
30

Topology-Aware and Dependence-Aware Scheduling and Memory
Allocation for Task-Parallel Languages

ANDI DREBES, Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7606, LIP6, France
ANTONIU POP, University of Manchester, School of Computer Science
KARINE HEYDEMANN, Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7606, LIP6, France
ALBERT COHEN, INRIA and École Normale Supérieure
NATHALIE DRACH, Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7606, LIP6, France

We present a joint scheduling and memory allocation algorithm for efficient execution of task-parallel pro-
grams on non-uniform memory architecture (NUMA) systems. Task and data placement decisions are based
on a static description of the memory hierarchy and on runtime information about intertask communication.
Existing locality-aware scheduling strategies for fine-grained tasks have strong limitations: they are specific
to some class of machines or applications, they do not handle task dependences, they require manual pro-
gram annotations, or they rely on fragile profiling schemes. By contrast, our solution makes no assumption
on the structure of programs or on the layout of data in memory. Experimental results, based on the Open-
Stream language, show that locality of accesses to main memory of scientific applications can be increased
significantly on a 64-core machine, resulting in a speedup of up to 1.63× compared to a state-of-the-art
work-stealing scheduler.

Categories and Subject Descriptors: D.1.3 [Concurrent Programming]: Parallel Programming

General Terms: Performance, Languages

Additional Key Words and Phrases: FIFO queue, dynamic scheduling, work stealing, lock-free algorithm,
weak memory model, dataflow programming, Kahn process network

ACM Reference Format:
Andi Drebes, Karine Heydemann, Nathalie Drach, Antoniu Pop, and Albert Cohen. 2014. Topology-aware
and dependence-aware scheduling and memory allocation for task-parallel languages. ACM Trans. Architec.
Code Optim. 11, 3, Article 30 (August 2014), 25 pages.
DOI: http://dx.doi.org/10.1145/2641764

1. INTRODUCTION

As the number of cores increases, shared memory machines now rely on complex, non-
uniform memory architectures (NUMA) to reduce contention on memory controllers.
Main memory is distributed over multiple nodes connected through large-scale coher-
ent links. This distribution incurs high access cost for data stored on remote nodes.
Performance thus highly depends on the exploitation of node affinity—that is, avoiding

This work was partly supported by the European FP7 projects PHARAON id. 288307 and TERAFLUX id.
249013.
Authors’ addresses: A. Drebes, K. Heydemann, and N. Drach, 4 Place Jussieu, 75252 Paris Cedex 5, France;
email: andi.drebes@lip6.fr; A. Pop, University of Manchester, School of Computer Science, Oxford Road,
Manchester M13 9PL, United Kingdom; email: antoniu.pop@manchester.ac.uk; A. Cohen, Département
d’Informatique, École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France; email: albert.cohen@inria.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1544-3566/2014/08-ART30 $15.00

DOI: http://dx.doi.org/10.1145/2641764

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

http://dx.doi.org/10.1145/2641764
http://dx.doi.org/10.1145/2641764

30:2 A. Drebes et al.

expensive remote accesses by favoring accesses to local memory. Taking into account
the topology of the target machine is a key enabling factor to efficient execution.

Efficiently exploiting NUMA is a nontrivial task. In addition to the optimization
challenges for single-core memory hierarchies, new challenges arise, such as making
efficient use of the interconnect bandwidth and avoiding contention [Dashti et al.
2013]. These problems can be addressed by locality-aware data and task placement
[Best et al. 2011], keeping data as close as possible to the processing core. Several
studies have shown that the execution time of independent, coarse-grained tasks can
be reduced considerably by using schedulers that exploit the topology of the underlying
architecture [Blagodurov et al. 2010; Zhuravlev et al. 2012]. Jiang et al. [2008] formally
show that finding optimal co-schedules for more than two threads is already NP-
complete. It is thus likely to be computationally intensive for many-core machines, and
practical approaches are therefore based on heuristics.

Parallel programming using fine-grained tasks has become increasingly popular
to harness the computing resources of large-scale parallel machines. In contrast to
application-unaware schedulers and memory allocators, which are designed to work
with independent processes, heuristics integrated into the parallel runtime system
can take advantage of additional information, available during execution, such as the
relationship between tasks and data. Such information is either implicitly assumed,
as is the case for Cilk tasks [Blumofe et al. 1995] where data locality between sibling
tasks in the task tree is a consequence of the frequent reliance on divide-and-conquer
programming patterns, or explicitly provided by the programmer through code anno-
tations, or derived automatically through static and dynamic analysis (profiling).

We present a resource-aware approach to jointly schedule and allocate memory for
fine-grained tasks executing on large-scale, shared memory multicore machines. The
main contribution of our algorithm resides in the way that it exploits locality and
dependence information readily available in runtimes of task-parallel languages, and
more specifically in runtimes of languages with support for explicit, point-to-point,
intertask dependences. As a representative of such languages, we use OpenStream, an
extension of OpenMP with dataflow tasks [Pop and Cohen 2013].

Information about intertask dependences and data reuse is preserved during com-
pilation. It is thus available to the runtime system, capturing accurate information
on data transfer between tasks. This allows the runtime to determine at execution
time which processing units are contributors of data to any given task. Combining this
information with dynamic information about data placement on NUMA nodes enables
the scheduler to decide heuristically which core is the best candidate for execution of a
task. In particular, this choice depends on which NUMA nodes are likely to contain the
highest amount of task input data as well as the location of the task’s output buffers.

A NUMA-aware data allocation mechanism gives the runtime fine-grained control
over data placement and allows optimization of data placement in the course of the
execution. Similar to the scheduler, the decision where data should be allocated can
be driven by information about task dependences and the location of already allocated
data. This way, data accesses can be optimized before execution of a task.

Our experiments show that the locality of data accesses of representative paral-
lel benchmarks is increased significantly when exploiting data dependence and reuse
information both by the scheduler and the memory allocator. For memory-bound bench-
marks, increased locality translates into a significant reduction of execution time.

1.1. Outline

The presentation of our approach takes three successive steps. We first introduce a
data- and communication-centric migration mechanism that triggers when all depen-
dences conditioning the execution of a given task have been satisfied. This mechanism
transfers the task to the core that fits best for execution for a given data placement. The

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

Topology-Aware and Dependence-Aware Scheduling and Memory Allocation 30:3

goal is to constantly react to the effective location of data, matching data locality with
task ownership. Then, we introduce a modification of the scheduler itself, adapting the
random work-stealing algorithm [Blumofe and Leiserson 1999] to prioritize steals from
task queues of nearby cores, further reducing memory access latency.

Second, we propose a topology-aware and dependence-aware memory allocation
mechanism that optimizes data placement before task execution. By analyzing
producer–consumer relationships between tasks, this method prevents data regions
for input and output data from being allocated on distant NUMA nodes and thus
promotes short-distance read and write accesses.

Third, we study the reciprocal effects of the scheduling and allocation techniques and
show that a joint approach using all of the proposed optimizations at once performs best.

The remainder of this article is organized as follows. First, we precisely define the
problem that our approach solves and its requirements. In Section 2, we discuss com-
plete random work stealing as well as two modifications of the scheduler with improved
locality. Section 3 discusses the relationship between memory allocation and data lo-
cality and presents a dependence-aware allocation mechanism. Reciprocal effects of
optimized scheduling and memory allocation are discussed in Section 4. Section 5 de-
tails the embedding of our optimizations into a modern task-parallel language. After
a presentation of the evaluation methodology in Section 6, a quantitative evaluation
of the implementation is given in Section 7. The article closes with a discussion of
the most closely related work in Section 8, followed by a conclusion and an outlook in
Section 9.

1.2. Problem Statement

Our objective in this work is to improve the performance of task-parallel applications
executing on modern NUMA systems by reducing the latency of memory accesses
through improved locality.

The behavior of parallel applications can depend on runtime parameters, such as
the problem size and input data, but also on small differences in timing between runs,
leading to different schedules. It can therefore be extremely difficult or even impossible
to predict behavior based on static information available at compile time. Therefore,
optimizations taking into account dynamic changes must operate at execution time.
Our approach addresses the problem of optimization for memory hierarchies of parallel
programs by providing an efficient task transfer mechanism, a topology-aware task
scheduling algorithm, and a topology-aware and dependence-aware memory allocation
mechanism designed to meet four major optimization goals:

(1) Efficient load-balancing across cores aims at distributing work over the cores of
the machine to achieve high parallelism. Ideally, all processing units efficiently
contribute to the execution of the parallel program.

(2) Efficient load-balancing across memory controllers and interconnects targets elimi-
nation of contention on individual memory controllers and interconnects by spread-
ing data on different NUMA nodes.

(3) Taking advantage of locality relative to NUMA nodes consists in scheduling tasks
on cores near the data processed during task execution, reducing the number of
remote memory accesses and pressure on interconnects.

(4) Optimized, active data placement aims at allocating memory on NUMA nodes favor-
able for local memory accesses according to data exchanges of future computations.

Some of the goals are contradictory, and it might be difficult to meet all of them at
once. For example, a set of communicating tasks generates traffic on the interconnect if
executed on cores of different NUMA nodes, but executing all of them on the same node
decreases parallel performance and increases contention on a single memory controller.
Depending on behavior at runtime, a trade-off might thus be required.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

30:4 A. Drebes et al.

Moreover, the optimization approach should be transparent to applications and also
be portable across different machines and their memory hierarchies. Ideally, it adapts
automatically to the target architecture without any manual intervention of the ap-
plication programmer. We achieve this by using a runtime-based approach using a
lightweight description of the memory hierarchy, which parametrizes the scheduler
and allocator. It can either be provided by the system administrator or manufacturer
or be generated automatically.

2. WORK STEALING AND LOCALITY

Randomized work stealing was originally designed as the load-balancing scheduler for
the Cilk language for shared memory multiprocessors [Frigo et al. 1998]. Due to its
advantages [Blumofe and Leiserson 1999], work stealing has been adopted in various
parallel libraries and parallel programming environments, including the Intel TBB
and compiler suite. Work-stealing variants have also been proposed for distributed
clusters [Gautier et al. 2007] and heterogeneous platforms [Augonnet et al. 2011]. The
scheduling strategy is intuitive:

—Each core uses a dynamic array as a deque holding tasks ready to be scheduled.
—Each core manages its own deque as a stack. It may only push and pop tasks from

the bottom of its own deque.
—Other cores cannot push or pop from that deque; instead, they steal tasks from the
top when their own deque is empty. The target deque for stealing is selected at
random.

—Initially, one core starts with the root task of the parallel program in its deque, and
all other deques are empty.

The state-of-the-art algorithm for the work-stealing deque is Chase and Lev’s lock-free
deque [Chase and Lev 2005] using an array with automatic, asynchronous growth.

The main difference in the execution of task-dependent programs, compared to more
classical task-parallel models, is that tasks can be created before their dependences
are satisfied. Such tasks are not yet ready to execute and therefore remain unknown
to the scheduler.

A task may depend on data produced by an arbitrary set of tasks, each of which may
produce an arbitrary amount of its input data. To keep track of these dependences, each
task has a synchronization counter. Its value represents the amount of data missing
before the task becomes ready to be scheduled. When a task generates input data for
another task, the consuming task’s synchronization counter is decreased accordingly,
and when it reaches zero, the task becomes ready and is pushed into the deque of the
worker that performed the last decrementation.

In this section, we first characterize two major weaknesses of randomized work
stealing with respect to the locality of data accesses. In a second part, we present
two complementary scheduling heuristics that improve data locality: (1) work pushing
bypasses the work-stealing scheduler by transferring ownership of tasks based on
effective runtime data locality; and (2) topology-aware work stealing, which attempts
to steal tasks in a worker’s incrementally widening neighborhood based on an abstract
description of the memory hierarchy.

2.1. Randomized Work Stealing

In randomized work stealing, the target deque for stealing is selected based on a uni-
form distribution. Although this mechanism yields good global load balancing between
workers, it only achieves average and in some cases even poor data locality. This is
partially due to the mismatch between task and data placement, as well as a mismatch

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

Topology-Aware and Dependence-Aware Scheduling and Memory Allocation 30:5

Fig. 1. Remote memory accesses due to mismatch between task and data placement.

between the machine’s nonuniform topology and the uniform choice of target in the
default work-stealing heuristic.

Mismatch between task and data placement. Consider a consumer task tc whose in-
put data is generated by n producer tasks tp1 , . . . , tpn executed by workers w1, . . . , wn,
as shown at the left side of Figure 1. Independently from the number of input depen-
dences, a consumer has a single task buffer in which all of its input data is stored. In
this model, there are no producer-specific output buffers. Instead, the output buffers of
a producer are the input buffers of its consumers. Hence, in the example, each of the
workers writes a number δ1, . . . , δn of bytes to tc ’s input buffer and decreases the syn-
chronization counter accordingly. When it reaches zero, tc becomes ready and is added
to the scheduler deque of the worker that satisfied the last dependence. Depending on
the execution order of tp1 , . . . , tpn, this can be any of the workers w1, . . . , wn.

Assume that tc ’s buffer is located in the local memory of w1. If w1 satisfies the
last dependence, tc is added to the work deque of w1 with matching task and data
ownership. This scenario is illustrated in the center of Figure 1. However, assuming
that all of the workers w1, . . . , wn or a large subset of workers execute on different
nodes, the probability that tc is placed in a deque of a worker on the same node as
w1 is small. Hence, it is unlikely that data and task ownership match, and situations
such as those illustrated on the right side of Figure 1 with mismatched task and data
placement are more frequent. In this case, input data has to be fetched from a remote
site at execution of tc, leading to high-latency, long distance data transfers and reduced
performance of the application.

Steals from distant workers. Even if the data for all of the tasks in a worker’s task
deque is locally available on its node, random selection for a task steal leads to bad
locality of data accesses: as the number of workers executing on a same node is smaller
than the total number of workers, the probability of stealing a task from a worker on
the same node is lower than to steal from a remote core.

Hence, solving these problems can have a significant impact on performance. The mis-
match problem is addressed by a task transfer mechanism presented in the following
section. A topology-aware victim selection strategy for steals is presented in Section 2.3.

2.2. Work Pushing

To reduce the mismatch between task and data placement, a task should be transferred
to a worker whose node contains the task’s input data. In the remainder of this article,
the task transfer mechanism is referred to as work pushing. Deciding which worker
satisfies this condition requires precise dataflow information, which is readily available
in dataflow programming models like OpenStream. In particular, it is necessary to
know which data will be read by a task before that task executes.

Efficient lock-free work-stealing deques [Chase and Lev 2005] cannot be used to re-
motely push tasks without changing the algorithm and incurring high synchronization

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

30:6 A. Drebes et al.

costs. As a solution to this problem, we propose to add a new work-sharing mechanism
based on a multiproducer, single-consumer FIFO queue (MPSC FIFO). In addition to
the work deque, each worker is provided with such an MPSC FIFO for task transfers.

ALGORITHM 1: last dep satisfied(w, t)
nw ← local node of worker(w)
nt ← node of task buffer(t)

if nt �= nw then
wdst ← random worker on node(nt)
res ← push back(wdst.mpsc fifo, t)

if res = failure then
insert deque(t, w)

end
else

insert deque(t, w)
end

ALGORITHM 2: empty mpsc fifo(w)
import ← true

while import = true do
t ← pop front(w.mpsc fifo)

if t �= null then
insert deque(t, w)

else
import ← false

end
end

Algorithm 1 shows how a worker w, discovering that a task t is ready for execution,
transfers the task to another worker if necessary. The identifier of the worker’s local
node is determined by calling local node of worker. The result is assigned to nw. The
node containing the task’s buffer is stored in nt. If the nodes are different, data and
task ownership must be restored by invoking the work-pushing mechanism. The target
worker wdst is selected randomly among the workers operating on nt. The actual transfer
is performed by a call to push back, trying to insert the task into the target worker’s
MPSC FIFO. If the transfer fails (e.g., if the target MPSC FIFO is full), the task is
simply added to the work deque of w as if no task transfer were performed at all.

Tasks received by the target worker cannot be scheduled as long as they are in the
MPSC FIFO. Algorithm 2 shows the procedure empty mpsc fifo that transfers these
tasks to the local work deque to make them available for execution. Its instructions are
repeated each time before the worker selects a new task for execution. The transfer
is very simple: while the MPSC FIFO is not empty, the front element is removed and
added to the work deque. Using this order has an important side effect. The front of
the MPSC FIFO contains the oldest tasks, whereas the back holds the most recent
tasks. Thus, during the last iteration of the loop, the most recent task is added to the
work deque and becomes the next task to be executed by the worker. Input data of the
most recent task has the highest probability to be still present in parts of the memory
hierarchy near to the executing core. The last task from the MPSC FIFO is therefore a
good candidate for execution.

2.3. Topology-Aware Work Stealing

Before we discuss the topology-aware work-stealing algorithm, we present a
lightweight static model for the representation of the memory hierarchy, which is
used by the work-stealing algorithm to adapt to the topology of the target machine.
The description can be broken down to the following parts:

—A set C ⊂ N of identifiers for processing units (e.g., C = {0, . . . , 63}).
—An ordered set L containing the levels of the memory hierarchy from the cache

nearest to the CPUs down to the different NUMA domains or memory controllers
(e.g., L = 〈L1, L2, L3, RAM〉).

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

Topology-Aware and Dependence-Aware Scheduling and Memory Allocation 30:7

—A function sibs : L×C → N describing how many processing units share an instance
of a hardware part at a given level. We refer to these processing units as siblings.
For example, if four cores with identifiers 8, 9, 10, and 11 share a third-level cache,
then sibs(L3, 8) = sibs(L3, 9) = sibs(L3, 10) = sibs(L3, 11) = 4. Passing a processing
unit as a parameter to sibs allows the definition of asymmetric architectures.

—A function nth sib : L×C×N → C describing which processing unit is the n-th sibling
of another processing unit in ascending order of CPU identifiers at a given level. For
example, if processing units 0 to 7 share a third-level cache, then nth sib(L3, 0, 2) = 2
and nth sib(L3, 3, 2) = 5.

By using L, sibs, nth sib, and the order relation on L, the neighbors of a core at the
different levels of the memory hierarchy can be determined easily for topology-aware
work stealing.

The idea behind our optimized heuristic for work stealing is that instead of randomly
selecting a steal victim, task deques of neighboring workers are favored, which leads
to more local memory accesses when the stolen task is executed. However, the work
deques of close workers might not always provide enough tasks to steal. To avoid
poor load balancing, other attempts at higher levels in the memory hierarchy must be
performed if work stealing fails on close deques.

Our topology-aware work-stealing technique is shown in Algorithm 3. At each level
l beginning with the level nearest to the CPU, a number of steal attempts defined by
attempts(l) is performed until an attempt is successful or no level is left. In addition
to the definitions of the memory hierarchy, the algorithm uses the following notations
and functions:

—rand(n) generates a random integer value in [0; n] using a uniform distribution.
—cpu : W → C returns the processing unit a worker executes on with W being the set

of workers.
—attempts : L → N∪{0} defines the maximal number of steal attempts at a given level

of the memory hierarchy.

ALGORITHM 3: topology aware stealing(w)
cpuw ← cpu(w)

for level ∈ L do
num siblings ← sibs(l, cpuw)

for attempt ← 1 to attempts(l) do
n ← rand(num siblings − 1)
target cpu ← nth sib(l, cpuw, n)

if target cpu �= cpuw then
target worker ← cpu−1(target cpu)
t ← steal(target worker)

if t �= null then
return t

end
end

end
end
return null

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

30:8 A. Drebes et al.

Fig. 2. Locality of write accesses in a chain of dependent tasks. (a) Tasks with buffers allocated on alternating
nodes. (b) Task buffers allocated on the same node.

Fig. 3. (a) Indirect task creation. (b) Local allocation with local accesses. (c) Local allocation with remote
accesses.

—steal : W → T ∪ {null} is a function that performs a steal attempt on a target deque
and returns the stolen task from the set of tasks T if the attempt is successful or
null if the attempt fails.

2.4. Locality of Write Accesses

As work pushing operates with information about placement of task buffers and ignores
intertask dependences, it can only optimize locality of read accesses of a task to its own
buffer. Write accesses from a producer to a consumer’s buffer remain unaffected by the
optimization. This is illustrated in Figure 2. To visualize task and data ownership,
each task is represented by two colored semicircles. The color of the right semicircle
indicates the location of the task’s buffer, whereas the color of the left semicircle shows
the node to which the executing CPU belongs. For read accesses, ideally both colors
match, indicating that accesses to input data are local as in Figure 2(a). However, write
accesses in this example are entirely remote. A better placement consists in placing all
task buffers on the same node as shown in Figure 2(b), where read and write accesses
are local. In the next section, we show that the problem of remote write accesses can
be addressed by the memory allocator.

3. MEMORY ALLOCATION AND LOCALITY

In this section, we study the relationship between buffer allocation and locality of data
accesses. We first show why allocation on local nodes can result in poor data locality of
write accesses. We then propose a dependence-aware memory allocation scheme that
improves the locality of write accesses when used in conjunction with work pushing.

3.1. Local Allocation

As the write accesses during execution of a producer task address the task buffers of its
consumers, the addresses of all consumer task buffers must be known before execution
of the producer. Hence, a producer cannot be ready for execution before the buffers
of the receiving tasks have been allocated. As a consequence, a task cannot allocate
buffers of tasks that directly depend on it. Dynamic task graphs, however, require
that buffers are allocated in the course of execution of the application, as new tasks
are created dynamically. To circumvent the preceding restriction, tasks create indirect
successors as shown in Figure 3(a). In the example, a direct dependence between t3 and
t4 requires t4 to be created by a predecessor of t3 (e.g., t2 at the bottom left).

By default, task buffers of new tasks are allocated on the local node of the allocating
task. In the example of Figure 3(a), this leads to the allocation of t4 on the node of t2.
Depending on the effective location of the task buffer of t3, work pushing causes t3 to
be executed on the node of t2 (Figure 3(b)) or on some other node, such as the one of t1

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

Topology-Aware and Dependence-Aware Scheduling and Memory Allocation 30:9

ALGORITHM 4: allocate task buffer(w, t)
for n ∈ Nodes do

δn ← 0
end

δmax ← 0
nmax ← null

for tp ∈ producers(t) do
np ←
node of task buffer(tp)

δnp ← δnp + δ(tp, t)

if δnp > δmax then
δmax ← δnp

nmax ← np

end
end

if nmax �= null then
ndst ← nmax

else
ndst ←

local node of worker(w)
end

buf ←
alloc on node(ndst, δmax)

return buf

(Figure 3(c)). In the first case, write accesses of t3 are local, and as t4 is also executed
on the same node, accesses to input data of t4 are also local. In the other case, write
accesses of t3 are remote.

3.2. Dependence-Aware Allocation

The main issue of local allocation is the coupling of task placement and buffer allocation:
the effective location at execution of the allocating task determines where the task
buffer of a future task is allocated.

For local write accesses of tasks on a dependence path, buffer allocation and task
execution should be performed on the same node. Hence, the location of a task’s pro-
ducers, not the location of the allocating tasks, should determine where its task buffer
should be allocated. The procedure of Algorithm 4, allocating the task buffer of a new
task t, achieves this by exploiting information about data dependences available to the
runtime. The task buffer of t is allocated on the same node as the task buffers of its
producers. If the producers are scattered across multiple nodes, the node with maximal
contribution to t’s input data is selected for allocation.

A variable δn counts for each node n how many bytes of input data will be written
by producers of t whose task buffers are allocated on n. To compute this value, the
algorithm iterates over the set of producers and then determines for each producer tp
the node ntp containing its task buffer and adds δ(tp, t), the number of bytes produced
by tp and consumed by t, to δnp. The node with maximal contribution is nmax, producing
δmax bytes of input data. The task buffer for t is finally allocated on this node. If no such
node exists (e.g., if t does not have any input dependence), the buffer is allocated locally.

3.3. Implications for Different Dependence Patterns

For chain-like dependence patterns, as seen earlier in Figure 2, dependence-aware
allocation causes the buffers of all tasks in the chain to be allocated on the same
node. Placements favoring local writes are also achieved for asymmetric dependence
patterns—that is, patterns containing tasks with multiple predecessors or successors
producing or consuming different amounts of data. We refer to dependences associated
with larger amounts of data in these patterns as strong dependences and those asso-
ciated with fewer data as weak dependences. Dependence-aware allocation causes all
buffers of tasks on paths with strong dependences to be allocated on the same node. This
is illustrated in Figure 4, with thick lines indicating stronger dependences and thin
lines indicating weaker dependences. Most read and write accesses of these tasks are
local if they are executed by workers belonging to the buffers’ node using work pushing.

For symmetric dependences, where all data exchanges are of the same size, the
node for buffer allocation must be chosen among several maximal contributors. It is
less likely that buffers on long dependence chains are allocated on the same node,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

30:10 A. Drebes et al.

Fig. 4. Dependence-aware allocation keeps buffers of tasks with strong dependences on the same node.
(a) Initial placement. (b) Resulting buffer placement.

Fig. 5. Dependence-aware allocation resulting in improved locality of reads and writes for direct depen-
dences. (a) Initial placement. (b–d) Possible buffer placements resulting from dependence-aware allocation.

Fig. 6. Dependence-aware allocation and work pushing applied to a tree-like dependence pattern. (a) Initial
placement. (b) Effects of dependence-aware allocation. (c) Final result due to work pushing.

but the algorithm guarantees that at least one input dependence of each task results
in local writes for the associated producer. Figure 5 illustrates this property of the
algorithm. Any selected maximal contributing producer in the initial placement at the
left guarantees the locality of the write accesses of at least one dependence.

Allocating buffers of dependent tasks on the same node leads to higher locality of
data accesses, but work pushing might diminish load balancing across computing units
and memory controllers. An extreme case is tree-like dependence patterns, resulting
in poor data distribution and low parallelism.

Figure 6 shows such a scenario. In the initial situation, the root task of the tree
and its buffer are placed on the gray node. Dependence-aware allocation reserves the
buffers of its children on the same node. This process repeats at each level of the tree,
such that the buffers of the remaining tasks of the tree are allocated on the same node
as well (Figure 6(b)). Work pushing transfers the tasks to workers of the gray node,
resulting in poor load balancing (Figure 6(c)).

Consider Figure 7, which shows the same initial situation as in Figure 6 with the
exception that one of the root’s child tasks is stolen by a worker from a nearby node.
Dependence-aware allocation still causes all buffers to be allocated on the same node,
but repeated work stealing below the stolen task causes more tasks to be executed on
the other node, leading to better load balancing. However, the memory accesses are
remote, both for reads and writes, and pressure on the memory controller may be high.

Therefore, the dependence-aware allocation algorithm needs to react to steals: if the
task calling the allocation function was obtained by work stealing, the task buffer of
the newly created task is allocated locally—that is, without taking into account any

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

Topology-Aware and Dependence-Aware Scheduling and Memory Allocation 30:11

Fig. 7. Dependence-aware allocation and work pushing applied to a tree-like dependence pattern. (a) Initial
placement with steal. (b) Resulting allocation and execution pattern. (c) Result for modified dependence-
aware allocation.

task dependence. For the tree structure, this leads to a situation similar to Figure 7(c).
Data accesses of the task that was stolen initially and those of its children are remote,
but data locality can be restored for newly created tasks. As a consequence, global
load balancing is improved, there are fewer task transfers, and contention on memory
controllers decreases.

4. JOINT TASK SCHEDULING AND MEMORY ALLOCATION

The reciprocal effects of work pushing, topology-aware work stealing, and modified
dependence-aware allocation can be summarized as follows:

—Work pushing restores the mismatch of task and data ownership explained in
Section 2.1. It also acts as a complementary mechanism to dependence-aware al-
location, exploiting the locality of data placement by transferring tasks to nodes
containing their data.

—Dependence-aware allocation optimizes task buffer placement according to future
data exchanges between tasks based on information about task dependences and the
effective location of the corresponding task buffers.

—Topology-aware work stealing extenuates possible computational load-balancing and
contention problems induced by dependence-aware allocation and work pushing. Re-
mote read and write accesses are avoided by attempting to steal tasks from workers
of the same node before stealing from remote nodes.

Altogether, these characteristics match the goals defined in Section 1.2:

(1) Efficient load-balancing across cores is achieved with topology-aware work stealing
with an incrementally widening neighborhood ensuring global computational load
balancing.

(2) Efficient load balancing across memory controllers and interconnects is imple-
mented with work stealing and dependence-aware allocation.

(3) NUMA node-relative locality is addressed by dependence-aware allocation and work
pushing.

(4) Optimized, active data placement is achieved through dependence-aware allocation,
reducing the number of remote write accesses.

In Section 7, we show that the impact of these heuristics on locality and performance
in a real-world hardware and software environment is significant. The next section
describes how they were integrated into a runtime system for task-parallel applications
with point-to-point dependences.

5. EMBEDDING INTO A TASK-PARALLEL LANGUAGE

OpenStream [Pop and Cohen 2013] is a dataflow programming language designed as
an incremental extension to OpenMP. It allows expression of arbitrary dependence pat-
terns between tasks in the form of task-level dataflow dependences. OpenStream allows

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

30:12 A. Drebes et al.

Fig. 8. OpenStream’s per-worker data structures and worker placement.

exploitation of task, pipeline, and data parallelism. Programmers expose task paral-
lelism through language annotations (pragmas), providing the compiler with intertask
dependence information. These dependences are used to generate code that dynam-
ically builds a graph of dependent tasks communicating and synchronizing through
unbounded FIFO streams, implemented using task buffers as seen in the previous
sections. Writes to streams result in writes to the buffers of the tasks consuming the
data. Read accesses to streams by consumer tasks are translated to reads from their
task buffers.

We have implemented the optimizations presented in this article into the Open-
Stream runtime. The language is compiled with the publicly available implementation1

in GCC 4.7.1. Two important aspects of OpenStream are particularly relevant to the
techniques studied here:

(1) OpenStream programs rely on programmer annotations, which make the flow of
data between tasks explicit. This precise dataflow information is preserved during
compilation and easily accessible in the runtime library. It allows efficient deter-
mination, at runtime, and before task execution, of how much data is exchanged
by any given task, therefore enabling our work-pushing and dependence-aware
allocation optimizations.

(2) The OpenStream scheduler uses a state-of-the-art implementation [Lê et al. 2013]
of the Chase and Lev [2005] work-stealing deque. It originally relied on a random-
ized work-stealing policy.

In the OpenStream execution model, tasks whose dependences have been satisfied
are executed by persistent worker threads. In addition to a local work-stealing deque,
each worker has a single-entry software cache possibly containing a task ready to be
executed as shown in Figure 8. If work pushing is enabled, each worker also owns an
MPSC FIFO dedicated to the reception of remote tasks. In our experiments, we have
placed one persistent worker on each core.

The software caching scheme is used to hide one task from theft attempts for a short
time interval, between the moment the current task executed on the worker completes
and the time where the worker needs more work. Indeed, when a worker completes a
task, it decreases the synchronization counters of all tasks that depend on it, which can
lead to some of these consumer tasks becoming ready to execute. New ready tasks are
added either to the local work-stealing deque or to other workers’ work-pushing FIFO
queues. The most recently created task not pushed to another worker is kept locally in
the software cache. If all ready tasks not transferred to another worker are added to
the work-stealing deque, it is possible that all of them would be stolen and the worker
would become idle, thus requiring stealing work from other workers. Thus, the caching

1http://www.openstream.info.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

http://www.openstream.info

Topology-Aware and Dependence-Aware Scheduling and Memory Allocation 30:13

Fig. 9. Organization of the test system. (a) Shared and private caches. (b) Distance between NUMA nodes
as reported by the NUMACTL tool.

technique allows reduction in the number of overall steals and reduction in the cost of
the associated atomic operations.

The integration of dependence-aware allocation did not require any changes to
the worker-specific data structures. Instead, the intertask dataflow dependences are
derived from accesses to streams and captured in the existing data structures asso-
ciated to each task. Then, these dependences are combined with dynamic information
about the effective location of task buffers. Buffers of tasks that have terminated are
returned to a slab allocator. Instead of freeing the memory immediately, the allocator
adds it to a list of free buffers to be reused on future allocations. This common opti-
mization greatly reduces the number of library calls related to memory management
as well as the number of memory-related system calls. The implementation used
for experimental evaluation uses one slab allocator per NUMA node, each of which
manages buffers located within the associated memory region. The effective location of
a buffer is determined at termination of the first task using it and cached in the buffer’s
metadata section for later reuse. This allows the runtime to efficiently determine to
which slab allocator a buffer should be returned on termination of the associated task.

6. EXPERIMENTAL METHODOLOGY

To quantify the improvements of our optimizations over random work stealing, we
have implemented the three strategies proposed in this work in the runtime of the
OpenStream project. Using a set of different general-purpose, scientific applications,
we have measured the impact of our optimizations on data locality, execution time, and
speedup on a many-core NUMA system with 64 CPUs.

We first give an overview on the hardware and software environment used for ex-
perimentation followed by a presentation of the benchmarks used for evaluation. A
detailed analysis of the results is given in the next section.

6.1. Experimental Setup

The following experiments were conducted on a quad-socket AMD Opteron 6282 SE
running at a clock frequency of 2.6GHz. Figure 9(a) shows a hierarchical view of its basic
components. At the coarsest level, the machine is composed of four physical packages
called multichip modules. Each module contains two dies, each of which finally contains
eight cores organized as pairs of cores sharing some resources.

At the core pair level, the floating point unit, the instruction fetcher and decoder, the
first-level instruction cache, and the 2MB of second-level cache are shared. The third-
level cache of 6MB and the memory controller are shared by all of the cores located on
the same die. Among the private, per-core resources are the integer unit and the 16kB
first-level data cache.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

30:14 A. Drebes et al.

As implied by the sharing of memory controllers, main memory is divided into eight
equally sized NUMA domains of 8GB so that the total amount of main memory available
is 64GB. Their distances as reported by the NUMACTL tool [Kleen 2005] is visualized in
Figure 9(b). For each domain, there are four neighbors at a distance of one hop and
three neighbors at a distance of two hops.

According to the description scheme of the memory hierarchy of Section 2.3, there
are six different levels for the testing machine and the definition of L is thus L =
〈L1, L2, L3, 1hop, 2hops, machine〉. The first three levels refer to the three levels of
the cache hierarchy. All of the cores that share the third-level cache also share a
memory controller; therefore, no additional level for cores at the same NUMA domain
is modeled. Levels 1hop and 2hops represent cores at a NUMA distance of one (e.g.,
nodes 3 and 1 in Figure 9(b)) and two, respectively (e.g., nodes 3 and 0). The last level
is used for complete random work stealing and contains all of the system’s CPUs.

The machine was running Scientific Linux 6.2 with kernel 3.10.1. Micro-architectural
events, such as cache misses and requests to main memory, were measured by sampling
hardware performance counters using PAPI [Terpstra et al. 2010].

6.2. Benchmarks

We evaluate the impact of our technique on six applications. Each application is avail-
able in an optimized sequential implementation as well as tuned parallel implemen-
tations using OpenStream. The experimental evaluation studies the impact of our
optimizations on locality and performance, compared to a parallel OpenStream base-
line:

—Seidel simulates heat transfer using the Gauss-Seidel method, which iterates a 5-
point stencil over a two-dimensional array. We used a resolution of 214 × 214 points,
divided in blocks of size SB × SB = 28 × 2 8, performing 60 iterations.

—Bitonic implements a bitonic sorting network [Batcher 1968], sorting a sequence
of arbitrary 64-bit integer values. The input sequence is partitioned into blocks for
parallel processing. Experiments were conducted using an array of 228 64-bit keys
divided into blocks of SB = 216 elements.

—Kmeans is a data-mining benchmark that partitions a set of n multidimensional
points into k clusters using the K-means clustering algorithm. For evaluation,
40,960,000 points with 10 floating-point dimensions, generated from random walks
around 11 centers have been clustered. For parallel processing, points are divided
into blocks of SB = 10,000 elements.

—Sparse-LU calculates the LU decomposition of a block-sparse matrix. It has been
derived from an earlier version written in StarSs [Planas et al. 2009]. In our experi-
ments, the matrix size is 213 × 213, with blocks of size 27 × 27. Empty blocks—that is,
blocks that only contain zero values—are not allocated. The number of empty blocks
varies during execution, which leads to irregular parallelism in this benchmark.

—Cholesky calculates the lower triangular matrix L of a symmetric, positive definite
matrix A, such that A = L·LT . We used dense matrices of size 214 ×214 elements with
blocks of 28 × 28 elements. In the parallel implementation, operations on individual
blocks are carried out by highly tuned functions from LAPACK [Anderson et al.
1999] and BLAS [Blackford et al. 2001]. The sequential version uses the LAPACK
implementation for Cholesky factorization.

—FMradio is a benchmark derived from the GNUradio2 project and performs frequency
demodulation on ADC samples. The input data stream used for our experiment
consists of 46MB, which we process in batches of g = 1,024 complex samples.

2http://gnuradio.org/.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

http://gnuradio.org/

Topology-Aware and Dependence-Aware Scheduling and Memory Allocation 30:15

Fig. 10. Relevant types of input and output data dependences of the benchmarks.

Fig. 11. (a) First-, second-, and third-level data cache miss rates of the parallel baseline (error bars indicate
minimum and maximum values for 50 runs). (b) Estimation of L1 requests missing all cache levels.

6.2.1. Data Dependence Patterns. Figure 10 shows the relevant producer–consumer pat-
terns for the dependent tasks of the benchmarks. These can be divided into two
groups with different implications for work pushing, topology-aware work stealing,
and topology-aware and dependence-aware allocation as seen in Sections 2, 3, and
4: asymmetric dependences (cf. Seidel or Kmeans) and symmetric dependences (cf.
Bitonic, Cholesky, Sparse-LU, or FMradio). The behavior of our scheduling and alloca-
tion heuristics on these patterns are referenced in the experimental evaluation.

6.2.2. Characterization of Memory Accesses. Tile and block size parameters of the bench-
marks were chosen carefully to take advantage of caches. However, efficiency of cache
memory also depends on the pattern, the frequency, and the timing of memory ac-
cesses during execution of a benchmark, leading to more or fewer cache misses for
a given block size. Based on the cache miss rates, benchmarks can be categorized as
compute-bound applications or memory-bound applications.

Compute-bound benchmarks have a low cache miss rate, such that only few mem-
ory accesses result in accesses to main memory. Hence, their performance primarily
depends on the performance of cache memory. In contrast to this, memory-bound appli-
cations frequently miss the data cache, resulting in frequent accesses to main memory.
Although the latency of main memory accesses has only little influence on compute-
bound benchmarks, it is crucial for the performance of memory-bound benchmarks.
Thus, memory-bound benchmarks are far more sensitive to NUMA-related optimiza-
tions than compute-bound benchmarks. Seidel and Bitonic are memory bound, whereas
Kmeans, Cholesky, Sparse-LU, and FMradio are compute bound.

Figure 11(a) shows the cache miss rates at the different cache levels for parallel exe-
cution of the baseline with neither optimizations for scheduling nor optimized memory
allocation. Sparse-LU has the highest L1 miss rate, with about 30%. But unlike Seidel
and Bitonic, Sparse-LU only generates very few misses on the other levels of the cache
hierarchy. Cholesky and FMradio have high L2 and L3 miss rates but have a very
high L1 hit rate, and Cholesky generates only few misses at all levels. Figure 11(b)
summarizes this information, showing the product of the miss rates as an estimation

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

30:16 A. Drebes et al.

Fig. 12. (a) Ratio of requests to memory of local nodes to the total number of requests to main memory
(error bars indicate minimum and maximum values for 50 runs). (b) Contribution of each optimization to
the final locality.

of the fraction of L1 requests that miss all levels of the cache hierarchy and thus result
in accesses to main memory.

7. EXPERIMENTAL RESULTS

In the following comparison of the optimization techniques, we focus on the influence on
the locality of data accesses before studying the impact on execution time. The following
acronyms are used to refer to different configurations: RND (random work stealing), WP
(work pushing), TAWS (topology-aware work stealing), and DAA (modified dependence-
aware allocation).

7.1. Data Locality

The block sizes for all benchmarks were chosen carefully to achieve high data reuse
during execution of a single task. For the actual values, this implies that a task’s
working data occupies a large portion of the second- and third-level cache. Furthermore,
as there are more tasks than cores, several other tasks might be executed between a
producing task and its consumer. It is thus highly unlikely that a huge fraction of a
task’s input data is still present in a cache at the beginning of its execution. Hence,
improvement on data locality with respect to caches is expected to be less important
than improvement of data locality concerning main memory.

The following analysis is therefore divided into two parts. The first part studies the
locality of accesses to main memory—that is, accesses to memory controllers located
on the different NUMA nodes. The second part focuses on accesses to caches.

7.1.1. Locality of Accesses to Main Memory. Figure 12(a) presents the ratio of requests to
local memory controllers to the total number of requests to main memory for the differ-
ent benchmarks. Each bar shows the result for particular combination of optimizations:
random work stealing as the baseline, work pushing in conjunction with random work
stealing, work pushing and topology-aware work stealing, and all three optimizations
proposed in this article applied at once. To highlight the influence of each optimization,
Figure 12(b) shows their respective contribution to the final locality—that is, the in-
crease in locality achieved by adding the optimization divided by the final rate of local
requests. The following conclusions can be drawn from the results.

Seidel. Activation of work pushing causes a huge increase of local accesses (from
20% to 60%). As intended, work pushing greatly improves locality of read accesses. But
as a side effect, an important fraction of write accesses also results in local accesses.
The principles are shown in Figure 13. Figure 13(a) shows the initial situation in
which the first task and its consumer are both created by the root task. By default,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

Topology-Aware and Dependence-Aware Scheduling and Memory Allocation 30:17

Fig. 13. Side effects of work pushing due to delayed physical page allocation in Seidel. (a) Logical allocation
by the root task. (b) Physical allocation on write access to the task buffer. (c) Resulting pattern. (d) Alternating
pattern resulting from work stealing.

these allocations happen in the local memory of the worker executing the root task.
However, when a task buffer is allocated for the first time—that is, using a system call
and without reusing a buffer from the runtime’s slab allocator described earlier—its
pages are not yet allocated physically. Physical allocation is triggered by a copy-on-
write mechanism on the first write access to a page. At that moment, the operating
system decides on which node the page is to be allocated. Hence, initial allocation of
task buffers does not result in physical allocation of the buffers’ pages. As input data is
generated by the initial task with a high probability to execute on a different node than
the root task due to work stealing, physical allocation of the consumer’s buffer is done
on a different node than logical allocation (cf. Figure 13(b)). The initial task allocates
the task buffer of the consumer’s successor, hence establishing a stable chain of tasks
with strong dependences with buffers allocated on the same node (cf. Figure 13(c)).
However, work stealing easily disturbs this pattern and leads to alternating allocations
(cf. Figure 13(d)). Topology-aware work stealing reduces the probability for such a
situation as steals of tasks from the same node are favored, hence the additional
increase of local accesses to 81%. But once an alternating pattern is established, it is
unlikely to disappear. Dependence-aware allocation helps in breaking the alternation
and further increases the ratio of requests to local memory to 92%.

Bitonic. The ratio of requests to local memory during execution using random work
stealing is higher than for Seidel, at approximately 35%. The impact of work pushing
(increase to 46%) and topology-aware work stealing (increase to 51%) is smaller due
to the symmetric dependences of the benchmark, which disable the side effect for
allocation as described for Seidel. Therefore, dependence-aware allocation is the key
optimization for Bitonic. With all optimizations enabled, about 66% of the requests to
main memory are satisfied by a local controller.

Kmeans. This application has very similar characteristics to Seidel with the same
side effect for buffer allocation. The initial ratio of 27% increases to 76% with work
pushing, to 78% with both work pushing and topology-aware work stealing and to 89%
when all optimizations are enabled.

Cholesky. The optimizations fail to increase the ratio of local accesses due to im-
precise information on the effective location of buffers. The problem is illustrated in
Figure 14. The pages of task buffers are physically allocated on up to three different
nodes (Figure 14(a) and 14(b)). However, for task buffer reuse based on a slab allocator
per NUMA node, the runtime must associate the buffer to a single node. Subsequent
allocations with a hit in the slab allocator will not return buffers allocated entirely on
the requested node. As no precise information about page placement is modeled, the

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

30:18 A. Drebes et al.

Fig. 14. Dependence patterns in Cholesky leading to imprecise information about page distribution. (a) Data
dependences and initially unknown physical distribution. (b) Physical page distribution. (c) Runtime view
on the task buffer.

Fig. 15. Cache misses normalized to unoptimized parallel execution. Error bars indicate minimum and
maximum values for 50 executions.

runtime assumes that the whole buffer resides on a single node (Figure 14(c)). Opti-
mization decisions are hence based on imprecise information. Dynamic page migration
on buffer reuse or explicit physical placement at logical allocation can solve the prob-
lem of imprecise information but requires elaborated load-balancing mechanisms for
buffer placement of initial task. Evaluation of these mechanisms is outside the scope
of this article and will be the subject of future work.

Sparse-LU and FMradio. All tasks in these benchmarks are created by the root task
during a short period at the beginning of the execution. During this period, only a small
fraction of tasks terminates, hence only few buffers can be reused on allocation. The
physical location of most of the buffers is therefore unknown until physical allocation
on write accesses of producers. These writes cause the pages to be allocated on the
writing node and are thus local, resulting in a high initial ratio of local accesses.

Work pushing is not beneficial for small task buffers. The work-pushing mechanism
therefore is invoked only for tasks whose buffers are greater than an experimentally
determined threshold. The task buffers of FMradio do not exceed this threshold, such
that work pushing is not triggered. As the other optimizations depend on work push-
ing, neither improve locality. However, the ratio of requests to local memory does not
decrease, showing that there is no degradation even for this unfavorable case.

Sparse-LU cannot benefit from the optimizations due to imprecise information about
the physical location of buffers as described for Cholesky, but as for FMradio, no
degradation is observable.

7.1.2. Cache Misses. Figure 15 shows the number of cache misses for the last two lev-
els of the cache hierarchy normalized to parallel execution without any optimization.
For the L2 cache, the difference varies from a reduction of about 40% to an increase of
60%. Variation of L3 cache misses is below 20% in both directions. Given the low initial
miss rates of compute bound benchmarks, the impact on performance of these varia-
tions is negligible. For memory-bound benchmarks, the impact of improved locality of

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

Topology-Aware and Dependence-Aware Scheduling and Memory Allocation 30:19

Fig. 16. Violin plots showing the speedup over random work stealing of 50 runs for each configuration.

accesses to main memory outweighs the variations of cache misses, leading to better
performance. Both cases are shown in the next section.

7.2. Performance Impact

Figure 16 shows the speedup over random work stealing grouped by benchmark. The
results are presented using the R vioplot library. These violin plots combine box plots
and kernel density estimators. The width represents the density of data points for a
given value, with a logarithmic bias. Solid black bars represent the 95% confidence
intervals for the median, whereas the white dot within each violin represents the
median of the distribution.

As noted in Section 6.2.2, only Seidel and Bitonic are memory bound. Hence, the
increased ratio of requests to local memory for these benchmarks translates into a
significant improvement over random work stealing, as shown in Figure 16(a) and (b).
Initially executing about 13.5× faster than the sequential version, the speedup for
Seidel can be increased to about 21.9×. The speedup for the bitonic sorting network
slightly drops when using work pushing only due to poor load balancing and remote

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

30:20 A. Drebes et al.

Table I. Speedups over Sequential Execution and over Random Work Stealing

Seidel Bitonic Bitonic Kmeans Cholesky Sparse-LU FMradio Geometric
(par. init) Mean (a)1/(b)2

RND 13.5 16.8 16.6 36.9 60.8 49.0 52.5 33.1/33.0
WP/RND 18.2 16.6 15.5 37.0 60.0 48.2 52.5 34.5/34.1
WP/TAWS 21.2 17.0 17.5 37.0 60.1 47.7 52.7 35.5/35.7
WP/TAWS/DAA 21.9 19.2 20.2 36.7 60.1 47.6 52.7 36.4/36.7
Speedup over RND 1.63 1.14 1.22 1.00 0.99 0.97 1.00 1.10/1.11

1Including Bitonic. 2Including Bitonic (par. init.).

steals. However, adding topology-aware work pushing already outperforms random
work stealing, and all three optimizations raise the initial speedup of 16.8× to 19.2×.

During inspection of the execution traces of Bitonic using the Aftermath trace-based
visualization and analysis tool [Drebes et al. 2014], we discovered that the creation of
initial tasks by a single worker is not fast enough to provide work for all cores. This
problem only occurs for optimized execution with dependence-aware allocation. To com-
pensate for this lack of parallelism, we have derived another version of Bitonic, creating
initial tasks in parallel. The increased parallelism during initialization can now be ex-
ploited as shown in Figure 16(c). The speedup for random work stealing is slightly
lower compared to sequential creation of initial tasks. However, the final speedup for
topology-aware work stealing, dependence-aware allocation, and work pushing is more
than 20.2-fold instead of 19.2× for sequential task creation.

Performance of compute-bound benchmarks stays approximately constant with a
variation of less than 3% on average, showing that there is no significant negative
impact on benchmarks with few cache misses despite increased cache miss rates. Table I
summarizes the average speedups over sequential execution and the speedup for all
optimizations enabled over the parallel baseline.

7.3. Summary

The results show that work pushing is the key optimization for data locality (cf.
Figure 12(b)) for benchmarks with asymmetric dependences, greatly eliminating the
mismatch between task and data ownership. Topology-aware work stealing is comple-
mentary to work pushing and further increases locality, but its contribution is smaller
than work pushing. Dependence-aware allocation is beneficial for benchmarks with
symmetric dependences, such as Bitonic.

The results confirm that the optimizations techniques are complementary. Best re-
sults for the locality of data accesses are achieved with a combination of topology-aware
work stealing, dependence-aware allocation, and work pushing.

Memory-bound applications benefit most from improved locality, resulting in in-
creased performance. For compute-bound applications, neither data locality nor per-
formance are degraded, even in unfavorable cases with imprecise information about
buffer placement or sequential task creation during initialization.

8. RELATED WORK

Lightweight task parallelism is a cornerstone of many parallel programming environ-
ments. Optimizations for scheduling such tasks were developed in different areas, from
event-driven systems to Cilk runtime implementations, and OpenMP. To our knowl-
edge, there is no prior topology-aware and dependence-aware approach combining both
scheduling of lightweight tasks and memory allocation. In the following, we discuss the
most closely related work on locality-aware scheduling.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

Topology-Aware and Dependence-Aware Scheduling and Memory Allocation 30:21

Approaches for Cilk-based implementations. A multitude of dynamic, load-balancing
schedulers have been evaluated, from load-sharing [Rudolph et al. 1991] to work steal-
ing [Blumofe and Leiserson 1999] and work dealing [Hendler and Shavit 2002]. Al-
though locality and task/data affinity may be a concern of these techniques, none takes
advantage of the memory access pattern of the application.

On the contrary, Chen et al. [2012] proposed CATS, a profile-guided two-level hi-
erarchical cache-aware work-stealing algorithm designed for multisocket multicore
architectures. Based on an estimation of the working set size of tasks during the
first iteration, task graphs of subsequent iterations are partitioned into inter- and in-
trasocket tasks, which allows grouping neighboring tasks on the same socket without
exceeding its shared cache capacity. Data accesses are assumed to happen only in leaf
tasks of iterations. In contrast to this approach, we also support noniterative appli-
cations, and data accesses can happen in any task. Furthermore, we do not rely on
profiling, our topology-aware work-stealing algorithm supports more than two levels
for hierarchical scheduling, and we also address topology-aware and dependence-aware
memory allocation.

Custom frameworks. Chandra et al. [1993] propose a locality-aware scheduler for
concurrent object-oriented language (COOL) based on affinity hints provided by the
programmer. The memory hierarchy is assumed to have three levels—private caches,
local DRAM, and remote DRAM—but is not modeled explicitly. So-called task and object
affinities can be specified for objects, where task affinities form task sets identified by
the referenced object and object affinities relate to the memory location referenced by
a task. The scheduler executes tasks with the same object affinity on the core owning
the object and groups tasks of the same set to execute one after the other. The former
technique reduces the number of remote memory accesses, whereas the latter provides
better reuse of cached data. However, the approach heavily relies on annotations and
therefore requires expert knowledge on the application.

A locality-guided work-stealing approach for applications in which locality of tasks
in the computation graph does not reflect locality of data accesses is presented in Acar
et al. [2000]. Based on affinities of tasks for cores, every newly created task is put
both into the queue of the creating core and into a FIFO queue called mailbox of the
core defined by the affinity. When a worker runs out of tasks, it first considers its
mailbox before attempting to steal from someone else. We use a similar concept for
task transfers, but instead of relying on explicit affinities, we determine locality fully
automatically from dynamic producer–consumer relationships of tasks.

STARPU is primarily designed for heterogeneous platforms with discrete accelerators
[Augonnet et al. 2011], but its generic support for dynamic, dependent tasks and its
modular scheduler design are also unique among schedulers for shared memory ar-
chitectures. In particular, a variety of scheduling policies can be and have been imple-
mented in STARPU. Many of these integrate locality and work/communication metrics.
But although the toolkit itself is not restricted, the implemented strategies have mostly
been static. They cover a variety of performance models, as well as application-specific
priorities for classical LAPACK kernels.

SLAW [Guo et al. 2010] is a scheduler with support for the Habanero-Java language
and uses places as the central abstraction for locality-aware scheduling. Associating a
task to a place limits its execution to a specific subset of workers threads. Steals only
occur between workers of the same place. To allow task creation on remote places, each
place is provided with a mailbox dedicated to task reception. The mapping of tasks to
places, however, fully relies on hints provided by the programmer.

HOTSLAW [Min et al. 2011] is a library for UPC [UPC Consortium 2005], pro-
viding support for locality-aware schedulers. As a prototype, the authors propose a

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

30:22 A. Drebes et al.

hierarchical work-stealing mechanism with a configurable number of steal attempts
at each level, similar to our topology-aware work-stealing approach. Memory accesses
during execution of tasks are assumed to target local memory of the victim from which
a task is stolen. Data exchanges between tasks are therefore not modeled explicitly.

The optimizations proposed in Yoo et al. [2013] address unstructured parallelism—
that is, parallel sections with independent tasks that can be scheduled in any order.
Data sharing is determined through profiling of the application and is captured in a
task sharing graph. Analysis of this graph allows the formation of task groups that
are then scheduled over a hierarchy of work queues organized according to the topol-
ogy of the machine. The topology-aware work-stealing mechanism uses an incremen-
tally widening neighborhood for steal attempts similar to our approach but also deals
with task group decomposition as queues contain task groups rather than individual
tasks.

Event-driven systems. The MELY runtime [Gaud et al. 2010] for event-driven systems
modifies the central function that generates the list of cores to steal from of the work-
stealing algorithm of LIBASYNC-SMP [Zeldovich et al. 2003] in a way that steals from cores
that are close in the memory hierarchy are favored. Locality-aware work stealing of
MELY focuses on reducing the cost of queue accesses during a steal rather than the cost
of memory accesses during execution of an event handler. Another strategy presented
in this article takes into account the size of an event’s dataset and avoids migration of
tasks with large datasets. However, improvement of data locality fully relies on passive
work stealing without proactive remote transfers.

OpenMP runtimes. The FORRESTGOMP runtime [Broquedis et al. 2010] for OpenMP
implements a hierarchical, resource-aware scheduler using the BUBBLESCHED frame-
work [Thibault et al. 2007]. A NUMA-aware memory allocator associates the amount
and the location of allocated memory to the allocating thread. Threads accessing nearby
data are grouped in bubbles that also form the basic scheduling entities. By scheduling
these bubbles over an explicit hierarchical representation of the machine’s resources,
the scheduler keeps threads accessing the same data region closely together with re-
spect to the memory hierarchy. Data placement is addressed by dynamic migrations at
runtime using a next-touch policy and initially by programmer hints on data distribu-
tion on allocation. The approach works particularly well for applications that partition
the data among the descendants of threads by using nested parallelism.

LIBKOMP [Broquedis et al. 2012] uses the concept of memory regions accessed by a
task modeled as partitionings of multidimensional arrays. The programmer specifies
how tasks access these regions, allowing the runtime to calculate dataflow dependences.
These dependences are only used to express task dependences and thus to evaluate if a
task is ready for execution. The scheduler does not use this information to group tasks
according to their data accesses.

OMPSS [Duran et al. 2008] is the OpenMP incarnation of the StarSs [Planas et al.
2009] parallel programming environment and relies on the Nanos runtime library
[Teruel et al. 2007]. Similarly to LIBKOMP, it allows expressing task dependences
through annotations on memory regions accessed by tasks. The Nanos scheduler offers
two flavors, breadth-first and work-first, which do not factor in NUMA characteristics.
The work-first scheduler is similar to Cilk’s and has the same advantages and draw-
backs: it generally provides good cache locality on divide-and-conquer parallelization
patterns, but it does not take into account application runtime behavior.

To wrap up, let us recall that our work differs from most prior art in that it exploits
precise information about data transfers among dependent tasks, and the information
is derived automatically from a dynamic dataflow language.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

Topology-Aware and Dependence-Aware Scheduling and Memory Allocation 30:23

9. CONCLUSION

In this article, we investigated the performance anomalies of random work stealing
and topology-unaware memory allocation on the data locality of task-parallel appli-
cations. We presented three complementary locality optimizations to alleviate these
weaknesses. Work pushing transfers tasks to workers executing on NUMA nodes that
contain the tasks’ input data, hence optimizing for read accesses. Topology-aware work
stealing uses a lightweight, static description of the memory hierarchy to improve the
process of work stealing by favoring steals in an incrementally widening neighbor-
hood of the stealing core. Dependence-aware memory allocation optimizes the locality
of write accesses by allocating buffers of dependent tasks on the same node. The three
optimizations rely only on explicit point-to-point task dependence information and the
dynamic monitoring of task and data placement. We showed that they can be efficiently
integrated in the runtime system of a modern task-parallel language—OpenStream.

Our experimental results confirm that for a set of general-purpose and scientific
applications, the locality of accesses to main memory can be increased significantly. This
effect naturally yields performance improvements on memory-intensive benchmarks.

The results also show that our approach does not impact the performance of compute-
bound applications. However, as the optimizations do not bring any benefit in these
cases, we plan to include online detection of compute-bound algorithms in future work
to disable them when appropriate.

Further investigation is needed on how the optimizations can be enabled for (se-
quential) task creation and imprecise information about initial task buffer placement,
which is present in some of the compute-bound OpenStream applications.

In future work, we also plan to extend the applicability of this work to other state-of-
the-art task-parallel languages such as X10 [Charles et al. 2005], Habanero Java and
C [Cavé et al. 2011], CnC [Budimlicć et al. 2010], Chapel [Chamberlain et al. 2007], or
StarSs [Planas et al. 2009]. In these languages, the main difficulty to overcome will be
recovering missing runtime information on precise dependences or on communication
intensity between tasks.

REFERENCES

Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2000. The data locality of work stealing. In Proceedings
of the 12th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’00). ACM, New
York, NY, 1–12. DOI:http://dx.doi.org/10.1145/341800.341801

Edward Anderson, Zhaojun Bai, Christian Bischof, Laura Blackford, James Demmel, Jack Dongarra, Jeremy
Du Croz, Anne Greenbaum, Sven Hammarling, A. McKenney, and Danny Sorensen. 1999. LAPACK
Users’ Guide (3rd ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA.

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. 2011. StarPU: A unified
platform for task scheduling on heterogeneous multicore architectures. Concurrency and Computation:
Practice and Experience 23, 2, 187–198. DOI:http://dx.doi.org/10.1002/cpe.1631

Kenneth E. Batcher. 1968. Sorting networks and their applications. In Proceedings of the April 30–May 2,
1968, Spring Joint Computer Conference (AFIPS’68). ACM, New York, NY, 307–314. DOI:http://dx.doi.
org/10.1145/1468075.1468121

Micah Best, Shane Mottishaw, Craig Mustard, Mark Roth, Parsiad Azimzadeh, Alexandra Fedorova, and
Andrew Brownsword. 2011. Schedule data, not code. In Proceedings of the 3rd USENIX Workshop on
Hot Topics on Parallelism (HotPar’11).

L. Susan Blackford, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry, Michael
Heroux, Linda Kaufman, Andrew Lumsdaine, Antoine Petitet, Roldan Pozo, Karin Remington, and
R. Clint Whaley. 2001. An updated set of basic linear algebra subprograms (BLAS). ACM Transactions
on Mathematical Software 28, 2, 135–151.

Sergey Blagodurov, Sergey Zhuravlev, and Alexandra Fedorova. 2010. Contention-aware scheduling on
multicore systems. ACM Transactions on Computer Systems 28, 4, Article No. 8. DOI:http://dx.doi.
org/10.1145/1880018.1880019

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

http://dx.doi.org/10.1145/341800.341801
http://dx.doi.org/10.1002/cpe.1631
http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1145/1880018.1880019
http://dx.doi.org/10.1145/1880018.1880019

30:24 A. Drebes et al.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall,
and Yuli Zhou. 1995. Cilk: An efficient multithreaded runtime system. In Proceedings of the 5th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP’95). ACM, New
York, NY, 207–216. DOI:http://dx.doi.org/10.1145/209936.209958

Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded computations by work stealing.
Journal of the ACM 46, 5, 720–748. DOI:http://dx.doi.org/10.1145/324133.324234

François Broquedis, Nathalie Furmento, Brice Goglin, Pierre-André Wacrenier, and Raymond Namyst. 2010.
ForestGOMP: An efficient OpenMP environment for NUMA architectures. International Journal of
Parallel Programming 38, 5, 418–439. DOI:http://dx.doi.org/10.1007/s10766-010-0136-3

François Broquedis, Thierry Gautier, and Vincent Danjean. 2012. LIBKOMP, an efficient OpenMP runtime
system for both fork-join and data flow paradigms. In Proceedings of the 8th International Confer-
ence on OpenMP in a Heterogeneous World (IWOMP’12). Springer-Verlag, Berlin, Heidelberg, 102–115.
DOI:http://dx.doi.org/10.1007/978-3-642-30961-8_8

Zoran Budimlic̀, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney, Ryan Newton, Jens Palsberg,
David Peixotto, Vivek Sarkar, Frank Schlimbach, and Sagnak Taşirlar. 2010. Concurrent collections.
Scientific Programming 18, 3–4, 203–217. http://portal.acm.org/citation.cfm?id=1938482.1938486

Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011. Habanero-Java: The new adventures of
old X10. In Proceedings of the 9th International Conference on Principles and Practice of Programming
in Java (PPPJ’11). ACM, New York, NY, 51–61. DOI:http://dx.doi.org/10.1145/2093157.2093165

Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007. Parallel programmability and the
chapel language. International Journal of High Performance Computing Applications 21, 3, 291–312.
DOI:http://dx.doi.org/10.1177/1094342007078442

Rohit Chandra, Anoop Gupta, and John L. Hennessy. 1993. Data locality and load balancing in COOL. In
Proceedings of the 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP’93). ACM, New York, NY, 249–259. DOI:http://dx.doi.org/10.1145/155332.155358

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. 2005. X10: An object-oriented approach to non-uniform clus-
ter computing. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’05). ACM, New York, NY, 519–538.
DOI:http://dx.doi.org/10.1145/1094811.1094852

David Chase and Yossi Lev. 2005. Dynamic circular work-stealing deque. In Proceedings of the 17th Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’05). ACM, New York, NY, 21–28.
DOI:http://dx.doi.org/10.1145/1073970.1073974

Quan Chen, Minyi Guo, and Zhiyi Huang. 2012. CATS: Cache aware task-stealing based on online profiling
in multi-socket multi-core architectures. In Proceedings of the 26th ACM International Conference on Su-
percomputing (ICS’12). ACM, New York, NY, 163–172. DOI:http://dx.doi.org/10.1145/2304576.2304599

Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud Lachaize, Baptiste
Lepers, Vivien Quema, and Mark Roth. 2013. Traffic management: A holistic approach to memory
placement on NUMA systems. In Proceedings of the 18th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS’13). ACM, New York, NY, 381–394.
DOI:http://dx.doi.org/10.1145/2451116.2451157

Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, and Nathalie Drach-Temam. 2014. Aftermath:
A graphical tool for performance analysis and debugging of fine-grained task-parallel programs and
run-time systems. In Proceedings of the 7th Workshop on Programmability Issues for Heterogeneous
Multicores (MULTIPROG’14).

Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. 2008. Evaluation of OpenMP task scheduling
strategies. In OpenMP in a New Era of Parallelism, Rudolf Eigenmann and Bronis R. Supinski
(Eds.). Lecture Notes in Computer Science, Vol. 5004. Springer-Verlag, Berlin, Heidelberg, 100–110.
DOI:http://dx.doi.org/10.1007/978-3-540-79561-2_9

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The implementation of the Cilk-
5 multithreaded language. In Proceedings of the ACM SIGPLAN 1998 Conference on Program-
ming Language Design and Implementation (PLDI’98). ACM, New York, NY, 212–223. DOI:http://dx.
doi.org/10.1145/277650.277725

Fabien Gaud, Sylvain Genevès, Renaud Lachaize, Baptiste Lepers, Fabien Mottet, Gilles Muller, and Vivien
Quéma. 2010. Efficient workstealing for multicore event-driven systems. In Proceedings of the 2010 IEEE
30th International Conference on Distributed Computing Systems (ICDCS’10). IEEE, Los Alamitos, CA,
516–525. DOI:http://dx.doi.org/10.1109/ICDCS.2010.55

Thierry Gautier, Xavier Besseron, and Laurent Pigeon. 2007. KAAPI: A thread scheduling runtime
system for data flow computations on cluster of multi-processors. In Proceedings of the 2007 In-

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

http://dx.doi.org/10.1145/209936.209958
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1007/s10766-010-0136-3
http://dx.doi.org/10.1007/978-3-642-30961-8_8
http://portal.acm.org/citation.cfm?id$=$1938482.1938486
http://dx.doi.org/10.1145/2093157.2093165
http://dx.doi.org/10.1177/1094342007078442
http://dx.doi.org/10.1145/155332.155358
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1145/1073970.1073974
http://dx.doi.org/10.1145/2304576.2304599
http://dx.doi.org/10.1145/2451116.2451157
http://dx.doi.org/10.1007/978-3-540-79561-2_9
http://dx.doi.org/10.1145/277650.277725
http://dx.doi.org/10.1145/277650.277725
http://dx.doi.org/10.1109/ICDCS.2010.55

Topology-Aware and Dependence-Aware Scheduling and Memory Allocation 30:25

ternational Workshop on Parallel Symbolic Computation (PASCO’07). ACM, New York, NY, 15–23.
DOI:http://dx.doi.org/10.1145/1278177.1278182

Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. 2010. SLAW: A scalable locality-aware adaptive
work-stealing scheduler for multi-core systems. In Proceedings of the 15th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP’10). ACM, New York, NY, 341–342.
DOI:http://dx.doi.org/10.1145/1693453.1693504

Danny Hendler and Nir Shavit. 2002. Work dealing. In Proceedings of the 14th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures (SPAA’02). ACM, New York, NY, 164–172. DOI:http://dx.
doi.org/10.1145/564870.564900

Yunlian Jiang, Xipeng Shen, Jie Chen, and Rahul Tripathi. 2008. Analysis and approximation of op-
timal co-scheduling on chip multiprocessors. In Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques (PACT’08). ACM, New York, NY, 220–229.
DOI:http://dx.doi.org/10.1145/1454115.1454146

Andreas Kleen. 2005. A NUMA API for Linux. Retrieved July 25, 2014, from http://halobates.de/
numaapi3.pdf.

Nhat Minh Lê, Antoniu Pop, Albert Cohen, and Francesco Zappa Nardelli. 2013. Correct and efficient work-
stealing for weak memory models. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP’13). ACM, New York, NY.

Seung-Jai Min, Costin Iancu, and Katherine Yelick. 2011. Hierarchical work stealing on manycore clusters. In
Proceedings of the 5th Conference on Partitioned Global Address Space Programming Models (PGAS’11).

Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesús Labarta. 2009. Hierarchical task-based program-
ming with StarSs. International Journal on High Performance Computing Architecture 23, 3, 284–299.

Antoniu Pop and Albert Cohen. 2013. OpenStream: Expressiveness and data-flow compilation of OpenMP
streaming programs. ACM Transactions on Architecture and Code Optimization 9, 4, Article No. 53.
DOI:http://dx.doi.org/10.1145/2400682.2400712

Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. 1991. A simple load balancing scheme for task alloca-
tion in parallel machines. In Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA’91). ACM, New York, NY, 237–245. DOI:http://dx.doi.org/10.1145/113379.113401

Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting performance data with PAPI-
C. In Tools for High Performance Computing 2009, Matthias S. Müller, Michael M. Resch, Alexander
Schulz, and Wolfgang E. Nagel (Eds.). Springer-Verlag, Berlin, Heidelberg, 157–173.

Xavier Teruel, Xavier Martorell, Alejandro Duran, Roger Ferrer, and Eduard Ayguadé. 2007. Support
for OpenMP tasks in Nanos v4. In Proceedings of the 2007 Conference of the Center for Advanced
Studies on Collaborative Research (CASCON’07). IBM Corp., Riverton, NJ, 256–259. DOI:http://dx.doi.
org/10.1145/1321211.1321241

Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. 2007. Building portable thread schedulers
for hierarchical multiprocessors: The bubblesched framework. In Euro-Par 2007 Parallel Processing,
Anne-Marie Kermarrec, Luc Bougé, and Thierry Priol (Eds.). Lecture Notes in Computer Science,
Vol. 4641. Springer-Verlag,Berlin,Heidelberg, 42–51. DOI:http://dx.doi.org/10.1007/978-3-540-74466-5_6

UPC Consortium. 2005. UPC Language Specifications, v1.2. Technical Report LBNL-59208. Lawrence
Berkeley National Lab. Available at http://www.gwu.edu/˜upc/publications/LBNL-59208.pdf.

Richard M. Yoo, Christopher J. Hughes, Changkyu Kim, Yen-Kuang Chen, and Christos Kozyrakis. 2013.
Locality-aware task management for unstructured parallelism: A quantitative limit study. In Proceed-
ings of the 25th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’13).
ACM, New York, NY, 315–325. DOI:http://dx.doi.org/10.1145/2486159.2486175

Nickolai Zeldovich, Alexander Yip, Frank Dabek, Robert Morris, David Mazières, and Frans Kaashoek.
2003. Multiprocessor support for event-driven programs. In Proceedings of the 2003 USENIX Annual
Technical Conference (USENIX’03).

Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fedorova, and Manuel Prieto. 2012.
Survey of scheduling techniques for addressing shared resources in multicore processors. Computing
Surveys 45, 1, Article No. 4. DOI:http://dx.doi.org/10.1145/2379776.2379780

Received June 2013; revised April 2014; accepted June 2014

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 30, Publication date: August 2014.

http://dx.doi.org/10.1145/1278177.1278182
http://dx.doi.org/10.1145/1693453.1693504
http://dx.doi.org/10.1145/564870.564900
http://dx.doi.org/10.1145/564870.564900
http://dx.doi.org/10.1145/1454115.1454146
http://halobates.de/numaapi3.pdf
http://halobates.de/numaapi3.pdf
http://dx.doi.org/10.1145/2400682.2400712
http://dx.doi.org/10.1145/113379.113401
http://dx.doi.org/10.1145/1321211.1321241
http://dx.doi.org/10.1145/1321211.1321241
http://dx.doi.org/10.1007/978-3-540-74466-5_6
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf.
http://dx.doi.org/10.1145/2486159.2486175
http://dx.doi.org/10.1145/2379776.2379780

