1,471 research outputs found

    A novel multi-fold security framework for cognitive radio wireless ad-hoc networks

    Get PDF
    Cognitive Radio (CR) Technology has emerged as a smart and intelligent technology to address the problem of spectrum scarcity and its under-utilization. CR nodes sense the environment for vacant channels, exchange control information, and agree upon free channels list (FCL) to use for data transmission and conclusion. CR technology is heavily dependent on the control channel to dialogue on the exchanged control information which is usually in the Industrial-Scientific-Medical (ISM) band. As the ISM band is publically available this makes the CR network more prone to security vulnerabilities and flaws. In this paper a novel multi-fold security framework for cognitive radio wireless ad-hoc networks has been proposed. Multiple security levels, such as, encryption of beacon frame and privately exchanging the FCL, and the dynamic and adaptive behaviour of the framework makes the proposed protocol more resilient and secure against the traditional security attacks when compared with existing protocols

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Robust Resource Allocation for OFDM-based Cognitive Radio in the Presence of Primary User Emulation Attack

    Get PDF
    Cognitive radio (CR) is a promising solution to improve the spectrum efficiency in which some unlicensed users are allowed to exploit frequency bands which are not used by licensed network. However, CR technology imposes some threats to the network. One of these threats is primary user emulation attack where some malicious users try to send fake signals similar to the primary user (PU) and prevent secondary users from accessing vacant bands. Moreover, the presence of a primary user emulation attacker (PUEA) leads to additional interference to the CR and consequently, the efficiency of conventional power loading algorithms will be degraded. In this paper, we propose a power allocation scheme in an orthogonal frequency-division multiplexing (OFDM) based CR in the presence of PUEA. Power allocation is performed with the aim of maximizing the downlink transmission capacity achieved by the cognitive user, while keeping the interference level at the PU below a predefined threshold. Simulation results confirm the efficiency of our proposed power loading scheme, compared to classical loading algorithms that do not consider the activity of malicious users in the radio environment

    Error rate detection due to primary user emulation attack in cognitive radio networks

    Get PDF
    Security threat is a crucial issue in cognitive radio network (CRN). These threats come from physical layer, data link layer, network layer, transport layer, and application layer. Hence, security system to all layers in CRN has a responsibility to protect the communication between among Secondary User (SU) or to maintain valid detection to the presence of Primary User (PU) signals. Primary User Emulation Attack (PUEA) is a threat on physical layer where malicious user emulates PU signal. This paper studies the effect of exclusive region of PUEA in CRN. We take two setting of exclusive distances, 30m and 50m, where this radius of area is free of malicious users. Probability of false alarm (Pf) and miss detection (Pm) are used to evaluate the performances. The result shows that increasing distance of exclusive region may decrease Pf and Pm

    A Survey on the Communication Protocols and Security in Cognitive Radio Networks

    Get PDF
    A cognitive radio (CR) is a radio that can change its transmission parameters based on the perceived availability of the spectrum bands in its operating environment. CRs support dynamic spectrum access and can facilitate a secondary unlicensed user to efficiently utilize the available underutilized spectrum allocated to the primary licensed users. A cognitive radio network (CRN) is composed of both the secondary users with CR-enabled radios and the primary users whose radios need not be CR-enabled. Most of the active research conducted in the area of CRNs has been so far focused on spectrum sensing, allocation and sharing. There is no comprehensive review paper available on the strategies for medium access control (MAC), routing and transport layer protocols, and the appropriate representative solutions for CRNs. In this paper, we provide an exhaustive analysis of the various techniques/mechanisms that have been proposed in the literature for communication protocols (at the MAC, routing and transport layers), in the context of a CRN, as well as discuss in detail several security attacks that could be launched on CRNs and the countermeasure solutions that have been proposed to avoid or mitigate them. This paper would serve as a good comprehensive review and analysis of the strategies for MAC, routing and transport protocols and security issues for CRNs as well as would lay a strong foundation for someone to further delve onto any particular aspect in greater depth

    Identification as a deterrent for security enhancement in cognitive radio networks

    Get PDF
    Cognitive Radio Networks (CRNs) are prone to emerging coexistence security threats such as Primary User Emulation Attack (PUEA). Specifically, a malicious CRN may mimic licensees’ (Primary Users (PUs)) signal characteristics to force another CRN to vacate its channels thinking that PUs have returned. While existing schemes are promising to some extent on detecting PUEAs, they are not able to prevent the attacks. In this article, we propose a PUEA Deterrent (PUED) algorithm that can provide PUEAs' commission details: offender CRNs and attacks’ time and bandwidth. There are many similarities between PUED and Closed-Circuit Television (CCTV) in terms of: deterrence strategy, reason for use, surveillance characteristics, surveillance outcome, and operation site. According to the criminology literature, robust CCTV systems have shown a significant reduction in visible offences (e.g. vehicle theft), reducing crime rates by 80%. Similarly, PUED will contribute the same effectiveness in deterring PUEAs. Furthermore, providing PUEAs’ details will prevent the network’s cognitive engine from considering the attacks as real PUs, consequently avoiding devising unreliable spectrum models for the attacked channels. Extensive simulations show the effectiveness of the PUED algorithm in terms of improving CRNs’ performance

    PUE attack detection in CWSN using collaboration and learning behavior

    Get PDF
    Cognitive Wireless Sensor Network (CWSN) is a new paradigm which integrates cognitive features in traditional Wireless Sensor Networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in Cognitive Wireless Sensor Networks is an important problem because these kinds of networks manage critical applications and data. Moreover, the specific constraints of WSN make the problem even more critical. However, effective solutions have not been implemented yet. Among the specific attacks derived from new cognitive features, the one most studied is the Primary User Emulation (PUE) attack. This paper discusses a new approach, based on anomaly behavior detection and collaboration, to detect the PUE attack in CWSN scenarios. A nonparametric CUSUM algorithm, suitable for low resource networks like CWSN, has been used in this work. The algorithm has been tested using a cognitive simulator that brings important results in this area. For example, the result shows that the number of collaborative nodes is the most important parameter in order to improve the PUE attack detection rates. If the 20% of the nodes collaborates, the PUE detection reaches the 98% with less than 1% of false positives
    • 

    corecore