43 research outputs found

    Mely: Efficient Workstealing for Multicore Event-Driven Systems

    Get PDF
    Many high-performance communicating systems are designed using the event-driven paradigm. As multicore platforms are now pervasive, it becomes crucial for such systems to take advantage of the available hardware parallelism. Event-coloring is a promising approach in this regard. First, it allows programmers to simply and progressively inject support for the safe, parallel execution of multiple event handlers through the use of annotations. Second, it relies on a workstealing algorithm to dynamically balance the execution of event handlers on the available cores. This paper studies the impact of the workstealing algorithm on the overall system performance. We first show that the only existing workstealing algorithm designed for event-coloring runtimes is not always efficient: for instance, it causes a 33% performance degradation on a Web server. We then introduce several enhancements to improve the workstealing behavior. An evaluation using both microbenchmarks and real applications, a Web server and the Secure File Server (SFS), shows that our system consistently outperforms a state-of-the-art runtime (Libasync-smp), with or without workstealing. In particular, our new workstealing improves performance by up to +25% compared to Libasync-smp without workstealing and by up to +73% compared to the Libasync-smp workstealing algorithm, in the Web server case

    Topology-Aware and Dependence-Aware Scheduling and Memory Allocation for Task-Parallel Languages

    Get PDF
    International audienceWe present a joint scheduling and memory allocation algorithm for efficient execution of task-parallel programs on non-uniform memory architecture (NUMA) systems. Task and data placement decisions are based on a static description of the memory hierarchy and on runtime information about intertask communication. Existing locality-aware scheduling strategies for fine-grained tasks have strong limitations: they are specific to some class of machines or applications, they do not handle task dependences, they require manual program annotations, or they rely on fragile profiling schemes. By contrast, our solution makes no assumption on the structure of programs or on the layout of data in memory. Experimental results, based on the OpenStream language, show that locality of accesses to main memory of scientific applications can be increased significantly on a 64-core machine, resulting in a speedup of up to 1.63× compared to a state-of-the-art work-stealing scheduler

    Study of Scheduling in Programming Languages of Multi-Core Processor

    Get PDF
    Over the recent decades, the nature of multi core processors caused changing the serial programming model to parallel mode. There are several programming languages for the parallel multi core processors and processors with different architectures that these languages have faced programmers to challenges to achieve higher performance. In additional, different scheduling methods in the programming languages for the multi core processors have significant impact on efficiency of the programming languages. Therefore, this article addresses the investigation of the conventional scheduling techniques in the programming languages of multi core processors which allows researcher to choose more suitable programing languages by comparing efficiency than application. Several languages such as Cilk++، OpenMP، TBB and PThread were studied and their scheduling efficiency has been investigated by running Quick-Sort and Merge-Sort algorithms as wel

    PAEAN : portable and scalable runtime support for parallel Haskell dialects

    Get PDF
    Over time, several competing approaches to parallel Haskell programming have emerged. Different approaches support parallelism at various different scales, ranging from small multicores to massively parallel high-performance computing systems. They also provide varying degrees of control, ranging from completely implicit approaches to ones providing full programmer control. Most current designs assume a shared memory model at the programmer, implementation and hardware levels. This is, however, becoming increasingly divorced from the reality at the hardware level. It also imposes significant unwanted runtime overheads in the form of garbage collection synchronisation etc. What is needed is an easy way to abstract over the implementation and hardware levels, while presenting a simple parallelism model to the programmer. The PArallEl shAred Nothing runtime system design aims to provide a portable and high-level shared-nothing implementation platform for parallel Haskell dialects. It abstracts over major issues such as work distribution and data serialisation, consolidating existing, successful designs into a single framework. It also provides an optional virtual shared-memory programming abstraction for (possibly) shared-nothing parallel machines, such as modern multicore/manycore architectures or cluster/cloud computing systems. It builds on, unifies and extends, existing well-developed support for shared-memory parallelism that is provided by the widely used GHC Haskell compiler. This paper summarises the state-of-the-art in shared-nothing parallel Haskell implementations, introduces the PArallEl shAred Nothing abstractions, shows how they can be used to implement three distinct parallel Haskell dialects, and demonstrates that good scalability can be obtained on recent parallel machines.PostprintPeer reviewe

    ERASE: Energy Efficient Task Mapping and Resource Management for Work Stealing Runtimes

    Get PDF
    Parallel applications often rely on work stealing schedulers in combination with fine-grained tasking to achieve high performance and scalability. However, reducing the total energy consumption in the context of work stealing runtimes is still challenging, particularly when using asymmetric architectures with different types of CPU cores. A common approach for energy savings involves dynamic voltage and frequency scaling (DVFS) wherein throttling is carried out based on factors like task parallelism, stealing relations, and task criticality. This article makes the following observations: (i) leveraging DVFS on a per-task basis is impractical when using fine-grained tasking and in environments with cluster/chip-level DVFS; (ii) task moldability, wherein a single task can execute on multiple threads/cores via work-sharing, can help to reduce energy consumption; and (iii) mismatch between tasks and assigned resources (i.e., core type and number of cores) can detrimentally impact energy consumption. In this article, we propose EneRgy Aware SchedulEr (ERASE), an intra-application task scheduler on top of work stealing runtimes that aims to reduce the total energy consumption of parallel applications. It achieves energy savings by guiding scheduling decisions based on per-task energy consumption predictions of different resource configurations. In addition, ERASE is capable of adapting to both given static frequency settings and externally controlled DVFS. Overall, ERASE achieves up to 31% energy savings and improves performance by 44% on average, compared to the state-of-the-art DVFS-based schedulers

    Redundant dataflow applications on clustered manycore architectures

    Get PDF
    Increasing performance requirements in the embedded systems domain have encouraged a drift from singlecore to multicore processors. Cars are an example for complex embedded systems in which the use of multicores continues to grow. The requirements of software components running in modern cars are diverse. On the one hand there are safety-critical tasks like the airbag control, on the other hand tasks which do not have any safety-related requirements at all, for example those controlling the infotainment system. Trends like autonomous driving lead to tasks which are simultaneously safety-critical and computationally complex. To satisfy the requirements of modern embedded applications we developed a dataflow-based runtime environment (RTE) for clustered manycore architectures. The RTE is able to execute dataflow graphs in various redundancy configurations and with different schedulers. We implemented our RTE design on the Kalray Bostan Massively Parallel Processor Array and evaluated all possible configurations for three common computation tasks. To classify the performance of our RTE, we compared the non-redundant graph executions with OpenCL versions of the three applications. The results show that our RTE can come close or even surpass Kalray's OpenCL framework, although maximum performance was not the primary goal of our design

    Runtime Management of Multiprocessor Systems for Fault Tolerance, Energy Efficiency and Load Balancing

    Get PDF
    Efficiency of modern multiprocessor systems is hurt by unpredictable events: aging causes permanent faults that disable components; application spawnings and terminations taking place at arbitrary times, affect energy proportionality, causing energy waste; load imbalances reduce resource utilization, penalizing performance. This thesis demonstrates how runtime management can mitigate the negative effects of unpredictable events, making decisions guided by a combination of static information known in advance and parameters that only become known at runtime. We propose techniques for three different objectives: graceful degradation of aging-prone systems; energy efficiency of heterogeneous adaptive systems; and load balancing by means of work stealing. Managing aging-prone systems for graceful efficiency degradation, is based on a high-level system description that encapsulates hardware reconfigurability and workload flexibility and allows to quantify system efficiency and use it as an objective function. Different custom heuristics, as well as simulated annealing and a genetic algorithm are proposed to optimize this objective function as a response to component failures. Custom heuristics are one to two orders of magnitude faster, provide better efficiency for the first 20% of system lifetime and are less than 13% worse than a genetic algorithm at the end of this lifetime. Custom heuristics occasionally fail to satisfy reconfiguration cost constraints. As all algorithms\u27 execution time scales well with respect to system size, a genetic algorithm can be used as backup in these cases. Managing heterogeneous multiprocessors capable of Dynamic Voltage and Frequency Scaling is based on a model that accurately predicts performance and power: performance is predicted by combining static, application-specific profiling information and dynamic, runtime performance monitoring data; power is predicted using the aforementioned performance estimations and a set of platform-specific, static parameters, determined only once and used for every application mix. Three runtime heuristics are proposed, that make use of this model to perform partial search of the configuration space, evaluating a small set of configurations and selecting the best one. When best-effort performance is adequate, the proposed approach achieves 3% higher energy efficiency compared to the powersave governor and 2x better compared to the interactive and ondemand governors. When individual applications\u27 performance requirements are considered, the proposed approach is able to satisfy them, giving away 18% of system\u27s energy efficiency compared to the powersave, which however misses the performance targets by 23%; at the same time, the proposed approach maintains an efficiency advantage of about 55% compared to the other governors, which also satisfy the requirements. Lastly, to improve load balancing of multiprocessors, a partial and approximate view of the current load distribution among system cores is proposed, which consists of lightweight data structures and is maintained by each core through cheap operations. A runtime algorithm is developed, using this view whenever a core becomes idle, to perform victim core selection for work stealing, also considering system topology and memory hierarchy. Among 12 diverse imbalanced workloads, the proposed approach achieves better performance than random, hierarchical and local stealing for six workloads. Furthermore, it is at most 8% slower among the other six workloads, while competing strategies incur a penalty of at least 89% on some workload
    corecore