is to automate the method so that elements in a coastal storm 

surge simulation finite element mesh might have their edges aligned along vertical terrain 

features.  Terrain features of interest are those that are high and long enough to form a 

hydrodynamic impediment while being narrow enough that the features might be straddled and 

not modeled if element edges are not purposely aligned. These features are commonly raised 

roadbeds but may occur due to other manmade alterations to the terrain or natural terrain.  The 

implementation uses the TauDEM watershed delineation software included in the MapWindow 

open source Geographic Information System to initially extract watershed boundaries.  The 

watershed boundaries are then examined computationally to determine which sections warrant 

inclusion in the storm surge mesh.  Introductory work towards applying image analysis 

techniques as an alternate means of vertical feature extraction is presented as well.  Vertical 

feature lines extracted from a LiDAR dataset for Manatee County, Florida are included in a 

limited storm surge finite element mesh for the county and Tampa Bay.  Storm surge simulations 

using the ADCIRC-2DDI model with two meshes, one which includes linear raised features as 

element edges and one which does not, verify the usefulness of the method. 
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CHAPTER ONE:  INTRODUCTION 
 

Increasing availability of airborne laser altimetry (LiDAR – an acronym for Light 

Detection And Ranging) data is reducing data errors in coastal storm surge modeling.  The 

significant improvement of LiDAR accuracy versus other widely used digital terrain model data 

sources leads to greater elevation accuracy for hydrodynamic models in overland, inundation 

areas.  When considering typical overland finite element sizes in relation to the resolution of the 

LiDAR data set there is, however, a wealth of information, approximately 1000 data points per 

element, which is not utilized1.  These unused points contain an almost photographic 

reproduction of the ground surface within the element.  Methods developed in this thesis are a 

means of utilizing some of the LiDAR information which normally remains hidden within a 

typical element (100m-500m edge length) of a coastal finite element mesh. 

The focus of this thesis is to develop a method for extracting significant linear, vertically 

raised features from LiDAR data for inclusion in a coastal finite element mesh.  For the purpose 

of this thesis, significant linear, raised features are ones which are of sufficient length and height 

to obstruct or divert storm surge, but whose width perpendicular to their length would not 

guarantee that they would be modeled if the finite element nodal locations were not purposely 

adjusted.  In other words, the LiDAR data, with its fine resolution, is able to accurately depict 

such elevated features as roadbeds, levees, and berms, which are narrow enough to lie within the 

                                                 

1 For a typical 250 meter equilateral element with minimum FEMA required LiDAR data 
density of one point per five square meters. 
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boundaries of a typical coastal model finite element so that the element vertices reference lower 

surrounding terrain.  A model will be improved if its mesh reflects these hydrodynamic 

obstructions.  To do so, the underlying topography, as represented by the LiDAR data, must 

influence the mesh construction resulting in element edges lying along the vertical features. 

Large coastal storm surge analysis meshes may contain over one million overland nodes 

and cover over 20,000 square miles (52,000 square kilometers) of overland area (Roberts 2004).  

At this scale it is labor intensive to visually interpret LiDAR data and manually construct 

element nodes along extended vertical features.  This is, however, the current practice.  While 

obvious extended vertical features such as roadbeds are easily identified by visual means, less 

obvious vertical features consisting of such things as local fill in a subdivision or a minor ridge 

line may go unnoticed.  It is not clear to what degree these less obvious and generally shorter 

vertical features affect storm surge inundation.  While this thesis will not attempt to determine at 

what lengths or in what combinations shorter vertical features become important to storm surge, 

it will develop methods that allow long and short features to be included in a much more 

automated manner. 

Past research has developed many techniques for processing raw LiDAR data in 

preparation for its use in flood analyses.  Algorithms for virtual deforestation and building 

removal are well developed and serve to extract an accurate digital elevation model (DEM) from 

the LiDAR point cloud of raw data (Priestnalla et al. 2000; Sithole and Vosselman 2004; Zhang 

et al. 2003).  Other algorithms have been developed to construct a triangulated irregular network 

(TIN) of adjoined triangular surfaces to represent the terrain with minimum error for a given 

number of vertices (Chen and Guevara 1987; Silva et al. 1995; Sivan and Samet 1992).  
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Constructing a finite element mesh with these methods is one means of having the topography 

influence the mesh.  These TIN construction methods have been used in two-dimensional 

flooding studies where they were shown to affect the flood’s inundation extent and depth (Bates 

et al. 2003).  There have been recent advances in the ability to model overland surface friction by 

calculating vegetation height from LiDAR data (Cobby et al. 2003; Mason et al. 2003).  

Previously, Roberts developed algorithms to extract linear vertical features from LiDAR data in 

preparation of a large finite element mesh for coastal flooding analysis in southern Louisiana and 

southern Mississippi (2004).  While he used an automated method to extract small point clouds 

at the location of the vertical features (usually levees), manual work was required to digitize 

element nodes from the extracted point clouds.  The work presented here is a natural extension of 

Roberts’ work. It provides the ability to automatically include linear topographic features.  

Failure to model linear topographic features has been noted as a shortcoming of past efforts to 

construct topographically influenced finite element models (Bates et al. 2003; Mason et al. 

2007). 

My method for extracting vertical features begins by using Tarboton’s watershed 

delineation algorithm (2001) included in the open source GIS, MapWindow (Ames 2008), to 

extract polygonal watershed boundaries based on LiDAR dataset elevations.   These polygon 

boundaries form a network of connected local maxima – an appropriate starting point for finding 

linear vertical features in the terrain.  The resulting overlapping polygonal shapefiles are split 

into polylines.  Each polyline is traversed from end to end to determine if it is vertically 

significant in terms of perpendicular slope according to input parameters.  Only portions of the 

polylines meeting requirements are retained as significant features.  To warrant inclusion in the 
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mesh, a feature must be 1) high enough relative to surrounding terrain to form a hydrodynamic 

impediment, 2) narrow enough in the axis perpendicular to its length that not purposely including 

the feature as an element edge risks appreciable error, and 3) long enough to span the greater of 

an element edge or a yet undetermined minimum significant length.  The resulting feature lines 

are further processed to ensure a minimum spacing between nearby lines of one element length.  

This minimum separation allows space for elements between lines during mesh generation.  

After line simplification, the lines are made up of segments of elemental length in preparation for 

inclusion in the mesh.  These simplified lines are imported into the Surface water Modeling 

System (SMS) (EMS-I 2006) software for mesh generation. 

To test the procedure, two coastal finite element meshes are constructed to analyze storm 

surge effects in Manatee County, Florida on the south side of Tampa Bay.  Both meshes use an 

average overland element size of approximately 250m, and both use LiDAR data as their 

elevation source.  The first mesh is a control, constructed without concern for the underlying 

topography.  The second mesh uses the procedure outlined above to include raised features as 

element edges. 

I have included an introduction to LiDAR systems in the next chapter.  The discussion of 

the system is fairly shallow with more detail about sources of error in LiDAR data.  Federal 

Emergency Management Agency (FEMA) requirements for LiDAR data are discussed.  In the 

United States, FEMA sets requirements for LiDAR data used in coastal flooding studies, and 

their requirements are included here for reference.  LiDAR data file size can be a serious 

impediment to its use.  I include a section discussing various processing options.  Next I give 

examples from the literature of LiDAR use in both fluvial and coastal flooding studies.  In 
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Chapter Three I narrow the discussion to methods for extracting ridges from terrain data.  

Finally, the procedures used in this work to extract vertical features are outlined, and results of 

simulations to test the procedures are reviewed.  
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CHAPTER TWO:  LIDAR IN FLOOD MODELING 
 

Although it can be ground, air, or space based, in this paper, LiDAR will refer to airborne 

laser range finders used to gather elevation and other information about the earth’s surface.  As it 

is somewhat helpful to understand the data collection process when using LiDAR data, I will 

begin with an overview of LiDAR systems, data collection procedures, and data processing.  

After the LiDAR overview, I’ll discuss LiDAR applications in flood modeling. 

LiDAR Systems   

An airborne LiDAR system is typically carried aboard a light fixed or rotary wing 

aircraft.  The aircraft is equipped with an onboard package including the laser emitter, receiver, 

scanning apparatus, inertial navigation system (INS), Global Positioning System (GPS) receiver, 

and data recording equipment.  Additionally, ground GPS receivers located at benchmarked sites 

are required to measure the real time error in the GPS signal.  The laser beam is scanned from 

side to side of the aircraft’s flight path.  When combined with the forward motion of the aircraft, 

the result is a swath of elevation data along the surface beneath the aircraft’s flight path.   

Figure 1 depicts the LiDAR equipment used to collect the LiDAR data from Manatee County, 

Florida used in this thesis.  
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Figure 1:  Manatee County LiDAR equipment and data acquisition parameters (Florida 
International University 2004, with permission from FIU IHRC) 

 

Most airborne lasers emit pulses of laser energy to measure distance.  The time of travel 

between the transmission of the pulse and reception of the reflected pulse gives the range as: 

 2 LR ct  (1) 

where R is the range to the surface, c the speed of light and Lt  the time of travel to the surface 

and back (Figure 2).  The laser repeats the pulse at a rate known as the pulse repetition frequency 

(PRF).  As the laser must receive a pulse before the next is transmitted, the pulse width and PRF 

define the maximum theoretical range.  In practice this range, and, as a result, the flying height 

are limited by laser power, beam divergence, detector sensitivity, target reflectivity, and the 

desire to limit aircraft attitude and altitude positional errors which magnify ground errors as 
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altitude is increased (Baltsavias 1999a).  LiDAR equipment providers quote flight altitudes from 

30m to 3500m (Brenner 2006), though the lower end of the range is typically used for power line 

surveys and corridor mapping where minimum swath width and high resolution are appropriate 

(Baltsavias 1999b).  Data density, feature resolution, and cost all increase as flight altitude is 

reduced.  Swath coverage increases as altitude is increased.  The Manatee County, Florida 

LiDAR data used for this thesis were collected at a flight altitude of 1200m.   

Figure 2:  Operation of laser ranging equipment.  AT and AR are transmitted and received 
amplitudes (Wehr and Lohr 1999, with permission from Elsevier). 

 

Along with altitude, airspeed directly affects the density of the elevation data.  Job 

requirements often dictate a maximum spacing between laser data points (post-spacing).  In 

addition to controlling flight parameters, the pulse repetition frequency may be modulated to 

adjust spacing perpendicular to the flight path while spacing along the flight path may be 

controlled with laser lateral scan rate.  Higher laser pulse repetition frequencies and faster scan 

rates can now provide a post-spacing of less than 1 meter (Brenner 2006). 
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LiDAR Post-Processing and Error Sources 

LiDAR DEM errors can be attributed to three broad categories:  aircraft/LiDAR system 

onboard errors, environmental errors, and post-processing errors.  

LiDAR Errors:  Onboard System Errors  

In a properly calibrated system, the significant aircraft/LiDAR unit errors are due to 

inaccuracies in the aircraft inertial navigation reference system, inaccuracies in the reported 

lateral scan angle and to a much less extent, range errors in the laser transmitter/receiver.  These 

inaccuracies affect lateral position much more than vertical position.  As a result, Baltsavias 

(1999b) reported onboard lateral errors of up to approximately 60 cm, but 20 cm or less 

vertically for an aircraft at 1000m altitude and 15o lateral laser scan angle.  In sloping areas of 

terrain, the lateral errors contribute directly to an increased elevation error as the laser spot may 

register a higher or lower point (up or down hill) on the terrain. 

LiDAR Errors:  Environmental Errors 

Environmental errors are generally less significant than other sources, and may generally 

be controlled with proper planning.  These errors stem mainly from poor weather and poor GPS 

satellite constellation coverage.  Turbulence is problematic due to its affect on aircraft inertial 

reference systems and is generally avoided.  Obstructions to visibility such as rain, fog or cloud 

cover attenuate the transmitted laser signal and must be avoided.  GPS inaccuracies are 

minimized by planning the flights considering the Position Dilution of Precision (PDOP), a time 

variable indicator of GPS satellite coverage. 
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LiDAR Errors:  Post-Processing Errors 

When the laser beam is transmitted to the ground it reflects off the first object it reaches.  

If this object allows some light passage, there will be multiple reflections from the same 

transmitted pulse.  For example, as the beam strikes a tree, there will be a reflection from the top 

of the tree, possibly several reflections from foliage and branches in the tree, and hopefully a 

reflection from the ground beneath the tree.  The result is that the raw data forms a three-

dimensional distribution of data points known as a point cloud.  The goal of post-processing is to 

produce an accurate final product for the user from this point cloud. 

Proper filtering of the point cloud to extract the bare earth surface by removing 

vegetation (sometimes referred to as virtual deforestation) and structures has been the subject of 

much research.  Two papers by Sithole (2004) and Zhang (2005), and a tutorial by Brenner 

(2006) serve to categorize and evaluate some of the algorithms in the public domain.  Much of 

the work in this area is proprietary.   

As building removal algorithms attempt to remove vertically sided structures, care must 

be taken that hydraulic features with steep sides are not removed as well.  Figures 4 and 5 depict 

this problem with LiDAR data from Pinellas County, Florida.  Figure 4 is a depiction of 

surviving bare earth points after filtering vegetation and structures.  It is obvious that most of the 

data points on the expressway have been filtered out.  Figure 5 shows the same area after 

artificially coloring a TIN constructed from the LiDAR points.  The lowest elevations are blue 

and the highest elevations red.  The data is overlaid on an aerial photo.  While overpasses were 

correctly removed, elevated areas of the expressway in the circles were removed as well creating 

a false conduit for flood waters.  Contrast Figures 4 and 5 with Figure 6 which is a similarly 
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colorized diagram of LiDAR data in Manatee County.  Only the overpasses and bridges have 

been removed creating an accurate depiction of the terrain for flood modeling.  

 

 

Figure 3:  Pinellas County, Florida LiDAR data showing improper filtering of elevated 
expressway 
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Figure 4:  Area from Figure 4 showing areas of error which will affect flood modeling 

 

 

Figure 5:  Manatee County, Florida LiDAR data with proper filtering of overpasses and roadbeds 
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The lateral scanning angle of the laser sensor limits the swath width of data gathered.  

Surveys to construct a DEM of a large area will require multiple overlapping strips.  The 

assimilation of these individual strips into a DEM is another source of errors.  Automated means 

are established to join the strips, but errors are still possible and manual quality control is 

generally required.  Verification strip data is typically collected on a perpendicular flight path to 

that used for the bulk of the data.  These perpendicular verification strips do not usually cover the 

entire study area.  Typically, strip alignment is checked by extracting defined objects such as 

roof lines, break lines, or ditches and ensuring that objects common to adjoining strips are 

coincident (Brenner 2006).  Users should be alert for systematic errors between strips. 

Overall, most errors from post-processing result from incorrect point classification.  Non-

surface points may survive the filtering process and be included in the DEM as artifacts or 

ground points may be incorrectly removed as discussed in the Pinellas County example above.  

Flood (2002) reports that automated procedures remove 80-90% of artifacts, but manual 

intervention is required past this point.  Costs associated with manual post-processing can 

approach 80% of the total LiDAR costs (FEMA 2003). 

Due to its extremely low reflectivity, water areas generally show up as data voids in the 

LiDAR point cloud.  Automated post-processing routines or manual intervention is generally 

required to correctly set elevations in these areas. 

LiDAR Data Requirements for Flood Modeling 

The Federal Emergency Management Agency sets requirements for Flood Hazard Maps 

in the United States in its publication, Guidelines and Specifications for Flood Hazard Mapping 
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Partners (2003).  Appendix A.8 of this publication establishes procedures and requirements for 

LiDAR survey data used in flood mapping.  Highlights of the FEMA requirements follow: 

Post spacing must be 5 meters or less.  DEMs must be constructed with the minimum 

grid spacing supported by the actual post spacing not to exceed 5m.   

FEMA defines a data void as areas with no data which are further than two times the 

DEM posting of the nearest data point.  If the data void is due to overflight positioning or system 

malfunctions, the data must be collected on other flights.  If the data void is due to dense 

mangroves or sawgrass the area may be interpolated from surrounding areas.  At the discretion of 

the FEMA Lead (the FEMA representative with project oversight responsibility), the same 

process may be used for data voids of less than 1 acre.  Over one acre voids require additional 

surveys unless the FEMA Lead deletes the requirement.  . 

Removal of outliers is a subject of discussion with the FEMA Lead.  Outliers with 

deviation greater than three times the standard deviation of the local data may be discarded.  

With agreement of the FEMA Lead, outliers amounting to up to 10% of the data may be 

discarded. 

The mapping partner must provide the top surface and bare earth x, y, z points in ASCII 

comma separated format.  A TIN must be built from the bare earth points and must include 

breakline data.  This TIN becomes the dataset against which other constructed datasets must be 

compared for accuracy. 

TINs and DEMs produced from TINs for flood mapping should have a maximum Root 

Mean Square Error (RMSE) of 18.5 centimeters in flat terrain and 37 centimeters in hilly or 

rolling terrain.  The mapping partner must verify this in all types of ground cover in the study 
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area by manually surveying at least 20 well distributed ground points on the floodplain in each 

ground cover category.   

Raber et al. (2007) investigated the implications of LiDAR post-spacing on the accuracy 

of flood simulations.  LiDAR data was collected at an average post-spacing of 1.35m for a 

floodplain in the Piedmont region of North Carolina.  The data was decimated to create DEMs 

with post-spacings varying from two to ten meters.  When using the five DEMs of varying 

resolution in five flood simulations with HEC-RAS and HEC-GeoRAS, there was no statistically 

significant variation in water surface elevations.  However, there were variations in resulting 

flood maps when the lower quality DEMs were used to construct the lateral extents of flood 

zones.  Errors of commission and omission of flood zones constructed using the lowest 

resolution DEM were up to 1.7% of the areas constructed with the most accurate DEM. 

Hydrographic LiDAR 

Most LiDAR sensors used for topographic LiDAR have almost no ability to measure 

water surface or bottom elevations.  While some hydrographic LiDAR platforms include 

topographic capabilities, hydrographic LiDAR’s different sensor requirements, reduced swath 

width and significantly higher costs have resulted in topographic and hydrographic systems 

taking separate developmental and operational paths.  Their fundamental difference is in the use 

of near IR lasers for topographic LiDAR and blue-green lasers for hydrographic LiDAR (often 

referred to as ALH – Airborne LiDAR Hydrography or ALB – Airborne LiDAR Bathymetry).  

Hydrographic LiDAR data is cost-effective when compared to traditional surface vessel survey 

techniques, but it is still much more expensive than topographic LiDAR.  The increased costs 

stem from the much higher price of the LiDAR equipment, its greater weight and power 
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requirements generally necessitating a larger aircraft platform, and the reduced swath width 

requiring greater flight times to cover a given area (2001).   

Hydrographic LiDAR systems must generally collect data at a much lower altitude than 

topographic LiDAR systems.  The altitude ranges from 200 to 400 meters and results in a swath 

width of 100 to 250 meters (Guenther et al. 2000; Heslin et al. 2003; 2005).  Compare this to the 

650m swath width employed collecting the data for Manatee County used for this research.   

Hydrographic LiDAR systems are limited to maximum survey depths of 26 to 70 meters 

(Heslin et al. 2003; 2005; USGS 2007).  However, it is important to note that these values are 

only attainable in clear water.  The turbidity of the water greatly affects the ability of the LiDAR 

to penetrate to the bottom.  As a rough guide, hydrographic LiDAR can generally penetrate to 

approximately three times the visible depth (Irish et al. 2000).  The value of hydrographic 

LiDAR is in surveying shallow coastal areas.  It is cost-effective and also provides an almost 

unique capability as these shallow areas are difficult to access with surface hydrographic 

surveying craft.  Two systems, the NASA EAARLS experimental LiDAR system and the 

USACE/USN/NOAA CHARTS LiDAR system, have the capability to simultaneously gather 

topographic and hydrographic data enabling detailed surveys of the shoreline (Heslin et al. 2003; 

USGS 2007).  The CHARTS system is also known by the name of its combined sensor package, 

SHOALS-3000. 

Most hydrographic systems are government owned, but there are some commercial 

contractors.  Most of the clients are government organizations or gas and oil companies (Millar 

2006).  In the southeastern United States, hydrographic LiDAR has often been employed to map 

the aftereffects of hurricanes.  NOAA has an active program using the SHOALS LiDAR system 
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to map coastline topographic and bathymetric change (2008).  Near the Manatee County study 

area for this thesis there have been several hydrographic LiDAR surveys in recent years.  Both 

the EAARLS and CHARTS have been used to map coastal areas of Manatee, Hillsborough, and 

Pinellas Counties in Tampa Bay.  LiDAR data from the EAARLS flights have been incorporated 

into the USGS/NOAA combined Tampa Bay topographic/bathymetric dataset (2006).   

LiDAR Data Handling 

The high density of LiDAR data and the large areas involved in coastal storm surge 

modeling result in large amounts of data.  Handling this volume presents several storing, 

viewing, and processing challenges.  Typical filtered bare earth LiDAR data for flood modeling 

could have one data point every one to five square meters with the finer resolution being more 

common (Young 2006).  A typical 5000ft square tile of filtered bare earth data for Manatee 

County has approximately 1.1 million data points.  This equates to a filtered point density of 2.12 

points/m2.   A comparison of the file sizes for storing this data as x, y, z coordinates and as a 5ft 

square cell grid are shown in Table 1.  
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Table 1:  File sizes for common LiDAR data formats – 1,096,131 points in 5000ft square area 

File Type ASCII1 ASCII GZIP2 LAS3 ESRI *.flt Grid4 

File Size 47.0 MB 9.26 MB 20.0 MB 3.82 MB 

1. Data has extra column coded -9999 probably intended for intensity measure.  Each point 
uses 32 ASCII characters plus spaces. 

2. ASCII file compressed with GZIP utility 
3. LAS is an industry standard binary LiDAR format.  It retains LiDAR specific information 

with each point such as scan angle and reflectivity.  Only x, y, and z data are stored for 
the example file. 

4. An open format binary grid consisting of a small ASCII header file and a binary data file.  
The example data uses 5 ft cells resulting in 1 million cells per grid.  Values are 4 byte, 
single precision.  This is an ESRI binary grid (sometimes referred to as GridFloat) but is 
not the format referred to as ArcInfo Binary Grid. 

 

Increased computer memory is sometimes required to work with these larger datasets.  

However, if using a Windows 32-bit operating system, a maximum of 2GB is available to a 

single process (2008).  64-bit versions of Windows avoid this problem, but little commercially 

available software has been produced to take advantage of the increased memory.  Most current 

software such as ArcGIS Desktop 9.3 (ESRI 2008) or SMS 10.0 (EMS-I 2006) run as 32-bit 

programs whether operating on a 32 or 64-bit Windows system.  To take advantage of the 

increased memory available on 64-bit systems, one must generally write his own software.  Even 

with 64-bit systems and custom software, there may be other hardware or economic limits that 

restrict available memory.  The result is that to work with LiDAR data of the size used for 

coastal storm surge models, currently only a small percentage of the data may reside in memory.  

There are three methods of dealing with this shortcoming:  batch, out-of-core, and streaming 

processing.   
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Batch Processing 

Batch processing is the most common method for overcoming virtual memory 

limitations.  LiDAR data is typically produced in grids (tiles) of very manageable size such as 

the 5000 ft square tiles of the Manatee County data.  One or more tiles are read into memory, 

processed, written to disk or discarded, and the operation repeated until the task is complete.  

This method is very convenient for custom software and is often used by commercial products.  

Some commercial products allow scripting or plug-ins to be added which can set up batch 

processes.  For problems that may be accomplished in a spatially sequential manner, batch 

processing is likely the easiest method to implement and is very efficient as data is only read 

once. 

There are, however, operations which do not lend themselves to batch processing.  These 

operations have global elements that require access to all data.  Examples that may occur in 

LiDAR processing for storm surge analyses include triangulation of points to form a TIN, 

boundary extraction, some types of feature extraction, types of terrain analysis to include 

watershed delineation, spatial searches, and visualization.  These must generally be handled with 

out-of-core or streaming processing. 

Out-of-Core Processing 

Out-of-core algorithms operate on large volumes of spatial data by reading in some data, 

operating on the data, writing data to disk, and repeating the operation with other data.  These 

algorithms differ from batch operations in that out-of-core algorithms do not necessarily operate 

on the data in a sequential manner, and the same data may be read and written more than once to 
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complete the process.  As computer input and output (I/O) to a disk is a relatively slow 

operation, algorithms are designed to minimize I/O.  Out-of-core algorithms are the most 

commonly used tool for computer programs that must access datasets larger than memory, but 

can not accommodate batch methods.  Fortunately there has been a great deal of research into 

out-of-core algorithms for spatial data.  Most methods are based on some type of tree data 

structure that by sequentially branching at nodes subdivide spatial data into groups that might 

resemble the tiles of batch processing.  The smallest groups, known as leaves, would generally 

have far fewer members than the tiles of batch processing.  An example of a region quadtree is 

shown in Figure 6.  Such tree structures provide flexible storage and access suited for spatial data 

that does not fill the bounding box evenly, such as coastal LiDAR data.  At each subdivision in a 

region quadtree, a node divides to four “children”.  Subdivision continues to the point that leaves 

contain a similar or maximum number of data elements.  The region quadtree is only one 

example of a spatial data structure.  The choice of a particular data structure depends on the type 

of data to be saved, the distribution of the data, and the types of searches and types of access that 

are required.  Samet’s books (1990a; b; 2006) provide excellent descriptions of spatial data 

structures.  
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Figure 6:  Spatial layout of data – dark areas denote regions with data (Samet 2006, with 
permission from Elsevier) 

 

 

Figure 7:  Tree data structure constructed to store data in Figure 6 (Samet 2006, with permission 
from Elsevier) 

 

Agarwal, et al. (2006) used a region quadtree with a hybrid I/O-efficient construction 

method to interpolate large point clouds of bare earth LiDAR data sets onto varying resolution 

grids.  Their algorithm significantly outperformed those in three commercial and open source 

GIS programs.  Interpolating a dataset using 236 million points onto a grid of 340 million cells 
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required 24.4 hours.  Neither ArcGIS 9.1 nor GRASS (2008) could process over 25 million 

points, while QTModeler 4 (AI 2008) could only process approximately 50 million.  Even 

though software adopts an out-of-core data access algorithm, processes may still scale poorly 

unless the computational code is written to minimize I/O operations.  However, most current GIS 

software is written to minimize computational time rather than minimize I/O (Arge et al. 2003).   

As previously described under FEMA requirements, TINs constructed from LiDAR 

datasets are used as a measure of accuracy for other derived datasets.  They may also be used for 

interpolation to meshes and for mesh construction.  Often, there is a requirement to add 

breaklines or other feature lines to a triangulation of points.  These breaklines or feature lines 

typically describe sudden slope changes or local elevation extremes in one direction.  Adding 

them to a mesh requires that they be preserved as edges in the triangulation.  Adding required 

interior segments to an otherwise Delaunay triangulation results in a constrained Delaunay 

triangulation.  The triangle elements which have the included segments as edges may not meet 

the Delaunay criteria of having no other nodes within the elements’ circumcircles.  Agarwal, et 

al. (2005) developed an I/O-efficient algorithm to construct constrained Delaunay triangulations 

of massive datasets.  The algorithm incrementally constructs a constrained Delaunay 

triangulation using Shewchuk’s Triangle algorithm (1996).  The researchers’ own algorithms are 

used to find and rectify conflicts between each incremental triangulation and the complete set of 

points, and their TPIE software package is used for efficient I/O operations (Arge et al. 2002b).  

In their experiments using datasets from 16.8 to 503.7 million points (336 to 10074MB), their 

algorithm required from approximately 15 minutes to 7 hours for constrained triangulation.  As 

this was the only known I/O-efficient constrained Delaunay triangulation scheme, it was 



23 

 

compared to the incremental constrained Delaunay triangulation algorithm of Triangle.  Triangle, 

though not I/O-efficient, is otherwise an extremely efficient in-core triangulator.  Triangle was 

only able to triangulate the smallest dataset due to its requirement to operate entirely in RAM.  

Experiments were conducted on a 32-bit Linux machine which is restricted to 4GB of RAM per 

process. 

The TPIE software package mentioned above is a library of routines that perform parallel 

input/output to enable programmers to write I/O-efficient out-of-core applications for handling 

large datasets.  The programmer calls the routines through a C++ application programming 

interface (API).  TPIE is intended to “abstract away the details of how I/O is performed so that 

programmers need only deal with a simple high level interface” (Arge et al. 2002a).  TPIE has 

only been implemented on Linux systems. 

Arge et al. have applied I/O-efficient methods to the problem of watershed delineation 

using gridded elevation datasets (Arge et al. 2003).  They compared their implementation to 

several commercial and open source implementations of watershed delineation software 

(ArcGIS, GRASS, TARDEM (Tarboton 2000)).  Arge’s I/O-efficient Terraflow software 

successfully delineated datasets with up to one billion cells (the largest dataset tested).  The other 

GIS software was inferior.  Only ArcGIS was competitive on several datasets being faster than 

Terraflow on small in-core experiments.  However, when applied to datasets that required out-of-

core processing, Terraflow was significantly faster, and was the only software tested capable of 

processing the largest billion point data file. 
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Streaming Processing 

Though streaming processing of data has been considered a subset of out-of-core 

routines, recent advancements made by Isenburg et al. (Isenburg and Lindstrom 2005; Isenburg 

et al. 2005; Isenburg et al. 2006) developed fundamental changes that differentiate the two.  With 

their developments, meshes (and other topological and spatial data) are read, and, if needed, 

written only once for each processing phase.  In order to accomplish this, spatial data is sorted to 

minimize the distance in the input stream between associated elements (triangle elements and 

member vertices in the case of triangular meshes).   Finalization tags are inserted in the stream to 

indicate when certain data will no longer be required.  The application reads a block of data 

(possibly several elements and nodes), operates on the data, writes data if required, then reads 

more data.  When a finalization tag is read, the data associated with the tag (e.g. an element or a 

node) is deleted from RAM.  In their work, Isenburg and his colleagues also developed several 

metrics for describing the suitability of a mesh layout for streaming processing.  The measures 

indicate the length of time elements and vertices remain in memory and the total bandwidth of 

elements and vertices in memory.  Reordering mesh layouts to be suitable for streaming 

processing is a fairly simple process that promises significant gains in speeds and maximum 

sizes. 

Isenburg and Shewchuk used streaming processing to triangulate massive LiDAR 

datasets (Isenburg et al. 2006).  They compared the results of their streaming processing 

algorithms to those of Triangle and the out-of-core routine mentioned above by Agarwal.  

Triangle, (an in-core only application), was out performed by the new streaming routine on in-

core datasets.  The new streaming routine also significantly outperformed Agarwal’s out-of-core 
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routine on massive datasets.  The streaming routine triangulated a 500 million point LiDAR 

dataset in 48 minutes that required 10-11 hours using the out-of-core routine.  However, 

Agarwal’s routine is capable of producing constrained Delaunay triangulations where the 

streaming routine is not.  Isenburg and Shewchuk state that modifications to their routine should 

be possible to allow constrained Delaunay triangulations.  A usable mesh generator for finite 

element meshes must be capable of constrained Delaunay triangulations to triangulate datasets 

with freely specified boundaries and boundary spacing. 

Past Work Using LiDAR to Influence Mesh Construction 

The following is a review of research that used LiDAR data to affect node placement, 

element size, or mesh segmentation in finite element mesh construction for flooding studies. 

Using LiDAR Geostatistics to Determine Element Size 

Bates et al. (2003) applied the principles of geostatistics to a LiDAR dataset used for a 

fluvial flood study to determine the proper finite element size.  Their dataset contained 261,634 

elevation data points with a maximum post-spacing of approximately 4 meters.  They used 

variograms, a geostatistics tool for analyzing the spatial dependence of data, to determine the 

maximum element size.  A variogram for an elevation dataset is a plot of the semivariance of 

elevation,  , between points as a function of their separation distance: 
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where  iz x  is the elevation of point i,  and  iz x h  is the elevation of a point separated by a 

distance h (Burrough and McDonnell 1998).  Figure 8 is an example of a variogram.  Burrough 
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and McDonnell describe spatial variance of data as consisting of three parts:  1) a structural 

component that varies over relatively longer scales (e.g. hill slope and the gradual rising of 

terrain from the ocean inland), 2) a random but spatially correlated component that varies over 

shorter scales (e.g. small undulations, ditches), 3) and noise due to error in the data.  Data at 

closer intervals share more similarities than data at greater distances.  The objective of the 

variogram is to analytically determine, for a certain scale, the distance where interdependence is 

lost.   

Figure 8:  An example of a variogram (Burrough and McDonnell 1998, with permission from 
Oxford University Press) 

 

From the example variogram in Figure 8, one sees that as point separation increases, the 

square of the difference in elevation increases as well, to a point.  Past this distance, called the 

range, elevations at separate points are not interrelated.  Points separated further than a distance 

equal to the range can offer no information about the other.  Where the curve fitted to the data 

intersects the vertical axis establishes the nugget.  The nugget is the variogram depiction of the 

amount of variability in two data points that are collocated.  It is a measure of the error in the 
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data.  Bates et al. used the variogram to locate the sill for their data.  If terrain is modeled with 

element sizes less than or equal to the range, the elements should represent the elevation 

variability.  If terrain is modeled over ranges greater than the range, there will be variations in 

the terrain that are not captured.   

To apply this to terrain modeling, one must first remove the longer period fluctuations in 

the data that one is assured of capturing.  For example, if building an overland finite element 

mesh for coastal flooding, one might consider a maximum overland element size of 500 meters.  

When constructing a variogram, it would be appropriate to remove structural components (hill 

slope) that exist over distances of 500 meters or greater.  Then, using this adjusted data and 

constructing variograms for a variety of terrain areas in the study area, one would determine if 

there is a separation distance for each terrain area at which spatial dependence is lost (the 

location of the sill in Figure 8).  The distance would define the local maximum element size for 

modeling terrain variation.   

In their analysis, Bates et al. considered four sample terrain areas in their domain of 

approximately 100 meters x 100 meters.  They constructed variograms using the freeware 

GSLIB geostatistics software (Deutsch and Journel 1998) after first removing structural 

components.  The authors do not describe what length structural components were removed.  

Their variograms showed sills from 7-10 meters for all areas.  The range of the sill will vary 

based on the particular terrain and frequency of the structural component removed. 

Cobby et al. (2003) employed a similar variogram analysis for LiDAR data used in 

another river flood analysis.  They completed the analysis on a pre-existing mesh to see if 

element size should be reduced.  Their existing maximum element size was 27 meters.  They 
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restricted their variogram analysis to this range, and found no sills less than 27 meters for the 

areas examined. 

Using a LiDAR Developed TIN to Determine Element Node Locations 

In the same study as introduced in the previous section, Bates et al. employed techniques 

to accurately fit the finite element mesh to the underlying terrain.  They explored different 

methods for determining the most topographically significant points from their LiDAR dataset.   

Due to the growth in use of geographic information systems, there has been a great deal 

of research into accurately describing terrain with a restricted number of points by means of 

triangular irregular networks (Chen and Guevara 1987; Little and Shi 2003; Silva et al. 1995; 

Sivan and Samet 1992; Vivoni et al. 2004).  Bates chose Chen’s very important point (VIP) 

method for its computational efficiency and ability to capture elevation changes over short 

distances.  In their study, they constructed an irregular finite element mesh using the VIP point 

selection algorithm and compared results to a previous mesh using the same LiDAR dataset 

(Marks and Bates 2000).  The previous study used fine resolution elements in the channel, but 

then gradually coarsened resolution to the edge of the floodplain with a total of 6049 nodes and 

11,265 triangular elements.  In the new, topographically influenced mesh they used the same 

2885 channel nodes, selected a different set of 831 boundary nodes, and added 2173 nodes 

selected by the VIP algorithm.  These 2173 nodes represent 2% of the LiDAR dataset.  The VIP 

algorithm does not respect finite element mesh requirements for neighboring element area 

transition or maximum element size.  Therefore, Bates used Horritt’s Cheesymesh fluvial finite 

element meshing modification of EasyMesh (Horritt 2000) to add 1670 points to develop a final 

mesh with 8132 nodes and 15,396 elements.  This represents a 34% increase in nodes and a 37% 
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increase in nodes from the non-topographically influenced mesh, and clouds the comparison of 

results between the two meshes. 

The domain was characterized by a somewhat rolling floodplain surrounded by rather 

steep terrain at the floodplain edges.  Overall, the terrain is more varied in elevation than typical 

coastal terrain in the southeastern United States.  LiDAR data was not available for the lower 

third of the domain.  Therefore, for this and the previous study models, the mesh in this area was 

constructed without regard to topography. 

Results of the study showed marked differences in inundation extent and water depth 

between the control and topographically influenced mesh during the rising and falling limbs of 

the flood hydrograph.  There was little difference in peak inundation extent since the historic 

flood used for the simulation generally filled the floodplain to the steeper boundary.  Overall, the 

bulk measures of peak flow and peak flow timing were very similar between the two meshes.  

Interestingly, there was a significant difference in mass balance between the two meshes with the 

non-topographically influenced control mesh being much better.  The authors considered mass 

balance for both meshes to be acceptable and attributed the difference to the greater mesh 

irregularity and thus greater variability in area ratios between neighboring elements in the new, 

topographically influenced mesh. 

In their conclusions the authors noted, “It is also clear that we need methods to identify 

and connect linear topographic features in the LiDAR data, given their significant hydraulic 

impact. None of the methods described in this paper does this explicitly, and their ability in this 

respect needs to be explored further.” 
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Extracting Breaklines from LiDAR Data to Segment Mesh 

Rath and Pasche (2004) developed automated meshing procedures to include breaklines 

in fluvial flood studies using LiDAR datasets.  They reviewed 6 slope based (first order 

derivative) and one curvature based (second order derivative) method for automatically 

extracting breaklines from LiDAR data and chose NOAA’s one-over-distance method for their 

use.  They extracted breaklines from a 1 meter cell size LiDAR DEM and then used the 

breaklines as planar straight line graph (PSLG) inputs to the Triangle Delaunay meshing routine.  

Maximum element sizes were restricted to 100 m2.  Analysis verified that the constructed mesh 

agreed accurately with the underlying terrain dataset according to FEMA requirements.   

At this resolution scale in their model it becomes practical and even necessary to include 

breaklines.  At the scales of current coastal flooding meshes, many breaklines are so close to 

each other that including them would drive element sizes down to unacceptably small sizes.  For 

example it is currently impractical to include breaklines for an expressway road edge and the 

adjacent drainage ditch.  The elements between the breaklines would generally be too small to be 

computationally feasible. 

A later study used Rath and Pasche’s work to develop an automated software meshing 

tool which includes breakline extraction, in-channel regular triangulation, and out-of-channel 

Delaunay triangulation (Berkhahn et al. 2005).  Their meshing tool, HybridMesh is an adaptation 

of Goebel’s HydroMesh (2008). 
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Using LiDAR Data to Determine Surface Friction from Vegetation Heights 

Cobby et al. developed methods to extract vegetation heights from LiDAR data for use in 

river flooding studies.  In their first study they developed an automated segmenter that defined 

the domain based on elevation and divided it into water and non-water regions (Cobby et al. 

2001).  They then processed the LiDAR data to determine the average vegetation height for each 

grid cell and tagged each DEM grid cell as either short or tall vegetation.  Mason et al. made use 

of Cobby’s segmenter and further developed procedures to model the vegetation friction factors 

(Mason et al. 2003).  They used past research which had established a set of empirical equations 

to compute Manning’s n values according to plant submerged height and shear stress to assign 

spatially and temporally varying friction factors for their models.  Plant submerged height and 

shear stress were updated at each time step in a river flooding study using the Telemac-2D 

model.  As in the Cobby et al. 2001 study, vegetation was divided into short and tall categories 

with separate friction models.  The Manning’s n values for shorter vegetation were assigned 

based on research on grasses while values for tall vegetation were based on trees.  Results from 

this study agreed well with historic records for the test flood, and also agreed well with a model 

using constant spatial and temporal friction values.  The authors noted that interpretation and 

sometimes tuning is required to accurately assess floodplain friction factors over a large region.  

They saw the major advantage in their method as enabling an analytical establishment of friction 

factors which should avoid any requirements for tuning. 

Cobby et al. used the refinements of Mason et al. (2003) and added the capability to 

automate refinement in the area of tall vegetation consisting of trees and hedges in their domain.  

Their procedure located individual trees and defined lines of hedges, and then automatically 
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refined the mesh in these areas.  They also applied the VIP method to determine element node 

locations as in Bates et al. (2003).  The Vegemesh meshing tool produced was a further 

refinement of the Cheesymesh software described above.  Their model performed well and 

agreed well with historic results and meshes constructed using constant spatial and temporal 

friction.  The authors did, however, note significant differences in local velocities between their 

variable friction mesh and the constant friction control. 

Using LiDAR to Model Sub-Grid-Scale Features 

Bates et al. (2003) used elevation information from LiDAR data points within each finite 

element to adjust model calculations for the true terrain profile.  A modified version of Telemac-

2D was developed by Bates and Hervouet (1999) to account for this sub-scale elevation detail.  

Along with other changes to the model, the sub-grid-scale algorithm was implemented as a 

correction to the continuity equation for the true volume of water on any partially wet element.  

Considering the actual topography within the element, a function was developed for each 

element relating water depth above a node for a planar element to the actual volume of water on 

the element.  Only slight differences were noticed in the results between this mesh and the mesh 

which did not use sub-grid-scale corrections.  Both meshes employed VIP selection of nodal 

elevations.  Of the three meshes tested in this report, this final mesh with sub-grid-scale 

corrections was the least accurate in terms of mass balance.  This mesh lost 6.61% of the 

hydrograph volume compared to 5.75% for the mesh using VIP but no sub-scale corrections and 

1.37% for the non-topographically influenced control mesh. 
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Using LiDAR to Cue Adjustments for Structures in Urban Flooding Studies 

As a follow on to their previous work in rural flooding, Mason et al. (2007) developed 

techniques for modeling high resolution urban river flooding.  Their urban mesh accounted for 

flow around buildings and employed an automated size function to limit the number of nodes 

and elements in the mesh.  However, this was still an extremely highly resolved model with a 

node density of 24,000 nodes / km2. 

 Buildings were extracted through a combination of LiDAR filtering and cueing from UK 

Ordnance Survey Mastermap digital map layers which include buildings, roads, water bodies, 

and man-made surfaces.  In the finest resolution mesh, the building boundaries became mesh 

boundaries in the model.  Meshing in between buildings required extremely fine elements down 

to 1m size.  The domain was also segmented according to vegetation regions as in their previous 

studies.  A distance transform was developed similar to a medial-axis transform to define the 

distance from any point in the domain to the nearest border.  In this model there were many 

interior borders due to buildings and vegetation regions which limited element size.  Element 

size was gradually increased as distance increased from a border.  Additional meshes of 10, 20 

and 50m minimum resolution were developed to compare two alternative strategies for modeling 

buildings.  The first alternative meshed over the building footprint then assigned varying porosity 

values to those elements on an area weighted basis according to their building coverage.  The 

second alternative used the same mesh but masked elements that were more than 50% covered 

by buildings.  A mesh boundary was established around the masked elements. 
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As element sizes converged to the finest resolution, both strategies were accurate when 

compared to the highest resolution model.  However, as element sizes increased, the porosity 

model was significantly more accurate than the blockage model. 

Using LiDAR Data to Extract Linear Raised Features 

Roberts (2004) developed procedures to automatically locate raised features using 

LiDAR data while constructing a large coastal storm surge mesh for Southern Louisiana and 

Southern Mississippi.  The mesh for this simulation was probably the largest coastal storm surge 

mesh produced up until this time.  It contained 2,670,245 nodes and 5,244,344 elements.  

Roberts details the mesh construction procedures in his thesis; further details of the storm surge 

simulation are available in Feyen  (2005).   

Southern Louisiana is protected by many miles of flood levies.  Locating them for 

explicit inclusion in the mesh was a significant task made easier by automated search methods.  

Roberts’ procedure evaluated each cell in the LiDAR DEMs covering the domain to locate raised 

features.  The data consisted of over 1.86 billion points in 1164 tiles.  Each grid cell was 

evaluated on the basis of its relation to the average elevation and minimum elevation in the 

surrounding area.  Additionally, the maximum gradient surrounding the cell was determined.  If 

this gradient met a minimum criterion, additional gradients were checked opposite the maximum 

gradient.  If all the above criteria were met, the point was included as a vertical feature.  The 

result was a group of points clustered at vertical features requiring hand digitization to convert to 

mesh features, usually internal weirs.  Some points incorrectly passed through the filtering 

process.  After checking against aerial photos they were removed. 
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CHAPTER THREE:  SURVEY OF METHODS FOR EXTRACTING 
VERTICAL FEATURES 

 

Methods surveyed in this chapter arise from both geographical science and image 

analysis.  Geographical methods to extract terrain features are from DEMs are usually intended 

for constructing TINs, locating breaklines, and classifying terrain into categories such as hills 

and valleys, peaks and pits, or ridges and watercourses.  Some of these geographical methods are 

closely related to watershed delineation methods that use the terrain morphology to subdivide 

terrain into watersheds.  Finally, there are related imaging analysis techniques used for extracting 

ridges and valleys from photographs and other images.  All of these will be discussed.  A more 

in-depth discussion will be given for watershed delineation and imaging analysis methods which 

will be used in this work to extract ridge locations from LiDAR datasets. 

In general, most research into ridge extraction relates to image analysis where ridges are 

seen as continuous lines of very light color in a gray-scale image.  Most research concerning 

feature extraction from DEMs has concentrated on extracting breaklines and watershed 

boundaries. 

Direct Elevation Comparison for Feature Extraction 

Early methods for extracting peaks, pits, ridges, and ravines concentrated on comparison 

of a point’s elevation to the surrounding points or a surrounding neighborhood.  Johnston and 

Rosenfeld (1975) located peaks and pits by finding points which were local maximums in a 4 x 4 

cell , 8 x 8 cell , or 16 x 16 cell neighborhood.  Ridges were located using a similar local 

comparison.  On one grid, points were selected if they were higher than their north and south 
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neighbors and / or their east and west neighbors.  Next, a 2 x 2 cell or 4 x 4 cell moving window 

was scanned across the DTM.  Each cell on a second grid was assigned the highest elevation in 

the window while the window contained the cell.  The north-south and/or east-west maximum 

were determined for the second grid in the same manner as the first.  The ridge points were 

chosen as the intersections of the east-west and north-south maximums of the two grids.  The 

second grid had the effect of smoothing the DEM and limiting closely spaced ridges. 

Peucker and Douglas (1975) used the concept of flow lines to locate ridges and ravines.  

They describe the concept as continually moving up from every grid cell to the cell’s highest 

neighbor.  If this movement is begun from every cell, the only cells which will not be visited 

(though they will have had departures) are ravines.  If the reverse is performed by moving 

downward from every point, the only cells not visited will be ridges.  The same concept was 

applied later in watershed delineation algorithms.  However, the difference is that this and the 

prior algorithm only use a local neighborhood of points for feature classification.  There is no 

consideration of the global structure.  Watershed delineation and other later feature extraction 

algorithms have elements that consider features in relation to a larger neighborhood that reduces 

the number of false declarations.  Greater horizontal and vertical DEM resolution has limited 

these local algorithms’ viability.  When applied to a sample LiDAR tile for Manatee County, the 

results were essentially useless with far too many points declared ridges. 

Some local comparison methods have had greater success and longevity in TIN 

construction than in ridge and ravine extraction.  Chen and Guevara’s (1987) VIP TIN 

construction algorithm continues to be used due to its simplicity and speed.  The algorithm 

analyzes each point in relation to its eight grid neighbors.  For each four pair of opposed cells in 
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the neighborhood (e.g. the upper right and lower left neighbors) an error is determined between 

the center cell’s actual elevation and the elevation that would be linearly interpolated from the 

neighbors.  The errors from interpolating the center elevation using the four pairs of neighbors 

are averaged and constitute the importance of the point.  Points with higher error values are more 

important than points with lesser errors because the higher error points would cause the greatest 

error in the TIN if they were not included as triangular element vertices.  While the VIP 

algorithm is efficient, when Lee (1991) compared the VIP algorithm to two other TIN 

construction algorithms that consider global aspects of the terrain, he found the other methods 

were generally more accurate. 

Shape Fitting Methods for Breakline Extraction 

The following are two examples of work that developed methods to extract terrain 

features by shape matching.  The researchers used geometric objects with shapes that roughly 

match those of the desired terrain elements.  The terrain elements are located by finding where 

the shapes best fit the terrain in a least squares sense,. 

Briese (2004) extracts breaklines from LiDAR datasets by fitting planar surfaces to both 

sides of the breaklines as in Figure 9.  The method requires manual digitizing or some other 

method to provide an estimate of the breakline to begin automated extraction.  Once a start point 

near the breakline and the estimated direction of a tangent to the breakline is provided, the 

automated system assigns LiDAR data points near the start point to a plane on the flat terrain or 

the sloped surface.  Each point is weighted according to its distance from the breakline and its 

distance out of plane.  As points are added, the surface fit is adjusted and points may be moved 

from one surface to the other to minimize the least squares error for fitting points to the planes.  
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The process continues until no more points are moved.  The patch lengths are rather short to 

allow the method to follow curved breaklines. 

 

Figure 9:  Surface patches used to locate breaklines from LiDAR data (Briese 2004) 

 

Brzank (2005) modified Briese’s method by using hyperbolic tangent patches rather than 

planar patches.  One hyperbolic tangent patch replaced four of Briese’s planar patches – two on 

the lower breakline and two on the upper.  To completely parameterize the hyperbolic tangent 

patch requires estimating six parameters by matching the patch to the LiDAR data.  A significant 

improvement with this method is the ability to use edge detectors from imaging analysis to locate 

the approximate centerline of the steep terrain rather than having to locate both upper and lower 

breaklines.  These edge detectors will be discussed in the section covering imaging analysis 

methods for terrain feature extraction.  Once an approximation for the breakline was determined, 

the data was fitted to the patches using a non-linear least squares method.  Finally, the hyperbolic 

tangent patches are used to estimate upper and lower breaklines.  
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Contour Line Methods for Ridge and Valley Extraction 

Contour line methods as well as all remaining methods to be discussed use a more formal 

application of differential calculus to partition terrain and extract terrain features.  Contour 

methods of feature location and terrain partitioning rely on first extracting contour lines from the 

elevation dataset.  These methods then locate ridges and ravines as a human would when looking 

at a map with topographical contour lines.  They locate the points of maximum curvature of the 

contour lines and connect them as ridges or ravines.  Kweon and Kanade (1994) define directions 

tangent and normal to the contour lines as shown by the t and n axes in Figure 10.  If the 

elevation out of the page is given as z, then the first derivative of z with respect to the normal 

direction, n, would describe the slope along the ridge line.  The second derivative of z with 

respect to the tangential direction, t, would describe the curvature over the ridge.  The tangential 

direction defines the direction of maximum curvature.  Kweon and Kanade then define a 

ridgeline as the locus of points with: 
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They use discreet methods to calculate derivatives based on shape and proximity of contour 

lines.  Ridge lines are then constructed to connect ridge points on contour lines.  The system has 

several problems for application to coastal LiDAR datasets.  Steger (1998) noted that the method 

does not work for terrain as shown in Figure 11.  Instead of extracting the center of the crowned 

ridge, the method would extract the two points of maximum contour curvature which are not the 

highest points.  Terrain such as this is representative of an interstate highway on a slight grade.  
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Most of the significant raised features in coastal areas are man made, and many exhibit similar 

contour profiles.  Steger also noted that the method cannot extract a level ridgeline, also fairly 

common as a roadbed in coastal terrain.   

 

Figure 10:  Example contour lines with tangential and normal directions. 

Figure 11:  Flat ridge which is incompatible with contour line extraction methods 

 

Differential Terrain Analysis 

Rath and Pasche’s (2004) work to use LiDAR data to segment river floodplains into 

regions delineated by the river banks, the boundary, and breaklines was previously discussed in 

Chapter Two.  This section will concentrate on their methods for breakline detection. They 

attempted to determine the most suitable method for locating breaklines from six first order slope 
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based and one second order change-of-slope based methods.  All methods they explored had 

been previously proposed for computing terrain slope from DEMs, or locating curvature changes 

in the case of the second order method.  They were attempting to extract both upper and lower 

breaklines which separated relatively flat areas from terraces and embankments.  Their small 

domain allowed very fine resolution so that they were able to include elements in the relatively 

small but steep area between the upper and lower breaklines. 

All first-order methods applied a variation of a finite-difference method to a 3 x 3 cell 

window surrounding each cell to calculate terrain slope for the cell.  The algorithms computed a 

slope magnitude for each cell but were not concerned with the direction of maximum slope.  

When using first order slope calculation methods, the authors segmented terrain into areas of 

slope less than and greater than some critical slope value.  They would then delineate the actual 

breaklines by eliminating the steep slope tags on points surrounded by other steep points.  These 

were points in the interior of the steep areas.  This process was continued until only one pixel 

wide breaklines remained.   

The second-order method applied a two-dimensional Laplacian function to a surface that 

had been smoothed with a Gaussian kernel.  The combined function is called the Laplacian of 

Gaussian (LoG) and is also known as the Marr Hildreth edge detector, an early edge detector 

used in image analysis (Marr and Hildreth 1980).  Zero crossings in the Laplacian define points 

of changes in curvature of the Gaussian smoothed terrain.  As an edge generally has only one 

reversal of curvature, it is unclear how the authors extracted upper and lower breaklines using the 

LoG function.  Nevertheless, they found the LoG unacceptable because of poor edge 

localization, susceptibility to noise, and missing edge points. 
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The authors selected the one-over-distance first order method, but did not give reasons 

for their choice.  Their method successfully extracted breaklines from the LiDAR DEM. 

Image Analysis Techniques for Feature Extraction 

There are many techniques for extracting information from visual images.  Many of these 

techniques concentrate on representing a visual image in a computationally manageable or 

computationally compact form.  Many are devoted to developing computer vision algorithms.  

These computer vision algorithms are used for tasks as varied as unmanned vehicle navigation, 

automated medical image analysis, and fingerprint matching.  An important basic tool for 

computer vision is edge detection.  Several edge detectors have been developed for visual images 

which extract lines from an image in order to present an image in vector form which is better 

suited for certain computational operations.  Sometimes extracting the location of the edges 

themselves is of greater importance than simplifying the image.  In images, edges refer to areas 

with a large intensity gradient in one direction (normal to the edge) with a small intensity 

gradient in the orthogonal direction (parallel to the edge).  A more difficult problem which 

follows from edge detection is ridge and valley detection.  Ridges in images appear as light lines 

against a darker background and may be roads in an aerial photograph or arteries in a medical 

image.  When analyzing a grey scale photograph, ridges appear as areas with large negative 

second derivatives (grey scale images vary from number 0 black to number 256 white) in the 

direction of the maximum second derivative.  This corresponds to the meaning of terrain ridges 

as represented in a DEM.  For this reason we may apply techniques for extracting features from 

images to extracting features from topographic DEMs. 
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I will begin the discussion of image analysis feature extraction with a discussion of the 

Canny edge detector.  The Canny edge detector is a well established edge detector that is also the 

basis for many other image analysis extraction tools.  After discussing the Canny edge detector, 

methods for extracting ridges from images will be discussed. 

Canny Edge Detector 

Canny stated three objectives for an edge detector.  First, it should have a high 

probability of detecting a real edge and a low probability of detecting an edge where there is 

none.  Second, it should locate edges as close to their centerlines as possible.  Finally, there 

should be only one response to each edge (Canny 1983).  All, of these objectives were 

challenging when Canny created his detector, and they continue to be challenging now. 

Canny began his search by determining the optimal edge detector for step edges in the 

presence of white noise.  He determined the optimum detector analytically then showed that it is 

very similar to the first derivative of the Gaussian function,  G x , where: 
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The response to the detector is the result of taking the derivative of the convolution of the 

Gaussian (4) with the image,  I x : 

        d d
R x G I G x I x d

dx dx
 





 
    

 
  (5) 

The derivative property of a convolution allows the derivative to be taken in any order: 
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So that, in a discreet sense, the response to the detector may be written as: 

      R x G x I x
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For Gaussian kernels, the limits on the dummy variable,  , are generally replaced with a 

multiple, n, of the standard deviation,  , such that  G n  is sufficiently small (3 was used in 

the work here).  See Steger (1998) for an analytical process for determining mask size.  

Canny chose the Gaussian as the filter kernel in spite of its slightly lower accuracy than 

the analytically derived filter due to the Gaussian kernel’s properties that make it much more 

computationally efficient.  The two dimensional Gaussian kernel is linearly separable into 

orthogonal components so that an image or dataset may be convolved with fewer operations.  

Once the kernel is decomposed into orthogonal components, which are themselves equal as it is 

circularly symmetric, the image may be convolved in one direction followed by convolving the 

resulting image in the orthogonal direction.  The linearly separable property reduces the required 

multiplication operations for each image cell from 
2
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.  Figure 12 depicts 

a step edge, the convolution of the step edge and the Gaussian kernel, and the Canny edge 

detector response, the derivative of the convolution. 
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Figure 12:  Canny edge detector response to step edge 

 

Sui (2002) used a Canny edge detector to extract breaklines in terrain.  He normalized the 

elevation values to gray scale values of 0-255, and applied Canny’s methods of non-maximal 

suppression and hysteresis thresholding discussed later. 

Image Analysis Techniques for Ridge Detection 

Locating ridges in images is an extension of the methodology of locating edges.  It is 

somewhat more complicated in real world data, and certainly terrain data, because of the greater 

variability of ridge width versus edge width.  Most techniques begin with a Gaussian convolution 

of the image.  This serves two purposes; first, it smoothes out noise, and, second, it is the first 

step in many detectors.  Convolving the image once fills both requirements.   

The size of the Gaussian kernel used in the convolution is an important parameter in 

determining the feature size that can be extracted with many methods.  This selection of the 
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standard deviation of the Gaussian kernel yields another dimension in the feature extraction 

problem.  The dimension is termed scale space. 

Scale Space 

The ability to see an object with our eyes is a function of object size and our distance 

away.  The shape of the mountain we see in the distance is indistinguishable when we are on the 

mountain.  Trees visible at close range are indistinguishable when we are far away.  In the same 

sense, there is a range of scales for features in images.  Scale space refers to the continuum of 

smoothing scales such that with greater smoothing fine objects disappear while coarse objects 

begin to dominate the scene.  The only function that satisfies the linearity and shift-invariant 

requirements to operate in scale space is the Gaussian function (Steger 1998).  The scale space 

parameter is then the variance of the Gaussian kernel, 2t  .  To proceed through scale space, 

an image is convolved with Gaussian kernels having progressively larger values of t.  Konderink 

(1984) found that scale space may be described by the diffusion equation: 
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where the Gaussian function is a solution: 
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Figure 13 shows the effects of scale space on a one-dimensional image.  The dark blue function 

at the bottom of the chart is: 

      1 cos 1 2,2I x x x        (10) 
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Both convolution results in the figure are scaled by a factor of 0.2.  At 0.01t    0.1  , the 

convolution distinctly represents each individual ridge.  At 1t  , the convolution has blended the 

two features into one.  This is also evidence of another characteristic of scale space – as the scale 

increases (increasing values of t), the derivatives of the convolutions decrease.  This is, of 

course, also evident from the fact that scale variable, t, serves the same function as time in the 

diffusion equation (8).  As it is desirable to be able to compare relative strength of return from 

one location in scale space to another, Lindeberg (1993) defined a normalized or non-

dimensional scale space parameter: 
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The companion derivative operator is then: 

 xt    (12) 

Lindeberg demonstrated that when applying Equation (12) and calculating derivatives of 

convolved periodic functions, the maximum value of t depends only on the wavelength 

(analogous to ridge width) and that the maximum response does not depend on wavelength.  This 

is exactly the desirable behavior mentioned above.  Therefore, normalizing the convolved 

derivatives for location in scale space allows one to compare responses for various width ridges 

(which will necessarily be extracted with a range of scales).  The response amplitude does not 

depend on the position in scale space as it does for the non-normalized derivatives. 
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Figure 13:  Two convolutions of a function showing effects of scale space 

 

Our scale space viewpoint affects what we see.  Consequently, we choose our location in 

scale space to see features of the scale of interest.  Most image analysis ridge detectors depend 

on effective use of scale space to detect ridges. 

There are several varieties of image analysis ridge detectors.  Steger (1998) presents an 

excellent review of their methodology and limitations.  I will discuss three of these ridge 

detection schemes that have application to ridge detection in DEMs. 

 Lindeberg’s Method of Ridge Detection 

Lindeberg extended his idea of scale space normalized derivatives mentioned above with 

his introduction of g-parameterized normalized derivatives (Lindeberg 1998): 

 2
,x norm xt
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When 1  , (13) is equivalent to (12).  However, Lindeberg gives examples where derivative 

normalization and, hence, extraction is improved if the   varies from 1.  The value of   depends 

on the shape of features to be extracted and the detection algorithm.   

For ridge detection, Lindeberg defined three differential invariants to be used as measures 

of saliency.  The first invariant is a measure of principal curvature: 

  , ,maxnorm pp norm qq normM L L L      (14) 

where L is the convolved image, and ppL  and qqL  are the second derivatives in the principal 

directions such that 0pq qpL L  .  Although not stated by Lindeberg, to detect ridges only, the 

principle second derivative with greater absolute value must be negative. This metric has some 

limitations as it will have a strong response for hills as well as ridges.  The second differential 

invariant corrects for this limitation: 

  22 2
, ,norm pp norm qq normN L L L       (15) 

And with rotation from the principal directions to the x, y axes: 

    2 24 24norm xx yy xx yy xyN L t L L L L L
 

      
 (16) 

This strength measure Lindeberg calls the  -normalized square principal curvature difference 

returns large values for large differences in principal curvatures as would normally be seen along 

a ridge.  The final measure totally eliminates the Laplacian response to blobs from the 

 2

xx yyL L  term in (16): 

  2

, ,norm pp norm qq normA L L L       (17) 
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which in terms of x, y derivatives gives: 

  22 24norm xx yy xyA L t L L L
 

     
 (18) 

Lindeberg presents an algorithm for connecting the local maximums in scale space given by one 

of (14), (15), or (17) into scale space curves defining ridges in the two-dimensional spatial plane 

at varying scales. 

Steger’s Method of Ridge Detection 

Steger first convolves images with first derivatives, second derivatives, and mixed first 

derivatives of the Gaussian kernel.  In this way he makes use of (6) to minimize calculations.  He 

designates ridge points by finding locations where the image convolved with the first derivative 

of the Gaussian is zero: 

    , , ; 0I x y G x y t   (19) 

But rather than searching for roots in the convolved surface, he constructs a Taylor polynomial 

for each pixel.  With the direction of the line taken from the rotation angle of the Hessian matrix 

to principal curvatures, he forms the unit vector in the direction of maximum curvature  ,x yn n .  

The Taylor polynomial gives the elevation of the convolved surface in the x and y directions: 

      

2 2

2

0 2 2

2

1
,

2

r rr
xx x yx

r x y r x y x y
r yr r
y x y y

   
                    
       

 (20) 

where r is the value of the convolved surface relative to an origin at the center of the pixel.  

Alternatively, this can be expressed relative to the direction of maximum curvature: 
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      
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                          

 (21) 

Taking the derivative with respect to a, the coordinate in the direction of maximum curvature, 

and setting the result equal to zero yields a location for the estimate of the level point, p, in the 

normal direction: 

    , ,x y x yp p an an  (22) 

where 

 2 2 2
2 2

2 22

x y

x x y y

r r
n n

x y
a

r r r
n n n n

x x y y

 
 

  
 

   

 (23) 

As a measure of saliency, Steger recommends adding a requirement that the curvature in the 

principal direction of maximum curvature exceed some minimum.  Steger does not advocate 

using multiple convolutions at different scales for his method, but rather recommends a 

minimum value of   based on the objects to extract.  He investigates the requirements for 

identifying bar edge and parabolic ridges analytically and arrives at a minimum requirement of: 

 
2 3

w   (24) 

Steger also presents analytically derived methods for correcting the ridge location for 

asymmetric gray-levels (analogous to elevation) on either side of the line, and for precisely 

locating edges of lines that have width (e.g. roads). 
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Koller et al. Method of Ridge Detection  

The method developed by Koller et al. (1995) relies on the concept that ridges consist of 

two edges.  Edge detectors are used to detect edges, and then combined in a nonlinear fashion to 

detect ridges at the scale of interest.  Figure 12 showed the response of a Canny edge detector to 

a step edge.  Figure 14 combines the same response to the left side of the bar ridge, and the 

negative of the response to the right side of the bar  1  .  Figure 15 shows the signals shifted 

by   towards the center of the bar edge.  These shifted signals are combined by taking the 

minimum of the positive portions of their intersection.  The final signal is shown in Figure 16.  
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Figure 14:  Left and right responses to edges of bar ridge function 
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Figure 15:  Left and right shifted responses to edges of bar ridge function 
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Figure 16:  Combined response to bar edge for Koller et al. ridge detector 

 

For extension of the concept to two dimensions, the edge response must be determined 

for the direction of maximum curvature of the convolved surface.  The direction of maximum 
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curvature is taken from the eigenvalues and eigenvectors of the Hessian matrix.  With a 

convolved image, L , once the unit vector in the direction of maximum curvature, n


, is known, 

the response at any location 0x


 can be determined by first calculating the shifted right and left 

directional responses: 

  0lR L x n n   
    (25) 

  0rR L x n n   
    (26) 

The total response is then calculated as in the one-dimensional case by choosing the minimum of 

the left or right response after discarding any negative values. 

To apply the multiscale properties of the edge detector, the process is iterated through 

scale space selecting values of 
2

w   where w represents any ridge width of interest.  Koller et 

al. showed that the largest response and hence the optimum detector for any width of bar ridge is 

given by: 

 0.83356
2opt

w   (27) 

While iterating through scale space the largest response is recorded for every pixel or cell along 

with the value of   that gives the response.  Knowing the   value giving the maximum 

response and using (27), one may obtain an estimate of the ridge width at any response point.  

This method will be applied in the next chapter to extract ridges from LiDAR datasets. 

Limitations of Ridge Detection with Image Analysis Techniques 

It is important to understand that while image analysis ridge detection techniques may 

certainly be applied to terrain DEMs, these techniques do not, in general, declare ridges based on 
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the way water runs downhill.  Unless the technique uses the roots of the first derivative of the 

DEM as a ridge metric, the technique will generally not precisely detect ridges in the 

geomorphological sense.  It is up to the user to decide if the technique is acceptable and to 

analyze errors and impose limits on the location error.  For this research, precise location of the 

ridge is secondary to detecting the ridge.  Errors due to omitting the ridge from a coastal flooding 

finite element mesh may cause water surface elevation and inundation errors over a relatively 

large area of the domain.  On the other hand, errors in location of the ridge will only cause errors 

over a relatively small area of the domain. 

Watershed Delineation for Ridge Extraction 

Although watershed delineation algorithms are not designed to be ridge extraction tools, 

they perform as such, in a limited manner.  The boundary of a watershed satisfies the intuitive 

definition of a ridge; water on either side of the watershed boundary flows downhill in opposite 

directions.  To be considered as a candidate ridge for my method using watershed delineation as 

a starting point, terrain must lie on the boundary of the watershed.  Conversely, no ridge can be 

extracted, though they could certainly exist, unless they lie on a watershed boundary.  The 

number and relative size of ridges extracted will directly depend on the size of watersheds 

delineated.  After the watershed boundaries are identified, other metrics are applied to gauge the 

significance of the boundary as a ridge. 

O’Callaghan and Mark (1984) are credited with first assembling a comprehensive set of 

algorithms for extracting drainage networks and delineating watersheds from DEMs.  The 

TauDEM software that will be discussed and used in this work from Tarboton (2005) seems 

closely related to the algorithms of O’Callaghan and Mark.  Tarboton’s algorithms have several 
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improvements for flow direction determination, stream support area decision making, pit filling, 

and compatibility with established stream networks (Tarboton and Ames 2001).  

TauDEM is freeware software available as a plug-in for ArcGIS and MapWindow 

freeware GIS.  The source code for TauDEM and MapWindow are both available.  The main 

purpose of TauDEM software is to construct overland drainage networks from DEMs.  As a 

result of the drainage network construction, watersheds are delineated.  The following is an 

overview of the operation of TauDEM to delineate watersheds. 

TauDEM begins by determining which way water flows downhill for each cell in a DEM.  

Real data will inevitably contain pits – areas whose neighbors all have higher elevations.  Pits 

may be natural depressions or data errors.  Either way, the software must fill the pits so that 

water has a continuous downhill flow path to an outlet.  To fill pits, Tarboton uses the method of 

Jenson and Domingue (1988).  With the pits filled, a flow direction may be established for each 

cell.  As a default, TauDEM uses the 8-direction pour point method to assign all flow from a cell 

to its neighbor on the steepest descent (Figure 17).  Other methods for determining flow direction 

are available, but are more computationally demanding and do not affect the watershed 

delineation. 
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Figure 17:  8-direction pour point method – All flow from center cell flows to the bottom center 
cell as that flow path is the steepest of the eight neighbors 

 

As the flow directions are determined for each cell, a flow direction grid is constructed 

which stores the flow direction for each cell (Figure 18). 

 

 

Figure 18:  Flow direction grid 

 

Flow paths can then be linked into a network and flow accumulations calculated.  As 

shown here, flow accumulation counts the upstream cells that contribute flow to each 

downstream cell (Figure 19). 



58 

 

0 1 0 0 0

03920

0 0 12 0 0

0 2 3 20 1

0 0 1 0 24

0 1 0 0 0

03920

0 0 12 0 0

0 2 3 20 1

0 0 1 0 24

 

Figure 19:  Flow network and flow accumulation 

 

As an input to TauDEM, users establish the desired contributing area that will determine 

a watershed.  For example, if using a contributing area of 10 cells for the flow network in Figure 

19, the 25 cell region would divide into two watersheds.  One watershed has its outlet in the 

center cell and consists of all cells feeding to the center cell; the other watershed would comprise 

the rest of the cells.  Considering the input minimum contributing area, each cell is tagged with a 

watershed code.  The dividing line between watershed codes delineates watersheds. 
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CHAPTER FOUR:  VERTICAL FEATURE EXTRACTION 
METHODOLOGY 

 

Two methods will be demonstrated for extracting linear vertical features from LiDAR 

DEM data.  Each method begins with an input LiDAR DEM and certain parameters and 

produces lines which may be included as element edges in the overland portion of a coastal finite 

element mesh.  The process of adding the lines to the mesh as element edges will be included in 

the next chapter.  The first method will apply the work of Koller et al. discussed in Chapter 

Three.  While it shows promise, the output of the current algorithm is not suitable for adding to a 

finite element mesh.  The second method begins by using Tarboton’s TauDEM watershed 

delineation software to develop watershed boundaries.  The resulting boundaries are evaluated, 

and those that meet the desired parameters are processed for inclusion in the storm surge mesh. 

LiDAR Dataset 

The LiDAR dataset used in this work was collected and processed by the Florida 

International University International Hurricane Research Center (FIU IHRC) under contract to 

the Manatee County Florida Public Safety Department.  The LiDAR data covers over 130,000 

acres or 526 square kilometers.  Figure 20 depicts the coverage area, swaths, and flight dates.  

Over 933 million ground elevations were collected with an average post-spacing of 1.5 meters.  

Accuracy of the data was verified by comparison to approximately 300 GPS control points.  FIU 

IHRC calculated a vertical RMSE of 9.6 cm, which corresponds to an accuracy of 19 cm at the 

95% confidence level.  Non-ground points were filtered from the data using the morphological 

filter of Zhang et al. (2003).  Bare earth and top surface grids and raw points were provided.  
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Only the bare earth grids were used in this work.  Grids were provided in 365 5000ft x 5000ft 

ESRI GridFloat binary format tiles with 5ft cell size.  All data was projected laterally to NAD83 

Florida State Plane West and vertically to NAVD88.  Further details are available in Florida 

International University (2004). 

 

Figure 20:  Manatee County LiDAR data collection pattern and extents (Florida International 
University 2004, with permission from FIU IHRC) 
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Vertical Feature Extraction Using the Method of Koller et al. 

The image analysis ridge extraction method of Koller et al. discussed in the last chapter 

was employed to extract ridges from the LiDAR dataset.  Although the quality of the resulting 

feature lines was inferior to the quality of the lines extracted using watershed boundaries 

(discussed in the next section), with further development the method may be suitable.  It is 

significantly faster than the watershed boundary method and would be suitable for batch 

processing techniques.  For these reasons it bears further study.   

When this method was reviewed in the last chapter, the response to a one-dimensional 

bar edge was shown.  Continuing with a real-world one-dimensional case with noise, a cross-

section of an interstate expressway from the Manatee County LiDAR dataset is considered.  

Figure 21 shows the location, cross-section of the expressway from the LiDAR dataset, 

convolution of the cross-section, and Koller detector response.  One notices the excellent 

response to the highway.  As a further demonstration, a smaller ridge is added amongst the noise 

at a displacement of (-)1200 ft from the centerline.  The smaller ridge is a cosine function with a 

total amplitude range of 0.5 m.  The cosine is scaled in the frequency domain  ,   so that it 

appears as a 200 ft (61 m) wide ridge.  The addition of this smaller ridge to the expressway 

cross-section, the convolution, and response are shown in Figure 22.  With an elevation of 0.5m, 

it is not a high ridge, but returns a conspicuous signal with amplitude of 0.000145 versus the 

0.000075 amplitude signal from noise to the left.  For one-dimensional ridges, the detector 

appears to work well.   
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Figure 21:  Elevation, Convolution, and Koller Response for an Interstate expressway in 
Manatee County 

4

4.5

5

5.5

6

6.5

-2000 -1500 -1000 -500 0 500 1000 1500 2000

0.9
0.95

1

1.05
1.1

1.15

-2000 -1500 -1000 -500 0 500 1000 1500 2000

0

0.0002

0.0004

0.0006

-2000 -1500 -1000 -500 0 500 1000 1500 2000

Displacement (ft)

Response

Convolution

Elevation

4

4.5

5

5.5

6

6.5

-2000 -1500 -1000 -500 0 500 1000 1500 2000

0.9
0.95

1

1.05
1.1

1.15

-2000 -1500 -1000 -500 0 500 1000 1500 2000

0

0.0002

0.0004

0.0006

-2000 -1500 -1000 -500 0 500 1000 1500 2000

Displacement (ft)

Response

Convolution

Elevation

 

Figure 22:  Elevation, Convolution, and Koller Response for an Interstate expressway as in 
Figure 21 with cosine ridge added at Displacement = -1200 
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To expand the concept to two dimensions and locate ridges throughout a dataset, the 

dataset must first be convolved with the two-dimensional Gaussian function.  As mentioned 

previously, the two-dimensional Gaussian may be decomposed into orthogonal components.  

Therefore, the dataset is first convolved in the x-direction with a discreet approximation of the 

one-dimensional Gaussian, and the resulting dataset is convolved with the discreet Gaussian 

oriented in the y-direction.  For this work, the domain of the discreet Gaussian function was 

 3 ,3  . 

Recalling from Equations (25) and (26), what is needed is the directional derivative of the 

convolved image in the direction of maximum negative curvature for both the right and left sides 

of the ridge.  The directional derivative in the direction of maximum curvature, n


,  is computed 

from the gradient of the convolved image at any point 0x  by:   

 D L n  
  (28) 

where D  is the directional derivative at an angle   corresponding to the direction of maximum 

curvature, and L  is the dataset convolved with the Gaussian kernel of some value  .  The next 

steps are then to calculate the gradient of the convolved dataset and determine the direction of 

maximum curvature.  The x and y components of the gradient are easily calculated using finite 

difference approximations for the first derivative.  The direction of maximum curvature requires 

more work. 

For a two-dimensional surface, the principal curvatures and principal directions are given 

by the eigenvalues, 1k  and 2k , and the eigenvectors, 1K


 and 2K


 of the Hessian matrix, H : 
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where, in this case, L  is the convolved dataset.  The eigenvector corresponding to the eigenvalue 

of greatest magnitude is the direction of maximum curvature.  To extract ridges, the point is only 

of interest if the eigenvalue of greatest magnitude is negative.  The eigenvalues may be 

computed from: 
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 (30) 

once the second derivatives and mixed second derivatives are calculated from the convolved 

surface using finite differences.  Calculating the eigenvectors from: 
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 (31) 

results in an equation with a sum of terms in which the mixed second derivative appears in the 

denominator of some but not all terms.  This creates a problem for numerical computation.  To 

avoid the problem, Steger (1998) recommends using one Jacobi rotation of the matrix to its 

principal directions.  By definition, once the matrix is rotated to principal directions, the mixed 

derivatives vanish.  The two-dimensional Jacobi rotation matrix, P  is: 

 
cos sin

sin cos
P

 
 

 
   

 (32) 
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The rotation of the Hessian from its original orientation to principal orientation is given by: 

 TH P H P   (33) 

To solve for  , the angle required to rotate the Hessian to principal direction, the mixed second 

derivative of H   is set equal to zero resulting in: 

  
2 2 2

2 2
2 2

0 (cos sin ) sin cos
L L L

x y y x
   
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 (34) 
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 (37) 

Equation (36) may be solved correctly numerically by first checking the value of the 

denominator.  If the denominator is zero,   is tentatively set equal to 
4


.  There are two 

solutions to (37) in  0,  corresponding to the two eigenvectors separated by 
2


.  They must be 

checked to determine which satisfies Equation (31) when the eigenvalue of greatest magnitude, 

1k , is substituted for ik .  The check may be reduced to: 
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With the rotation angle   determined, n


 is given by: 

 ˆ ˆcos sinn i j  


 (39) 

and Equations (25) and (26) may be calculated directly for each point in the dataset.  Summing 

the positive values of the left and right responses gives the total response. 

 The procedure to calculate responses is completed for each convolution.  The Gaussian 

kernels chosen for convolution depend on the desired feature width to extract.  For each feature 

width, Koller et al. recommend as large a value of   as possible not to exceed half of the feature 

width.  After iterating through scale space, the maximum values at each grid cell are retained. 

To join the points to lines, the grid is searched for cells with response values above a 

threshold.  Canny’s (1986) hysteresis thresholding is applied.  Two thresholds are applied, one to 

begin a line and one to continue.  Once a high threshold point is found, the area is searched in the 

direction of maximum curvature for a higher response to use as the line start point.  This 

selection of the maximum value along the direction of maximum curvature is a common 

technique in image analysis.  It is referred to as non-maximal suppression.  The line is continued 

by adding points while progressing in both directions perpendicular to the local direction of 

maximum curvature.  For each step, the three neighboring cells closest to the line direction are 

checked to find the maximum response.  An example of lines extracted from the southwestern 

quadrant of Manatee County LiDAR data is shown in Figure 23.  Extraction parameters are 

given in Table 2. 
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Figure 23:  Vertical feature lines extracted from southwestern Manatee County LiDAR data 
using the method of Koller et al. 

 

Table 2:  Parameters used for extracting ridges using the method of Koller et al. 

Parameter Value Description 

Minimum Feature Width 75 ft (23 m) Minimum width feature to extract 

Maximum Feature Width 250 ft (76 m) Maximum width feature to extract 

Scale Space Steps 8 Number of total iterations in scale space 

High Threshold 0.005 Minimum response value to start line 

Low Threshold 0.0005 Minimum response value to continue line 

Minimum Line Length 1000 ft (305 m) Minimum acceptable line length 
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The lines as shown in Figure 23 are extracted with rather restrictive parameters.  As 

parameters are loosened (thresholds lowered), an excessive number of false ridges and 

overlapping ridges are extracted.  It is possible with further efforts to combine other metrics, 

such as those of Lindeberg mentioned in the last chapter, the thresholds may be lowered while 

minimizing false and adjacent returns. 

Vertical Feature Extraction Using Watershed Boundaries 

The first part of this process used MapWindow (MW) GIS to extract watershed 

boundaries from the LiDAR dataset.  After extracting the boundaries, they were processed with 

new code to extract significant features and prepare the lines to be added to a finite element 

mesh. 

Using MapWindow GIS and TauDEM to Extract Watershed Boundaries 

LiDAR tiles were converted to the MapWindow (MW) binary grid (*.bgd) format in 

preparation for processing by MW.  The MW binary grid format is the only format MW can 

process in an out-of-core manner.  Although it can read ESRI ASCII grid and *.hdr/*.flt binary 

grids, it must process these formats in-core.  MW was then used to merge and resample tiles.  

Tiles were merged into four files consisting of northwest, northeast, southwest, and southeast 

quadrants, and the data was resampled from 5 to 10 ft cells.  The primary concern in resampling 

to larger cells for the purpose here is in the inherent smoothing and corresponding reduction in 

maximum elevations of the resampled grid; however, the loss of precision in resampling to 10 ft 

cells was thought inconsequential for ridge extraction purposes.  Although MW is capable of 

out-of-core processing for the MW binary grid, TauDEM is apparently not.  There is a 7000 x 



69 

 

7000 grid limit size for TauDEM which necessitated merging the tiles into quadrants rather than 

a single file.  The 7000 x 7000 grid equates to a 187 MB file size for 4 byte data.  During 

processing, TauDEM produces several output grids (pit-filled grid, flow direction grid, flow 

accumulation grid and others) such that the total size of the output files is approximately nine to 

ten times as large as the size of the input DEM.  MW does support scripting so it should be 

possible to automate a portion of the watershed delineation process to operate in a batch mode.  

This was not done. 

However, as noted in Chapter Two, watershed delineation does not work well in a batch 

process.  Figure 24 shows the input LiDAR DEM and resulting watershed boundaries for the 

southwestern quadrant of the Manatee County data.  Notice that only complete, closed 

watersheds may be extracted.  This prevents extraction of watersheds that overlap the boundaries 

of the quadrant DEMs (Figure 25).  To extract watersheds on the boundaries, four additional 

LiDAR DEM files were constructed which overlapped the north-south and east-west boundaries 

between the quadrants.  Watersheds in these areas were extracted separately.  TauDEM produces 

watershed boundaries in ESRI shapefile format.  The separate shapefiles were merged into one 

shapefile for further processing.  Figure 26 shows the merged polygon shapefile for all Manatee 

County data. 
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Figure 24:  Southwestern Manatee County LiDAR data with delineated watersheds 

 

Figure 25:  Detail from Figure 21 showing incomplete watershed delineation on DEM boundary 

Eastern Boundary 
with incomplete 
delineation 

Eastern Boundary 
with incomplete 
delineation 
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Figure 26:  Watershed boundaries extracted from Manatee County LiDAR data 

 

Extracting Ridges from Watershed Boundaries 

All further processing to extract significant ridges from the watershed boundaries was 

carried out with a custom C++ application.  The first step was to split the overlapping polygon 

watershed boundaries into non-overlapping lines.  Lines were split at every junction and initially 

processed as separate lines.  Once split into lines, the watershed boundaries were checked to see 

which portions of the watershed boundaries would be retained as significant features.  The 
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objective of this process was to determine which portions of the watershed boundaries met the 

following three criteria: 

 High enough relative to surrounding terrain to form a hydraulically significant 

impediment to storm surge 

 Narrow enough that not purposely including the ridge as a finite element edge 

would risk significant mesh elevation error. 

 Long enough to span at least one element edge  

To control the process, selection parameters were used.  To determine if the watershed 

boundary point met the first metric – high enough to be included – its elevation relative to terrain 

perpendicular to the candidate ridge line was checked at two ranges.  Figure 27 depicts a ridge 

cross-section and the lateral offset ranges, 2S  and 3S  checked for elevation difference.  It is 

difficult to ensure that the watershed boundary normal direction is determined accurately so that 

2S  and 3S  are perpendicular to the boundary tangent.  To compensate for this error, two 

additional offset locations were checked for each lateral offset range.  These additional offsets 

are shown from an overhead view in Figure 28.  At each location where elevation was checked 

(colored squares in Figure 28), the elevation was computed by averaging over a sample area. 
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Figure 27:  Elevations, h, with corresponding ranges, S, checked to qualify as a ridge 
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Figure 28:  Overhead view of LiDAR data with ridge selection parameters 
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The application was configured to allow essentially any combination of range, additional 

offsets, and elevation requirements to be used as a ridge metric.  In practice, parameters were set 

so that candidate ridge points were deemed to meet the high enough requirement if the point met 

the elevation requirement at one point at each range, 2S  and 3S , on both sides of the ridge. 

The parameters 1S  and 1h  as seen in Figure 27 were used to ensure candidate ridges met 

the narrow enough criterion.  These parameters set the maximum allowable height error of 

candidate ridge points.  If ridge points are 1h  higher than points at range 1S  perpendicular to the 

ridge, then they are considered narrow enough.  Figure 29 gives further insight into setting 

parameters for this metric.  Figure 29a is an overhead view of the worst case positioning of an 

equilateral triangular element relative to a ridge that has equal slope on either side of the ridge.  

The side view for the same case is shown in Figure 29b.  If this triangle has side length l, then 

this worst case positioning places nodes 
3

4
l  from the ridge line.  Therefore, once the largest 

likely element is determined, the parameter 1S  should generally be set to 
3

4
l  and 1h  to the 

maximum acceptable elevation error.  In the same manner that two offsets are checked at ranges 

2S  and 3S , two offsets are checked at range 1S  to compensate for error in determining the 

perpendicular direction to the ridge line. 
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Figure 29:  Triangular finite element worst case positioning relative to ridge (a)  Overhead view 
(b) Cross-section view 

In the interest of computational efficiency a parameter was available to adjust the 

frequency of points to check along each candidate ridge line.  For this work, the parameter was 

set to check every second point. 

In the interest of producing longer, continuous lines rather than segmented lines, two 

metrics thresholds were set.  The high threshold was met when points met the high enough and 

narrow enough tests above.  These points were marked as significant and became line points.  

Once a line was established by finding at least one significant point, adjacent points could meet a 

lower threshold and be declared continuation points.  The maximum length of consecutive 

continuation points was set as an input parameter.  The length should generally be approximately 

three element lengths and should approximately match the encroachment parameter.  This helps 

to prevent creation of two lines with endpoints closer than the encroachment parameter by 

continuing the line if possible.  If line endpoints are closer than the encroachment parameter they 

will require trimming in a later step.  In order to be declared a continuation point, in addition to 
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the previous stated requirement, a point must be higher than the average elevation in a 

surrounding area by a specified amount.  The area and elevation for this test were also input as 

parameters.  This test prevents a ridge line being continued across any depression, including any 

watercourse.  The area for this test should generally be kept reasonably small so that the area 

footprint would normally lie on the ridge.  The test will then be good at rejecting low points.  If 

points at the beginning of a line cannot be declared significant but meet the elevation test for a 

continuation point, they are tentatively declared continuation points.  If a significant point is 

found within the continuation limit distance from the beginning of the line, the continuation 

points are retained.  If a significant point is not found, all continuation points are deleted.  In the 

same sense, continuation points are retained at the end of a line if the end point is reached within 

the continuation limit distance.  As all of the lines at this stage were once joined at junctions 

(Figures 24, 25, or 26), this provides the capability to rejoin lines in the next step and keep them 

as long as feasible. 

After all watershed boundaries were checked to find qualifying ridge points, the product 

was a set of disjoint lines that met the input parameters for significant ridges.  A view of a 

portion of the dataset’s extracted ridgelines is shown in Figure 30.  The next step was to rejoin 

these lines into longer lines, where possible.  Lines were sorted in descending order according to 

length.  Then, beginning with the longest line, the endpoint cells were examined to see if there 

were other qualifying lines with the common endpoint.  If so, the longest of the neighbor lines 

were joined and the opposite endpoint was checked.  This continued until all lines had been 

examined and joined where possible.  During the joining process, if line end points were marked 
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as continuation rather than significant points, the line ends were checked to ensure the joined line 

would not contain too many continuation points at the junction. 

 

Figure 30:  Ridge lines after initial selection process 

The next step was to delete any lines shorter than an input parameter length.  This 

parameter should be at least one typical element edge length and possibly much longer.  A 

separate check was made for short closed lines (polygons).  Any closed lines were compared to 

another input parameter, and deleted if less than the parameter.  This minimum closed line length 

should generally be much longer than the previous parameter for open lines to allow flexibility to 

construct a suitable mesh inside the closed line. Figure 31 shows the line set from Figure 30 after 

deleting lines shorter than 305 m (1000 ft). 
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Figure 31:  Ridge lines after deleting short lines 

Adjacent lines were next processed to make room for elements between lines.  The 

encroachment parameter which defines the minimum separation between lines should be selected 

so as to allow the placement of three or more elements between adjacent lines.  This will ensure 

that neighboring ridge lines do not cause an artificial blockage in the area between ridge lines.  

Lines were again sorted by length in descending order.  Beginning with the longest line, each 

line was checked to see if any other lines encroached inside a minimum separation input 

parameter.  When a line was initially found to be encroaching, it was checked to see if it 

intersected the current line within a certain distance related to an input minimum intersection 

angle parameter.  If the encroaching line did intersect such that the angle of intersection from the 
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first encroaching point to the intersection was greater than the minimum intersection angle 

parameter, the line was retained as it was.  If the lines did not intersect or intersected at an angle 

less than the minimum parameter, the portion of the line inside the encroachment parameter 

distance was deleted (Figure 32).  After all lines were processed, continuation points were 

deleted from the ends of any lines. 

 

Figure 32:  Ridge lines after deleting encroaching lines 

Lines were again checked against the minimum required length, and short lines deleted.  

As can be seen in Figure 32, the lines appear as jagged segments.  To include the lines as 

element edges in a finite element mesh, they must consist of segments of at least elemental 

length.  The final step before adding the lines to a mesh is to simplify the jagged lines to longer 
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line segments.  In this process it is desired to keep the existing intersection points and have all 

line vertices lie on the extracted ridge lines to preserve the proper elevation values.  Prior to 

simplification, the lines are again split at their junctions to ensure the junctions are retained as 

points in the final lines.  The lines are then simplified resulting in a line set as in Figure 33. 

 

Figure 33:  Ridge lines after simplification 

A list of parameters used to extract ridge lines used in the finite element mesh is included 

in Appendix A. 
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CHAPTER FIVE:  STORM SURGE SIMULATIONS INCLUDING LINEAR 
RAISED FEATURES 

Domain Description 

Manatee County is one of three counties bordering Florida’s Tampa Bay (Figure 34).  Its 

major city is Bradenton.  It shares Tampa Bay with Hillsborough County and its major city 

Tampa, and Pinellas County and its major city St. Petersburg.  The county covers 1953 sq km 

(754 sq mi).  LiDAR data was available for 526 sq km (203 sq mi) or approximately 27% of the 

county land area including most but not all areas less than 12m elevation.  County topography is 

shown in Figure 35 along with the finite element mesh boundary that forms the border of the 

study domain for this work.  Major water bodies and barrier islands of Manatee County are 

shown in Figure 36.  

 

Figure 34:  Manatee County and the surrounding Tampa Bay area 

Pinellas Hillsborough 

Manatee 
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Figure 35:  Manatee County topography and the domain boundary 
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Figure 36:  Water bodies and barrier islands of Manatee County 
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The domain is bounded in Manatee County by the 12m elevation contour.  Southwest of 

Manatee County the domain boundary follows ridges where possible to the coastline.  North of 

Manatee County the boundary approximately follows the 12m contour until the area of the Alafia 

River where the boundary transitions to the 9m contour.  West of the Tampa peninsula the 

boundary begins to follow the coastline and continues along the coastline until transitioning back 

to the 12m contour in southern Pinellas County.  From southern Pinellas County the boundary 

turns northward and follows the coastline.  The land area of the domain is shown in Figure 37.  

The domain extends in a 60km radius arc seaward.  The goal in selecting the domain boundary 

was to minimize the domain area while preventing boundary induced wave reflections and 

allowing unimpeded inundation within the area of the LiDAR data in Manatee County. 

Domain BoundaryDomain Boundary

 

Figure 37:  Land area domain for storm surge simulations 
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Finite Element Mesh Construction 

Two finite element meshes were constructed for this study.  The first mesh (Man_VF) 

has its element edges aligned to significant vertical features in the area of the LiDAR dataset.  

The second mesh (Man_Ctrl) is a control mesh that uses the LiDAR dataset for node elevations, 

but does not align elements to vertical features (Figure 38).  Both meshes are identical except in 

the area of the LiDAR dataset.  Additionally, a third mesh of the western North Atlantic Ocean 

west of 60o west longitude, the Caribbean Sea and the Gulf of Mexico developed by Hagen et al. 

(2006) was slightly modified to use to extract boundary conditions for the smaller meshes 

(Figure 39). 

 

Figure 38:  Man_Ctrl finite element mesh with Tampa Bay coastline 
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Figure 39:  Adaptation of WNAT 53K mesh of Hagen et al. (2006) used to develop boundary 
condition for Man_Ctrl and Man_VF 

 

The finite element meshes were created using the Surface Water Modeling System (SMS) 

software by Environmental Modeling Systems, Inc. (EMS-I 2006).  Both meshes were first 

constructed by outlining mesh regions and specifying element sizing along every region 

boundary as shown in Figure 40.  Figure 41 shows the vertical features that were extracted from 

the watershed boundaries for inclusion in Man_VF.  The vertical feature line set required 

approximately one hour of editing in SMS before it was ready to be used in the meshing process.   

Figure 42 shows the common portion of both meshes and the extracted ridge lines ready to be 
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incorporated in Man_VF.  The SMS triangular element paving algorithm was then used to 

generate the mesh for each region.  The paving algorithm in SMS uses an advancing front mesh 

generation technique.  Once the LiDAR region of Man_VF was meshed, approximately four 

hours of editing was required to correct mesh quality deficiencies in the LiDAR dataset area of 

the mesh.  The mesh was edited with the objectives of establishing node valence of five, six or 

seven for all nodes, maintaining element interior angles of 30o or greater, and limiting adjacent 

element area ratios between the smaller and larger neighbors to 0.5 or greater.  Mesh editing time 

could be reduced with improvements to the line simplification algorithm mentioned in the last 

chapter.  However, for this size dataset, it is doubtful that the editing time could be halved if 

using SMS to mesh the region.  While SMS’ advancing front algorithm does an excellent job of 

maintaining good element characteristics for normal meshing, it does not work as well when 

meshing with internal features in the mesh.  The mesh advances from the boundaries and collides 

with the added features leaving poorly formed elements surrounding the features.  SMS is not 

intended to be used to mesh around added interior linear features as was done here, but it is 

capable with considerable manual editing afterwards. 
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Figure 40:  Boundary element sizes for Man_Ctrl and Man_VF meshes 

 

 

Figure 41:  Vertical feature edges extracted from LiDAR data to be added as mesh element edges  



88 

 

 

Figure 42:  Common area of both meshes with extracted vertical features 

 

Man_Ctrl was constructed after Man_VF by adjusting the spacing of the inner LiDAR 

boundary region (Figure 40) so that SMS’ automated paving would produce approximately the 

same number of nodes as were contained in Man_VF.  The final Man_Ctrl mesh contained 

31,169 nodes and 61,218 elements while the Man_VF mesh contained 31,448 nodes and 61,776 

elements.  Table 3 compares the LiDAR regions of the meshes, the only area that differs between 

the two. 
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Table 3:  Comparison of Exclusive Portions of Man_Ctrl and Man_VF 

 Man_Ctrl Man_VF 

Nodes 19,028 19,318 

Elements 37,686 38,258 

Minimum Node Spacing (m) 188 100 

Maximum Node Spacing (m) 633 661 

Average Node Spacing (m) 232 141 

Node Spacing Standard Deviation (m) 33 117 

 

Figure 43 is an index to Figures 44, 45, and 46 which compare the Man_Ctrl and 

Man_VF meshes by showing examples of the two meshes in regions where vertical features have 

been incorporated into the mesh.  One can see that the element edges for the Man_VF mesh line 

up neatly along the blue extracted feature lines in Figures 44b, 45b, and 46b, while element 

edges of the Man_Ctrl mesh sometimes straddle the vertical features (Figures 44a, 45a, and 46a). 
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Figure 43:  Locations of detail comparisons of meshes in Figures 44, 45, and 46 
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Figure 44:  Comparison of Man_Ctrl (a) and Man_VF (b) meshes south of the Manatee River.  
Vertical features are shown in blue and the finite element meshes are shown in black.    

(a) 

(b) 
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Figure 45:  Comparison of Man_Ctrl (a) and Man_VF (b) meshes near Terra Ceia Bay. Vertical 
features are shown in blue and the finite element meshes are shown in black.    

(a) 

(b) 
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Figure 46:  Comparisons of Man_Ctrl and Man_VF meshes in the area of extracted vertical 
features.  Vertical features are shown in blue.  The element edges of Man_Ctrl (a., c., and e.) do 

not line up along vertical features whereas the element edges in Man_VF (b., d., and f.) do. 

(b) 

(a) 



94 

 

Elevation Datasets and Interpolation 

Three elevation datasets were used to provide topographic and bathymetric elevations.  

The LiDAR dataset for Manatee County was previously discussed in Chapter Four.  

Additionally, a combined USGS/NOAA topographic/bathymetric (topobathy) dataset and the 

National Geophysical Data Center’s (NGDC) 3 sec coastal dataset were used.   

The USGS/NOAA topobathy dataset is the product of a cooperative demonstration 

project merging USGS topographic DEMs and NOAA’s National Ocean Service (NOS) 

bathymetric datasets (Gesch and Wilson 2001; Parker et al. 2001).  Particular attention was paid 

to development of an accurate shoreline and proper treatment of the land ocean boundary to 

resolve discontinuities and inconsistencies.  As part of the project, a modified version of the 

Princeton Ocean Model was used to model the bay and establish the local relationship between 

various tidal datums such as MLW, orthometric datums such as NGVD88, and three dimensional 

datums such as WGS84.  The results were used to automate local conversions between any of 26 

vertical datums for the Tampa Bay area in the NOAA and National Geodetic Survey (NGS) 

VDATUM software tool.  The data has been updated with the addition of some LiDAR products.  

It was downloaded from the USGS Topobathy Viewer website (USGS 2005). 

The NGDC coastal data is also a combined topographic bathymetric dataset of USGS and 

NOS data, but at a much lower resolution (NGDC 2006).  At three second grid spacing, this 

dataset provides one datum point in the same area the USGS/NOAA dataset provides 81.  The 

coverage of these datasets relative to the domain is shown in Figure 47. 
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Figure 47:  Tampa Bay topographic and bathymetric datasets with finite element mesh boundary 

 

Interpolation of coastal mesh node elevations from LiDAR datasets generally requires 

either reducing the density of the LiDAR dataset by significant resampling or thinning if one 

desires to use commercial pre-processing tools such as SMS, or creating a custom software 

application to handle the large datasets.   Both Roberts (2004) and Atkinson (2007) created 

custom applications for mesh interpolation with LiDAR data for large coastal storm surge 

models in Louisiana, Mississippi, and Texas.   

For this work an application was created to allow hierarchical interpolation of several 

overlapping high density datasets in various coordinate systems onto the finite element mesh.  
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The application interpolates data at each mesh node by constructing a polygon using the 

connected elements’ centroids as vertices.  The mesh node elevation is assigned as the average of 

all data points inside the polygon (Figure 48).  If the surrounding polygon overlays the border 

between a higher priority dataset and the underlying, lower priority dataset, the elevation is taken 

as a weighted average by polygon area of the two datasets.  If the density of data in a higher 

priority dataset at any point is below a specified percentage (probably due to no data points in 

the dataset), the elevation is interpolated from the next lower priority dataset where there is 

sufficient data density.  Prior to interpolation with high density datasets (the LiDAR dataset and 

USGS/NOAA topobathy dataset), mesh node elevations were interpolated from the NGDC 3sec 

dataset.  Figure 49 displays the source for node elevations for the Man_Ctrl mesh. 

 

Figure 48:  Mesh node elevation interpolation using polygonal control area for LiDAR data 
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Figure 49:  Elevation source dataset for mesh node elevations 

 

Storm Surge Simulation Model and Parameters 

Storm surge simulations were conducted using the ADCIRC advanced circulation model 

for oceanic, coastal, and estuarine waters (ADCIRC 2008).  The model was employed in the two-

dimensional, depth integrated mode.  The ADCIRC model solves the generalized wave 

continuity equation in conjunction with the primitive form of the momentum equation using the 

continuous Galerkin finite element method.  Detailed theory and methodology of the ADCIRC 

model is given in Leuttich et al. (1992). 
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The boundary condition for the land boundary was set to zero normal flow.  The open 

ocean boundary condition was established by a time-varying water surface elevation or open 

ocean hydrograph.  The open ocean hydrograph was extracted by forcing an adaptation of the 

Hagen et al. 53K Western North Atlantic Tidal mesh with the same synthetic hurricane used for 

the Man_Ctrl and Man_VF mesh simulations.  All simulations were run for 3.25 days using a 

hyperbolic tangent forcing ramp-up of 0.75 days.  A copy of the ADCIRC control file (fort.15 

file) for the simulations is included in Appendix B.   

Synthetic Hurricane Model 

Slinn’s synthetic storm model was used to develop a synthetic hurricane wind field for all 

simulations (2000).  The model solves the following equation of motion for tangential velocity, 

V : 

 
2 1V dp

f V
r dr


 
   (40) 

where r  is the radial coordinate, f  is the coriolis parameter,   is air density, and p  is the 

atmospheric pressure.  Slinn uses a sinusoidal ramp-up of pressure from the low pressure at the 

storm center to atmospheric pressure at an input storm radius such that 0
dp

dr
  at the storm 

radius.  The model has several limitations which limit its accuracy in relation to a true hurricane 

wind field:  storm motion is not added to the winds to establish a velocity differential between 

the advancing and retreating hemispheres of the storm; radial velocity is ignored, and both 

surface drag and eddy viscosity are ignored.  However, it serves as a useful, generic wind vortex 

forcing mechanism for generating storm surge inundation over the study area.   
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Because the stated wind speed in Table 4 is steady over the life of the storm, the synthetic 

storm is stronger than a historical storm of the same quoted velocities.  Storm velocities are 

generally quoted based on the maximum one minute or ten minute average speeds (the familiar 

Saffir-Simpson scale uses one minute sustained wind speed for its classification) which will be 

significantly higher than the storm speeds averaged over a longer time span. 

Two model runs were conducted for each of the two local meshes.  Storm parameters for 

the simulations are given in Table 4.  The storm path for all storms is shown in Figure 50. 

 

Table 4:  Synthetic Storm Parameters 

Designation Storm Wind Speed Radius Forward Speed 

Storm 1 35.8 m/s (80 mph) 250 km 6.7 m/s (15 mph) 

Storm 2 44.7 m/s  (100 mph) 250 km 6.7 m/s (15 mph) 

 

Storm PathStorm Path

 

Figure 50:  Storm path for all simulations 
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Storm Surge Simulation Results 

With the relatively fine resolution of both Man_Ctrl and Man_VF meshes throughout the 

floodplain, differences in inundation between simulations with the two meshes are not extreme, 

but some are significant.  Some of the significant differences in inundation for the different 

meshes are in areas that do not appear related to local inclusion of vertical features.  Whether 

these changes are due to the inclusion of distant vertical features, differences in local mesh node 

elevations due to node placement other than along vertical features, or other reasons is not 

definitively determined.  Nevertheless, these differences are noted.  No attempt has been made to 

hydraulically associate changes in inundation with inclusion of vertical features unless they are 

locally associated.  Some of the changes in inundation area can easily be attributed to local 

inclusion of vertical features.  These will be highlighted. 

Storm 1 Results 

At this storm level, results were similar with both meshes.  The storm surge causes early 

flooding in the low areas surrounding Palma Sola Bay and the marsh areas north of Terra Ceia 

Bay.  As the storm approaches landfall, flooding increases around Terra Ceia Bay, and the 

Manatee and Braden Rivers.  Figures 51 and 52 depict the maximum water surface elevation 

attained at every location over the course of the storm.  The diagram of the maximum water 

surface elevation for the Man_Ctrl mesh (Figure 51) includes the outline of the maximum water 

surface elevation of the Man_VF mesh for reference.  Important differences in inundation 

between the meshes are noted with two black boxes in Figure 51.  These areas are expanded for a 

closer view in Figures 53-56.  The detail in Figure 53 and 54 show that with the Man_VF 
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element edges lying on the Interstate-75 roadbed, the expressway mostly remains above water as 

opposed to the representation in the Man_Ctrl mesh.  It is unclear if the impedance of the 

properly modeled interstate highway in Man_VF affects surge elsewhere.  The second detail, 

expanded in Figures 55 and 56, shows areas in two neighborhoods that remain above the surge 

level in the Man_VF mesh.  Differences in inundation at the northeast end of Terra Ceia Bay 

appear due to chance node placement with the Man_Ctrl mesh having elements placed at lower 

elevations than the Man_VF mesh. 

See Detail Figures 53-54
See Detail Figures 55-56

Storm 1 – Man_Ctrl

See Detail Figures 53-54
See Detail Figures 55-56

Storm 1 – Man_Ctrl

 

Figure 51:  Maximum water surface elevation for Man_Ctrl mesh subject to Storm 1.  Maximum 
water surface elevation for Man_VF mesh is shown in red.  Zero elevation contour relative to 

NAVD88 and extracted ridge lines are shown in gray.  Extracted ridge lines are not included in 
the Man_Ctrl mesh but are shown here for positional reference. 
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Figure 52:  Maximum water surface elevation for Man_VF mesh subject to Storm 1.  Zero 
elevation contour relative to NAVD88 and extracted ridge lines are shown in gray.  
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Man_CtrlMan_Ctrl

 

Figure 53:  Storm 1 Inundation for Man_Ctrl mesh in the area of Interstate-75 on the southern 
bank of the Manatee River.  Inundated areas are shaded. 

 

Man_VFMan_VF

 

Figure 54:  Storm 1 Inundation for Man_VF mesh in the area of Interstate-75 on the southern 
bank of the Manatee River.  Inundated areas are shaded; vertical feature lines are shown in blue. 
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Man_CtrlMan_Ctrl

 

Figure 55:  Storm 1 inundation for Man_Ctrl mesh in neighborhoods east of Interstate-75 on the 
southern bank of the Manatee River.  Inundated areas are shaded. 

 

Man_VFMan_VF

 

Figure 56:  Storm 1 inundation for Man_VF mesh in neighborhoods east of Interstate-75 on the 
southern bank of the Manatee River.  Extracted ridges are shown in blue; inundated areas are 

shaded. 
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Storm 2 Results 

There is much more inundation as the storm winds increase to 45 m/s.  Flooding in Palma 

Sola Bay overtops the land to the northeast joining Warner West Bayou and cuts off the Palma 

Sola area from the mainland.  The surge flows southeast from Terra Ceia Bay flooding much of 

the town of Palmetto to the southeast and spilling into the Manatee River.  There is extensive 

flooding on the south bank of the Manatee River both east and west of the Braden River 

confluence.  The surge travels further upriver and floods the area surrounding Gamble Creek as it 

enters the Manatee River from the north. There are also much greater differences in inundation 

between the two meshes as this intensity.  Maximum inundation for the Man_Ctrl mesh is shown 

in Figure 57.  As before, the maximum water surface elevation for the Man_VF mesh is shown 

in red, and the zero elevation contour and extracted ridge lines are shown in gray.  Figure 58 

depicts the maximum water surface elevation for the Man_VF mesh.  Figures 59-64 are detail 

close-up views of areas highlighted in Figure 57.  Figures 59 and 60 show the large difference in 

inundation due to properly modeling the Interstate-75 elevation south of the Manatee River in 

Man_VF.  The difference in inundation between the two meshes at this location is over 4.1 sq 

km.  The second detail (Figures 61 and 62) shows the difference in inundation due to adding a 

roadbed as a raised feature.  The roadbed and its extracted feature line are visible in the upper 

center portion of Figures 61 and 62 (highlighted in Figure 62 by the blue feature extraction line).  

In addition to affecting the difference in inundation visible in the maximum water surface 

elevation figure, the added feature also seems to delay and possibly reduce the surge flowing 

southeast from Terra Ceia Bay to the Manatee River.  This can best be seen when viewing the 

time series inundation extents (not included here). 
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See Detail Figures 59-60

See Detail Figures 61-62

Storm 2 – Man_Ctrl

See Detail Figures 63-64

See Detail Figures 59-60

See Detail Figures 61-62

Storm 2 – Man_Ctrl

See Detail Figures 63-64

 

Figure 57:  Maximum water surface elevation for Man_Ctrl mesh subject to Storm 2.  Maximum 
water surface elevation for Man_VF mesh is shown in red.  The Zero elevation contour relative 
to NAVD88 and extracted ridge lines are shown in gray.  Extracted ridge lines are not included 

in the Man_Ctrl mesh but are shown here for positional reference. 

 

Storm 2 – Man_VFStorm 2 – Man_VF

 

Figure 58:  Maximum water surface elevation for Man_VF mesh subject to Storm 2.  Zero 
elevation contour relative to NAVD88 and extracted ridge lines are shown in gray. 
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Man_CtrlMan_Ctrl

 

Figure 59:  Storm 2 inundation for Man_Ctrl mesh in the area east of Interstate-75 on the 
southern bank of the Manatee River.  Inundated areas are shaded. 

 

Man_VFMan_VF

 

Figure 60:  Storm 2 inundation for Man_VF mesh in the area east of Interstate-75 on the 
southern bank of the Manatee River.  Inundated areas are shaded while vertical feature lines are 

shown in blue. 
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Man_CtrlMan_Ctrl

 

Figure 61:  Storm 2 inundation for Man_Ctrl mesh around a roadbed east of Terra Ceia Bay.  
The roadbed is in the upper center portion of the figure.  Inundated areas are shaded. 

 

Man_VFMan_VF

 

Figure 62:  Storm 2 inundation for Man_VF mesh around a roadbed east of Terra Ceia Bay.  The 
roadbed is in the upper center portion of the figure highlighted by its extracted feature line.  

Extracted ridges are shown in blue; inundated areas are shaded. 
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There are significant differences in inundation in the eastern portion of the Manatee 

River.  This difference is due to local differences in mesh node elevations between the two 

meshes and is related to inclusion of a vertical feature near the Manatee River.  Detail of this 

area, highlighted in Figure 57, is shown in Figures 63 and 64.  By not including the vertical 

feature near the river and taking local averages for all node elevations (Figure 48), the Man_Ctrl 

mesh has a lower elevation conduit upstream.  In the Man_VF mesh, one can see that the road 

bed is properly included and stopped short of the river.  However, its location affects local mesh 

positioning and results in the lowest path upstream being at a higher elevation than the path in 

Man_Ctrl.  The offending element is cross-hatched in the Man_VF mesh detail (Figure 64).  Its 

highest node is at 4.75 m while the lowest path element in Man_Ctrl has its highest node at 4.41 

m.  Local surge height in both models is approximately the same at 4.65-4.71 m. 

 

Man_VFMan_VF

 

Figure 63:  Storm 2 inundation for Man_Ctrl mesh in the eastern portion of the Manatee River.  
Inundated areas are shaded. 
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Man_VFMan_VF

 

Figure 64:  Storm 2 inundation for Man_VF mesh in the eastern portion of the Manatee River.  
Inundated areas are shaded.  The extracted roadbed (blue) affects local mesh node placement and 
prevents the surge from flowing through this area.  The maximum node elevation for the cross-

hatched element (the lowest water path southeast) is 4.75 m.  Local surge height is 4.71m. 

 

There are also differences in inundation in the southern portion of the Braden River.  

These differences appear to be due to chance variations in node elevations between the two 

meshes.  Differences do not appear to be related to placement of vertical features.  
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CHAPTER SIX:  CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE WORK 

 

A successful method for extracting raised vertical features from LiDAR DEMs and 

including them in a coastal storm surge mesh was demonstrated.  Results from the Storm 2 

simulation highlighted the requirement for including vertical features.  The Man_Ctrl mesh 

which did not specifically include vertical features predicted inundation in a large area of over 

four sq km that was shown to remain free of surge in the Man_VF simulation including the 

adjacent interstate roadbed.  Even the addition of shorter, more limited vertical features was seen 

to limit inundation.  The automation of the method is a benefit when building large coastal storm 

surge meshes. 

The addition of vertical features was also shown to incorrectly limit inundation when the 

feature was placed correctly, but adjacent to low terrain.  From this observation, one can say that 

a mesh should not be adjusted to include ridge features unless corresponding adjustments are 

made to include valleys and watercourses.  Capturing ridge heights without capturing valley 

inverts in the mesh invites non-conservative errors.  To ensure space for a minimum of three 

elements between ridge features, larger separation distances than were desired were enforced 

between the ridges extracted here.  A positive method to include valleys may allow this 

parameter to be tightened.  In addition to incorporating methods to positively include valleys, 

improvements in the following two areas are needed. 

First, the extraction algorithm itself needs to be improved and expanded.  It should scale 

better with larger datasets.  This requires a different starting method than the TauDEM 
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MapWindow watershed delineation software.  Obvious options are an adaptation of the 

Terraflow drainage analysis software of Arge et al. (2003) discussed in Chapter 2 or 

development of an improved image analysis based method of ridge extraction.  A natural 

extension is to incorporate the valley extraction discussed above along with the ridge extraction.  

Addition of an option to explicitly favor extraction of long, fairly straight lines such as interstates 

and other major roads over shorter lines would be valuable.  Improvements to the line 

simplification algorithm could significantly reduce manual editing time. 

Finally, improvements are needed to allow automated meshing around interior line 

features without requiring extensive manual editing.  To incorporate both raised features and 

valley inverts in large coastal meshes, better automation is needed. 
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APPENDIX A:  VERTICAL FEATURE EXTRACTION PARAMETERS 
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Table 5:  Vertical Feature Extraction Parameters 

Parameter Value Description 

num_ranges 3 Number of ranges at which elevation will be 
checked (number of S values) 

S1 130m See description in text 

S2 250m See description in text 

S3 400m See description in text 

S1 Offset 70m See description in text 

S2 Offset 125m See description in text 

S3 Offset 200m See description in text 

h1 0.50m See description in text 

h2 0.75m See description in text 

h3 1.00m See description in text 

slope_step_dist 6m (2 cells) Distance between points where elevation difference 
is checked to see if points are SIGNIFICANT 

terr_slope_area 25m square Area over which elevations are averaged 

cont_area 60m square Test area for computing elevation around continue 
point 

cont_elev_limit 0.01m Min elevation difference between point and 
cont_area elevation for point to be marked as a 

CONTINUE point 
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Parameter Value Description 

cont_dist_limit 500m Max length of line segment that may be coded 
CONTINUE 

min_line_length 600m Min allowable extracted line length 

min_spacing_btwn_lines 600m Min allowable spacing between different lines (N/A 
for lines joined at > min_angle_junction) 

min_angle_junction 30o Min allowable line junction angle 

min_loop_length 2750m Min allowable closed line length 

vert_spacing 300m Desired vertex spacing in finished lines 

Significant points’ qualifications were set to require the elevation differential, h, to be met once 
at each range on each side of the ridge. 
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APPENDIX B:  ADCIRC CONTROL PARAMETERS 
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Man_VF_geo 100mph 250km ! 32 CHARACTER ALPHANUMERIC RUN DESCRIPTION 
NWS2_bndryHydro! 24 CHARACTER ALPANUMERIC RUN IDENTIFICATION 
 1      ! NFOVER - NONFATAL ERROR OVERRIDE OPTION                                
 0      ! NABOUT - ABREVIATED OUTPUT OPTION PARAMETER                            
 0      ! NSCREEN - UNIT 6 OUTPUT OPTION PARAMETER                               
 0      ! IHOT - HOT START PARAMETER                                             
 2      ! ICS - COORDINATE SYSTEM SELECTION PARAMETER                            
 0      ! IM - MODEL SELECTION PARAMETER                                         
 2      ! NOLIBF - BOTTOM FRICTION TERM SELECTION PARAMETER                      
 2      ! NOLIFA - FINITE AMPLITUDE TERM SELECTION PARAMETER                     
 0      ! NOLICA - SPATIAL DERIVATIVE CONVECTIVE SELECTION PARAMETER             
 0      ! NOLICAT - TIME DERIVATIVE CONVECTIVE TERM SELECTION PARAMETER          
 0      ! NWP - VARIABLE BOTTOM FRICTION AND LATERAL VISCOSITY OPT PARAMETER  
 1      ! NCOR - VARIABLE CORIOLIS IN SPACE OPTION PARAMETER                     
 0      ! NTIP - TIDAL POTENTIAL OPTION PARAMETER                                
 2      ! NWS - WIND STRESS AND BAROMETRIC PRESSURE OPTION PARAMETER             
 1      ! NRAMP - RAMP FUNCTION OPTION                                           
 9.81   ! G - ACCELERATION DUE TO GRAVITY - DETERMINES UNITS                     
-0.020  ! TAU0 - WEIGHTING FACTOR IN GWCE                                        
0.5   ! DT - TIME STEP (IN SECONDS)                                            
0.00   ! STATIM - STARTING TIME (IN DAYS)                                       
0.00   ! REFTIM - REFERENCE TIME (IN DAYS) 
7200   ! WTIMINC - Wind time increment (sec) Time btwn input data in fort.22 
3.25   ! RNDAY - TOTAL LENGTH OF SIMULATION (IN DAYS)                           
0.75   ! DRAMP - DURATION OF RAMP FUNCTION (IN DAYS)                            
0.35 0.30 0.35  ! TIME WEIGHTING FACTORS FOR THE GWCE EQUATION           
0.01 2 1 0.05 ! H0, NODEDRYMIN, NODEWETRMP, VELMIN                     
-82.74 27.61  ! SLAM0,SFEA0 - CENTER OF CPP PROJECTION 
0.0025 10.0 10.0 0.33333 ! FFACTOR,HBREAK,FTHETA,FGAMMA 
5.00    ! ESL - LATERAL EDDY VISCOSITY COEFFICIENT 
0.0000672   ! CORI - CORIOLIS PARAMETER - IGNORED IF NCOR = 1        
0    ! NTIF - TOTAL NUMBER OF TIDAL POTENTIAL CONSTITUENTS  
0    ! NBFR - TOTAL NUMBER OF FORCING FREQ ON OPEN BDRY 
45.0    ! ANGINN : INNER ANGLE THRESHOLD 
1 0.0 3.25 360 ! NOUTE,TOUTSE,TOUTFE,NSPOOLE:ELEV STATION OUTPUT 
4    ! NSTAE - NUMBER OF ELEV RECORDING STA, THEN STA LOCS 
-82.7866    27.5815 ! 5 km from mouth of Tampa Bay 
-82.42500 27.91333 8726667 CSX ROCKPORT, MCKAY BAY ENTRANCE , FL 
-82.62667 27.76000 8726520 ST. PETERSBURG, TAMPA BAY , FL 
-82.83167 27.97833 8726724 CLEARWATER BEACH, GULF OF MEXICO , FL 
0 0.0 3.0 3600 ! NOUTV,TOUTSV,TOUTFV,NSPOOLV:VEL STATION OUTPUT INFO 
0    ! TOTAL NUMBER OF VELOCITY RECORDING STATIONS 
0 0.0 0.0 0 ! NOUTM, TOUTSM, TOUTFM, NSPOOLM - MET OUTPUT INFO 
0    ! NSTAM - NUMBER OF MET RECORDING STATIONS 
1 2.25 3.25 1800 ! NOUTGE,TOUTSGE,TOUTFGE,NSPOOLGE : GLOBAL ELEV OUT 
1 2.25 3.25 1800 ! NOUTGV,TOUTSGV,TOUTFGV,NSPOOLGV : GLOBAL VEL  OUT 
0  2.5 3.0 3600 ! NOUTGM,TOUTSGM,TOUTFGM,NSPOOLGM  - GLOBAL MET OUT 
0    ! NHARFR 
0.0 0.0 0 0.0 ! THAS,THAF,NHAINC,FMV - HARMONIC ANALYSIS PARAMETERS    
0 0 0 0 ! NHASE,NHASV,NHAGE,NHAGV 
0 8640   ! NHSTAR,NHSINC - HOT START FILE GEN PARAMETERS   
1 0 0.0000298 25 ! ITITER, ISLDIA, CONVCR, ITMAX, ILUMP 
8    ! MNPROC 
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