81 research outputs found

    Hardware Architectures of Visible Light Communication Transmitter and Receiver for Beacon-based Indoor Positioning Systems

    Get PDF
    High-speed applications of Visible Light Communications have been presented recently in which response times of photodiode-based VLC receivers are critical points. Typical VLC receiver routines, such as soft-decoding of run-length limited (RLL) codes and FEC codes was purely processed on embedded firmware, and potentially cause bottleneck at the receiver. To speed up the performance of receivers, ASIC-based VLC receiver could be the solution. Unfortunately, recent works on soft-decoding of RLL and FEC have shown that they are bulky and time-consuming computations. This causes hardware implementation of VLC receivers becomes heavy and unrealistic. In this paper, we introduce a compact Polar-code-based VLC receivers. in which flicker mitigation of the system can be guaranteed even without RLL codes. In particular, we utilized the centralized bit-probability distribution of a pre-scrambler and a Polar encoder to create a non-RLL flicker mitigation solution. At the receiver, a 3-bit soft-decision filter was implemented to analyze signals received from the VLC channel to extract log-likelihood ratio (LLR) values and feed them to the Polar decoder. Therefore, the proposed receiver could exploit the soft-decoding of the Polar decoder to improve the error-correction performance of the system. Due to the non-RLL characteristic, the receiver has a preeminent code-rate and a reduced complexity compared with RLL-based receivers. We present the proposed VLC receiver along with a novel very-large-scale integration (VLSI) architecture, and a synthesis of our design using FPGA/ASIC synthesis tools

    System capacity enhancement for 5G network and beyond

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of Doctor of PhilosophyThe demand for wireless digital data is dramatically increasing year over year. Wireless communication systems like Laptops, Smart phones, Tablets, Smart watch, Virtual Reality devices and so on are becoming an important part of people’s daily life. The number of mobile devices is increasing at a very fast speed as well as the requirements for mobile devices such as super high-resolution image/video, fast download speed, very short latency and high reliability, which raise challenges to the existing wireless communication networks. Unlike the previous four generation communication networks, the fifth-generation (5G) wireless communication network includes many technologies such as millimetre-wave communication, massive multiple-input multiple-output (MIMO), visual light communication (VLC), heterogeneous network (HetNet) and so forth. Although 5G has not been standardised yet, these above technologies have been studied in both academia and industry and the goal of the research is to enhance and improve the system capacity for 5G networks and beyond by studying some key problems and providing some effective solutions existing in the above technologies from system implementation and hardware impairments’ perspective. The key problems studied in this thesis include interference cancellation in HetNet, impairments calibration for massive MIMO, channel state estimation for VLC, and low latency parallel Turbo decoding technique. Firstly, inter-cell interference in HetNet is studied and a cell specific reference signal (CRS) interference cancellation method is proposed to mitigate the performance degrade in enhanced inter-cell interference coordination (eICIC). This method takes carrier frequency offset (CFO) and timing offset (TO) of the user’s received signal into account. By reconstructing the interfering signal and cancelling it afterwards, the capacity of HetNet is enhanced. Secondly, for massive MIMO systems, the radio frequency (RF) impairments of the hardware will degrade the beamforming performance. When operated in time duplex division (TDD) mode, a massive MIMO system relies on the reciprocity of the channel which can be broken by the transmitter and receiver RF impairments. Impairments calibration has been studied and a closed-loop reciprocity calibration method is proposed in this thesis. A test device (TD) is introduced in this calibration method that can estimate the transmitters’ impairments over-the-air and feed the results back to the base station via the Internet. The uplink pilots sent by the TD can assist the BS receivers’ impairment estimation. With both the uplink and downlink impairments estimates, the reciprocity calibration coefficients can be obtained. By computer simulation and lab experiment, the performance of the proposed method is evaluated. Channel coding is an essential part of a wireless communication system which helps fight with noise and get correct information delivery. Turbo codes is one of the most reliable codes that has been used in many standards such as WiMAX and LTE. However, the decoding process of turbo codes is time-consuming and the decoding latency should be improved to meet the requirement of the future network. A reverse interleave address generator is proposed that can reduce the decoding time and a low latency parallel turbo decoder has been implemented on a FPGA platform. The simulation and experiment results prove the effectiveness of the address generator and show that there is a trade-off between latency and throughput with a limited hardware resource. Apart from the above contributions, this thesis also investigated multi-user precoding for MIMO VLC systems. As a green and secure technology, VLC is achieving more and more attention and could become a part of 5G network especially for indoor communication. For indoor scenario, the MIMO VLC channel could be easily ill-conditioned. Hence, it is important to study the impact of the channel state to the precoding performance. A channel state estimation method is proposed based on the signal to interference noise ratio (SINR) of the users’ received signal. Simulation results show that it can enhance the capacity of the indoor MIMO VLC system

    Analog parallel processor solutions for video encoding

    Get PDF
    This thesis deals with Cellular Nonlinear Network (CNN) analog parallel processor networks and their implementations in current video coding standards. The target applications are low-power video encoders within 3rd generation mobile terminals. The video codecs of such mobile terminals are defined by either the MPEG-4/H.263 or H.264 video standard. All of these standards are based on the block-based hybrid approach. As block-based motion estimation (ME) is responsible for most of the power consumption of such hybrid video encoders, this thesis deals mostly with low-power ME implementations. Low-power solutions are introduced at both the algorithmic and hardware levels. On the algorithmic level, the introduced implementations are derived from a segmentation algorithm, which has previously been partly realized. The first introduced algorithm reduces the computational complexity of ME within an object-based MPEG-4 encoder. The use of this algorithm enables a 60% drop in the power consumption of Full Search ME. The second algorithm calculates a near-optimal block-size partition for H.264 motion estimation. With this algorithm, the use of computationally complex Lagrange optimization in H.264 ME is not required. The third algorithm reduces the shape bit-rate of an object-based MPEG-4 encoder. On the hardware level a CNN-type ME architecture is introduced. The architecture includes connections and circuitry to fully realize block-based ME. The analog ME implemented with this architecture is capable of lower power than comparable digital realizations. A 9Ă—9 test chip has also been realized. Additionally implemented is a digital predictive ME realization that takes advantage of the introduced partition algorithm. Although the IC layout of the ME algorithm was drawn, the design was verified as an FPGA.reviewe

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    Polar coding for optical wireless communication

    Get PDF

    Polar coding for optical wireless communication

    Get PDF

    Parallelism and the software-hardware interface in embedded systems

    Get PDF
    This thesis by publications addresses issues in the architecture and microarchitecture of next generation, high performance streaming Systems-on-Chip through quantifying the most important forms of parallelism in current and emerging embedded system workloads. The work consists of three major research tracks, relating to data level parallelism, thread level parallelism and the software-hardware interface which together reflect the research interests of the author as they have been formed in the last nine years. Published works confirm that parallelism at the data level is widely accepted as the most important performance leverage for the efficient execution of embedded media and telecom applications and has been exploited via a number of approaches the most efficient being vectorlSIMD architectures. A further, complementary and substantial form of parallelism exists at the thread level but this has not been researched to the same extent in the context of embedded workloads. For the efficient execution of such applications, exploitation of both forms of parallelism is of paramount importance. This calls for a new architectural approach in the software-hardware interface as its rigidity, manifested in all desktop-based and the majority of embedded CPU's, directly affects the performance ofvectorized, threaded codes. The author advocates a holistic, mature approach where parallelism is extracted via automatic means while at the same time, the traditionally rigid hardware-software interface is optimized to match the temporal and spatial behaviour of the embedded workload. This ultimate goal calls for the precise study of these forms of parallelism for a number of applications executing on theoretical models such as instruction set simulators and parallel RAM machines as well as the development of highly parametric microarchitectural frameworks to encapSUlate that functionality.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Algorithms & implementation of advanced video coding standards

    Get PDF
    Advanced video coding standards have become widely deployed coding techniques used in numerous products, such as broadcast, video conference, mobile television and blu-ray disc, etc. New compression techniques are gradually included in video coding standards so that a 50% compression rate reduction is achievable every five years. However, the trend also has brought many problems, such as, dramatically increased computational complexity, co-existing multiple standards and gradually increased development time. To solve the above problems, this thesis intends to investigate efficient algorithms for the latest video coding standard, H.264/AVC. Two aspects of H.264/AVC standard are inspected in this thesis: (1) Speeding up intra4x4 prediction with parallel architecture. (2) Applying an efficient rate control algorithm based on deviation measure to intra frame. Another aim of this thesis is to work on low-complexity algorithms for MPEG-2 to H.264/AVC transcoder. Three main mapping algorithms and a computational complexity reduction algorithm are focused by this thesis: motion vector mapping, block mapping, field-frame mapping and efficient modes ranking algorithms. Finally, a new video coding framework methodology to reduce development time is examined. This thesis explores the implementation of MPEG-4 simple profile with the RVC framework. A key technique of automatically generating variable length decoder table is solved in this thesis. Moreover, another important video coding standard, DV/DVCPRO, is further modeled by RVC framework. Consequently, besides the available MPEG-4 simple profile and China audio/video standard, a new member is therefore added into the RVC framework family. A part of the research work presented in this thesis is targeted algorithms and implementation of video coding standards. In the wide topic, three main problems are investigated. The results show that the methodologies presented in this thesis are efficient and encourage

    Data compression systems for home-use digital video recording

    Get PDF
    The authors focus on image data compression techniques for digital recording. Image coding for storage equipment covers a large variety of systems because the applications differ considerably in nature. Video coding systems suitable for digital TV and HDTV recording and digital electronic still picture storage are considered. In addition, attention is paid to picture coding for interactive systems, such as the compact-disc interactive system. The relation between the recording system boundary conditions and the applied coding techniques is outlined. The main emphasis is on picture coding techniques for digital consumer recordin
    • …
    corecore