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Cognitive Wireless Sensor Network (CWSN) is a new paradigm which integrates cognitive features in traditional Wireless Sensor
Networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in CognitiveWireless Sensor Networks is
an important problem because these kinds of networks manage critical applications and data. Moreover, the specific constraints of
WSNmake the problem evenmore critical. However, effective solutions have not been implemented yet. Among the specific attacks
derived from new cognitive features, the one most studied is the Primary User Emulation (PUE) attack.This paper discusses a new
approach, based on anomaly behavior detection and collaboration, to detect the PUE attack in CWSN scenarios. A nonparametric
CUSUM algorithm, suitable for low resource networks like CWSN, has been used in this work.The algorithm has been tested using
a cognitive simulator that brings important results in this area. For example, the result shows that the number of collaborative nodes
is the most important parameter in order to improve the PUE attack detection rates. If the 20% of the nodes collaborates, the PUE
detection reaches the 98% with less than 1% of false positives.

1. Introduction

One of the fastest growing sectors in recent years has
undoubtedly been that of WSNs. WSNs consist of spatially
distributed autonomous sensors that monitor a wide range
of ambient conditions and cooperate to share data across
the network. WSNs are increasingly being introduced into
our daily lives. Potential fields of applications can be found,
ranging from the military to home control commercially or
industrially, to name a few. The emergence of new wireless
technologies such as ZigBee and IEEE 802.15.4 has allowed
for the development of interoperability among commercial
products, which is important for ensuring scalability and low
cost. Most WSN solutions operate on unlicensed frequency
bands. In general, they use industrial, scientific, and medical
(ISM) bands, like the worldwide available 2.4GHz band.This
band is also used by a large number of popular wireless
applications, for example, those that work over Wi-Fi or
Bluetooth. For this reason, the unlicensed spectrum bands
are becoming overcrowded. As a result, coexistence issues
on unlicensed bands have been the subject of extensive
research, and, in particular, it has been shown that IEEE

802.11 networks can significantly degrade the performance
of ZigBee/802.15.4 networks when operating on overlapping
frequency bands [1].

The increasing demand for wireless communication
presents a challenge to make efficient use of the spectrum.
To address this challenge, cognitive radio (CR) has emerged
as the key technology, which enables opportunistic access
to the spectrum. A CR is an intelligent wireless communi-
cation system that is aware of its surrounding environment
and adapts its internal parameters to achieve reliable and
efficient communication. These new networks have many
applications, such as the cognitive use of the TV white space
spectrum or making secure calls in emergency situations.
In order to create these new applications, CR differentiates
between two kinds of users; primary users (PUs) are licensed
users, and secondary users (SUs) are those who try to use
the same bands when they detect a spectral hole. Adding
cognition to the existing WSN infrastructure brings about a
lot of benefits. However, cognitive technology will not only
provide access to new spectrum bands but will also provide
better propagation characteristics. By adaptively changing
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system parameters like modulation schemes, transmit power,
carrier frequency, and constellation size, a wide variety of
data rates can be achieved. This will certainly improve power
consumption, network life, and reliability in a WSN.

The nature of large, dynamic, adaptive, and Cognitive
Wireless Sensor Networks presents significant challenges in
designing security schemes. A Cognitive Wireless Sensor
Network is a special network that has many constraints and
many different features compared to traditionalWSNs.While
security challenges have been widely tackled in traditional
networks, it is a novel area in Cognitive Wireless Sensor
Networks.Thewireless medium is inherently less secure than
the wired one because its broadcast nature makes eaves-
dropping simple. Any transmission can be easily intercepted,
altered, or replayed by an adversary. The wireless medium
allows an attacker to easily intercept valid packets and easily
inject malicious ones. Cognitive features allow for a dynamic
reconfiguration to avoid these attacks. However, malicious
nodes can use the dynamic reconfiguration to create new
attacks such as Primary User Emulation (PUE). PUE is a
new attack where a malicious node emulates the behavior
of an incumbent node with the purpose of using the radio
spectrum for its own interest or denying the access to other
nodes.

To avoid these kinds of attacks some approaches have
been investigated such as location-based approaches, but
other cognitive features such as collaboration and learning
have not been sufficiently exploited. We need to take into
account that most WSNs have been developed in order to
carry out a specific application. As a result, nodes usually
have their own behavior pattern. This characteristic gives
the network an opportunity to create a node profile for
each sensor. These profiles can be created and optimized
thanks to cognitive features such as spectrum awareness,
learning, and collaboration. In this paper, simulations show
how collaboration is essential to improve detection. More-
over, collaboration is the parameter that contributes most
efficiently. The node profiles are used to detect anomalies in
behavior and, for instance, PUE attacks.

The increasing use of WSN in many critical applications
represents an important risk and a motivation for the study
of the PUE attack. If a WSN that monitors a factory is
attacked, the possibilities of errors in the systems increase.
This means loss of money and replacement of machines.
Another example is the home security systems.Themalicious
nodes could send corrupt information in order to hack the
access service. If the system can detect the attack, it will omit
the information from the attacker.

The organization of this paper is as follows. Section 2
explains the specific characteristics of the CWSN scenarios
related to this work. In Section 3, works in security for PUE
attacks is reviewed. In Section 4 a brief introduction to the
main topics related to behavior learning and security are
provided. Then, in Section 5, assumptions taken in account
for the simulations are specified. Section 6 explains the
general architecture of the system, while Section 7 provides
its evaluation. Finally, the conclusions are shown in Section 8.

2. Cognitive Wireless Sensor Networks

A CWSN scenario includes multiple wireless sensor nodes,
usually with a specific application. There are some specific
characteristics of these CWSNs that imply some changes on
how we understand these cognitive networks.

For example, CWSNs usually operate in the ISM bands,
where anyone can transmit without license. Because of this
feature, the definition of primary users (PUs) and secondary
users (SUs) should be different. For this CWSNs definition,
the differences between PUs and SUs are based on the priority
of their functionality. For example, a fire sensor would be
of more priority than a temperature sensor. In our case, an
SU only transmits the prepare information when no PU is
transmitting.

3. Related Work

According to Section 1 it is very clear that CWSNs face a dan-
gerous problem in security. Several attacks could be adapted
from WSNs to the new paradigm of cognitive networks. In
the last ten years some researches related to security on CRNs
have appeared. They describe specific attacks against these
networks, but few countermeasures are proposed.

Most of the studies in security are focused on PUE detec-
tion. According to the origin of cognitive radio networks, the
efficient use of TV spectrum in the USA and early studies
used the location in order to detect malicious attacks. These
PUs are TV towers with a precise behavior and location.

In [2] Chen and Park present the first method to detect a
PUE attack based on location. The idea of this method is to
differentiate the attacker from a licensed user comparing the
transmission origin with the previously known PU position.

The same authors use a mechanism based on location in
[3].Moreover, they include some new parameters, such as the
signal as power or RF fingerprints, to decide the nature of the
signal.

In [4] the authors assume that the attacker is close to the
victim and the real PU is much farther from the SUs than
the attacker. Moreover, the position of each node, including
the attacker, is fixed. Assuming that SUs can learn about
the characteristics of the spectrum according to the received
power, the authors in [5] follow a similar approach. Although
they do not use any location information, they assume a static
scenario with the PU much farther away from other possible
malicious nodes than the SUs.

More location-based countermeasures can be found in [6,
7]. In the first work, secondary users calculate the estimated
position of the PUE and then propagate this knowledge to
carry out a coordinate decision. The second work is focused
on the algorithm to detect the position of the PUE.

All these countermeasures are only based on the location.
This characteristic cannot be used in some CWSN scenarios
where both SUs and PUs can be mobile. Therefore, it is very
clear that another approach should be adopted.

A fewdifferent solutions, not based on location, have been
presented. In [8] the authors use the phase noise of a local
oscillator as a fingerprint to identify the incumbent signals
from the attacking ones.
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Finally, in [9] the authors present a differential game
approach to mitigate the PUE attack. Based on the assump-
tion that PUE attacker has less energy than the PUs, they look
for the optimal sensing strategy of SU. The Nash equilibrium
solution is obtained.

Although these two last approaches are valid for mobile
PUE attackers inCWSN, the algorithms implemented require
relatively high computational resources, which is an impossi-
ble requirement in someWSNs.

In this paper, a solution based on the use of node
behavior is presented. The cognitive features merged with
WSN ones offer the possibility of collecting large amounts
of information from the spectrum to model the behavior of
each node. The spatial and temporal data redundancy makes
it possible to use algorithms to detect changes in the behavior
of each node in an unsupervised way.

4. Behavior-Based Systems

Like geolocation countermeasures, defenses based on behav-
ior try to model the PU. The model is used to look for
differences between a PU and attackers. For example, in
[3] authors use some radio parameters to decide if the
transmitter is an incumbent transmitter or an attacker. These
parameters are as follows: transmitted power and location.
For a typical TV scenario on CR the PU model can be very
precise. However, as with geolocation countermeasures, the
previous studies do not work with CWSNs. Unfortunately, a
model for PU on CWSNs does not exist yet. PUs are usually
more unpredictable than in previous scenarios. Moreover,
the PU’s behavior can be very different depending on the
application. However, if we focus our CWSN on limited
scenarios, for example, ambient intelligence in a home or a
building, the PU is specifically defined. Parameters like power
transmission, time occupancy of spectrum, and transmission
frequency could be modeled.

Learned behaviors of these parameters allow the system
to create some profiles which are compared with periodically
acquired measures. It is easy to understand that, when a PUE
attack happens, an anomaly in learned parameters can be
detected.The intrinsic goals of an attacker make it impossible
to have a complete likeness between a PU and a PUE attack.
For example, if the goal of a PUE attack is the use of a whole
frequency band, it needs to transmit more frequently, with
more power and different types of packets than a normal PU.

In [10], the authors use the packet traffic to model the
sensor behavior. The packet train size, packet train length,
interpacket times, and payload size are used to characterize
the packet traffic. They apply these profiles to detect anoma-
lies, such as sinkhole attacks.

In [11], another approximation is taken to monitor the
node’s behavior. In this work, a group of capable nodes
form the attack detection system (ADS) which analyzes
the transmitted packets among its neighbors. The reason to
limit the ADS to some nodes only is that a continuously
monitoring node consumesmuchmore energy than a normal
one. Following the same idea, in [12], some monitor nodes
sniff the communications in order to detect anomalies.

They base their decisions on some principles of WSN such
as message symmetry or node similarity.

Finally, in [13] the nodes create neighbor profiles accord-
ing to the sequence of received packets.The attack is detected
using the distance between sequences. The distance is calcu-
lated as the number of differences between them.

As a conclusion, the previousworks use trafficmonitoring
to train a behavior model of the network. In this work, we
can use other parameters such as power transmission to
detect anomalies in CWSN. This is possible thanks to some
cognitive features such as spectrum sensing and learning.
The advantage of these parameters is that they can be
used in more flexible networks or independently of the
application. Another advantage over the previous works is
the collaboration between nodes. The final decision in the
detection of anomalies is collaborative. The more the nodes
collaborating in the decisions, the better the PUE detection
results. One important reason in order to use collaboration
in this scenario is the ignorance of the attacker’s position. If
the system only uses the information of one or a few nodes,
the node profiles might be wrong because of the attenuation
or the distance between the SU and the attacker. For example,
if an SU is still far from the attacker, it might not receive all
the transmitted packets by the attacker. Moreover, the power
received could be very variable because of the attenuation.
The redundant information, inherent in WSN, and the
collaboration in CWSN reduce the possibilities of errors in
the sensed information, creating better profiles, and in the
final decision. Another motivation for the collaboration is
the resource limitation. Nodes of CWSN have to sleep, and
their computing resources and energy are limited. During the
sleep state, the nodes do not capture information. In these
moments, other active nodes can capture information, and
the profiles are developed with data from every time.

5. Assumptions and CWSN Scenario

Security is a rarely studied field in cognitive networks, and it
is even less studied in CWSNs. But this does not mean that
security is not important. On the contrary, security is impor-
tant in WSNs and so will be in future cognitive applications
such as health, home security, ormilitary scenarios. Spectrum
sensing is crucial in order to detect malicious behaviors in
the transmissions or to analyze suspicious changes in the
radio spectrum.The ability to learn and collaboration are also
essential for many security algorithms. Finally, adaptation
is the base of some countermeasures against jamming or
routing attacks.

In our model, a CWSN consists of a set 𝑆 = {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
}

of 𝑛 cognitive wireless sensor nodes with different roles. Each
node can communicate with other nodes within a certain
range. In a common CR application, the PUs are usually a
TV tower or a base station. In most cases, the SUs know the
location and the transmission parameters of PUs, but with
CWSNs we cannot assume that. The location and the radio
parameters of the nodes are unknown. However, we assume
that the nodes have a stationary behavior that allows them to
learn from spectrum sensing.
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Figure 1: Cognitive features and modules responsible for them.

SUs and PUs act in CWSNs in different ways. While
PUs take preference because they are responsible for critical
sensors and information, SUs only send the information
when the channel is empty or it satisfies some conditions. In a
typical CWSN the number of nodes can usually vary between
5 and 200. For our study, we assume that networks with more
than 200 nodes are not common.

In our scenario, spectrum sensing is carried out by
multiple wireless modules that all nodes in the network have.
More specifically, these interfaces work in the ISM bands
(2.4GHz and 868MHz). All of them can extract information
from the environment: received signal power, noise power, or
time between packets. The information is processed, stored,
and shared according to the implemented algorithm. We
further assume the existence of a Virtual Control Channel
(VCC) to share this information, with no extra overhead over
regular cognitive communications.

Apart from primary and secondary users which form the
network, the attackers are the key in security scenarios. The
PUE attack in cognitive networks usually belongs to one of
these two categories.

(i) Selfish PUE Attacks. In this attack, an attacker’s objec-
tive is to maximize its own spectrum usage.

(ii) Malicious PUE Attacks. The objective of this attack is
to obstruct secondary user’s access to the spectrum.

Our PUE model is captured by the following set of
assumptions.

(1) A PUE node is a wireless node with 𝑘 wireless
configurations (where 𝑘 is the number of wireless
configurations at each node NW).

(2) A PUE attacker has similar hardware and radio
characteristics to the rest of nodes.

(3) The network does not have any information about the
position of the PUE attacker or its strategy.

(4) The PUE attacker and the PUs cannot have exactly the
same radio behavior.

As we explain in Section 4 we assume that, regardless of
the kind of PUE attack, the malicious node has to change
its behavior. If the node continues with the same behavior

from the creation of the network and it uses exactly the same
radio parameters, attack detection is impossible using either
learning behavior or any other method.

6. System Architecture

The system architecture presented in Figure 1 makes use of
the collaboration in order to achieve the anomaly detection
goal. Its main characteristics are the distributed learning and
the collaboration in the final decisions.

6.1. Spectrum Sensing and Learning. Spectrum sensing is the
first module of the entire chain in the system. All the nodes
in the system sense the radio spectrum and analyze the data
to create a precise enough profile of each node.The spectrum
sensing in this system consists of the detection of the signal
level in each channel. Each node is aware of the spectrum
occupancy in its near range. Moreover, the nodes are able to
detect all the valid packets over a reception power threshold.
Despite the fact that the packets are usually sent to a specific
node, the rest of the nodes in a sensing stage can capture
the packets and extract information from them such as the
source, the sink, and the time stamp.

Cognitive wireless nodes have some constraints that limit
the system when a data base has to be created. For example,
low computational resources and low available memory do
not allow for the creation of complex detection algorithms or
the storage of large data bases.

We propose the nonparametric Cumulative Sum
(CUSUM) algorithm [14] for the detection of changes in
some key spectrum sensing captured features. The CUSUM
is an algorithm used in WSN in order to detect changes in
the mean value of a stochastic process.The advantages of this
algorithm in CWSN are the low computational requirements
and the no assumption of any previous knowledge about
the PUE attack. As it has been explained in Section 4,
if the scenario is limited, usually the sensor nodes have
a stationary behavior. Moreover, the attack happens at
unknown time. These are the reasons why the CUSUM
algorithm is applicable in this approach.

In this case, some key features, such as the received
power, are necessary to model the node behavior. A good
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approximation is to save the key parameters that define the
feature. In this work, the number of measures, the average,
and the variance are stored in each node repository. The
average “𝑋

𝑛
” and the variance “𝑆

𝑛
” are calculated using only

the previous one’s value and the current sample as shown in
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(1)

where 𝐸2
𝑛
is the average of the squared values. So, each node

creates a table with the following data:

{Node ID, 𝑛, 𝑋
𝑛
, 𝐸2
𝑛
𝑆2
𝑛
, } , (2)

Throughout the learning stage the nodes update and
refine these values which will be used as the base in the
anomaly detection algorithm.

6.2. Anomaly Detection. When the system has captured
enough packets, the node profiles are ready to compare
themselves against the new samples. During this step, the
optimizer applies the CUSUM algorithm, compares the
current samples with the average in the profiles, 𝑋

𝑛
, and

sends anomaly warnings to the application. The comparison
between the samples and the profile is calculated according to
the Euclidean distance. If the distance is lower than a number
of standard deviations, sample is considered as a normal
value. However, if the sample is out of the allowed range,
the optimizer sends the anomaly warning to the application
level. In this way, the algorithm can be configured with
high threshold values, with low false positive rate and slow
detection or with low threshold values that imply more false
positives but a faster detection.

The application layer is responsible for managing
anomaly warnings. Above the application layer, the whole
system can be applied for any anomaly detection. In this
work, the application filters the warnings and only creates
a PUE attack warning when the anomaly continues for a
configurable time. If the anomaly behavior in a node exceeds
that time, the application marks the node as a possible PUE
attacker.

6.3. Collaboration. The previous chapters describe how the
nodes in the network can collect information from the
spectrum as a key feature in cognitive solutions. The stored
information used by an isolated node could be useful for a
particular optimization, but if the final goal of the network is
a general optimization of a parameter, in this case the secu-
rity and collaborative strategies are essential. Collaboration
strategies are a common solution in other cognitive fields like
spectrum sensing and also in security scenarios, such as PUE
detection. The next section shows how the introduction of
collaborative detection significantly improves results.

Application Resource manager

RepositoryAc
ce

ss

VC
C

Optimizer Policy

Executor

Communication module

Figure 2: Cognitive radio module structure.

In this work, the SU nodes collaborate by sharing infor-
mation about the detected anomalies. This information may
be characteristic of spectrum sensing or anomalies detected
by a single node. When an application marks a node as a
possible PUE attacker, it sends a message through the Virtual
Control Channel (VCC), amethod for sharing information in
cognitive networks. Finally, as we will explain later, the VCC
allows other nodes to access to almost any information stored
in other neighbor nodes.

7. Experimental Results

7.1. Simulation Tools. The proposed countermeasures have
been tested on a CWSN simulator [15]. This simulator has
been developed over the well-known Castalia simulator. The
structure of Castalia has been improved to provide it with
cognitive features. The CWSN simulator is responsible for
the scenario definition, the simulation of the spectrum state,
and the communication between nodes from the physical to
the application layer. It supports the cognitive features in the
cognitivemodule, shown in Figure 2, which has the following
parts.

(i) Repository. It retrieves information about the local
and/or remote nodes: information learned, decisions
made, or current state.The kind of information stored
depends on the context and the requirements of the
system.

(ii) Access. This module lets a local repository access
the repository of remote nodes. At the same time,
it exports a subset of the local repository to remote
nodes.

(iii) Policy. This enforces the requirements for the global
system depending on several factors. In this paper,
security is the policy to optimize.

(iv) Optimizer. This processes the repository information
bearing in mind the requirements imposed by the
policy module. Decisions regarding the behavior of
the local node are the results of processing. They are
stored in the repository and evaluated by the executor.
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(v) Executor. This module performs the decisions made
by the optimizer.

Furthermore, it provides the Virtual Control Channel
(VCC), a new method for sharing cognitive information
among the CR modules of the nodes. CR modules can access
exported information from remote repositories through this
channel. It allows CRmodules to be aware of their surround-
ings and even of the whole network.

7.2. Simulation Experiments. The attacker is implemented
as an SU that changes its behavior in a precise moment
acting like a PU. The attacker will try to adapt all radio
parameters according to the PUbehavior. Some of them, such
as modulation, encoding, or carrier frequency, probably will
be exactly like those of the PU for two reasons. The attackers
and the PUs usually have the same hardware characteristics;
therefore the attackers can imitate the PU.The second reason
is that the attackers do not need to change these parameters
to reach their possible goals: to use more spectrum, to
transmit information to other destinations, or to prevent SUs
transmissions.

According to this, it is reasonable to restrict the parame-
ters that the attackers will change to transmitted power and
occupied spectrum bandwidth. In this work the received
power has been used to detect anomalies, like a PUE attack
in the network.

Setting this parameter to a similar value to those used
by a real PU we can check how precise the algorithm is in
detecting this kind of attacks.

In order to test the presented solution, when an attacker
changes its behavior, the maximum allowed change in trans-
mitted power is 1 dBm. Even with this small change, the
system has demonstrated to be very efficient in detecting
anomalies.

Several simulations have been executed in the simulator
to extract results and to draw conclusions from the work.The
scenarios have some common characteristics.

(i) The scenario area is a 30m × 30m square.
(ii) The complete simulation time is 500 seconds.
(iii) Thenumber of nodes in the simulation varies between

50 and 200, including one server, 6 Pus, and a variable
number of attackers.

(iv) The learning stage covers the first 60 seconds.
(v) The attacks start at second 100.
(vi) The SUs and PUs send information to the sink.
(vii) However SUs only send the information when the

channel is not being used by any PU.

7.3. Results and Discussion. The first figures (Figures 3 and 4)
present results about the learning speed of the systems. That
means how much time the system needs to converge and to
reach acceptable learned values.

The results of a network with 50 nodes are shown in
Figures 3 and 4. Figure 3 represents how an SU learns about
the power received from other node which has an abnormal
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operation. The node has a normal behavior during the first
30 transmitted packets. At this time, the attack starts, and
the sensing power changes. As we can observe, the average is
stable with a few samples. The top limit and the bottom limit
form a range where the sensing data is considered normal.
When the data is out of the limits, the node interprets it as an
anomaly.

In the second figure, we can observe how fast the system
learns. With few samples, the variance fluctuates but, when
the node has more information, the variance stabilizes over
1%. The number of received packets that a node needs to
refine the information is showed in the 𝑥-axis.

In the next figures (Figures 5, 6, 7, and 8), where the PUE
attack scenarios are presented, the false positive parameter
is presented. The system has shown very good behavior in
detecting the attackers, with a detection rate over 98% in all
simulations. However, for some combination of parameters,
some normal nodes are detected as attackers. In Figure 5 we
can see the results of a simulation with 50 nodes, including
5 PUE attackers, 6 PUs, 1 sink, and 38 SUs. In this situation the
decisions taken individually by each node are complemented
by the collaboration between nodes. Each line represents a
different scenario whit the percentage of SUs that collaborate
in the detection changes.The 𝑥-axis represents the number of
standard deviations that a sensing powermeasure can deviate
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Figure 6: PUE detection results without filtering in the nodes.

from the learning average to be considered as a normal value.
Finally, the 𝑦-axis represents the false positive percentage.

As we can appreciate, the percentage of collaborative
nodes is essential in the PUE detection. For a percentage
of around 20% of collaborating nodes the results are very
good, with a false positive rate of under 10% with a margin
of one standard deviation for anomaly warnings regarding
the average in the profile. If we increase the parameter to 1.3,
the results are very satisfactory with false positive and false
negative rates near 0%.

Figure 6 shows another scenario with worse conditions
than the previous one. In this case, the nodes send worse
information than in the previous scenario to the other
nodes. This is because the node’s application does not filter
the information received from the optimizer, as Section 6.2
explains, and sends too many anomaly warnings through
the VCC. However, if the margin of standard deviations is
increased to 1.5 and the number of collaborative nodes is over
30%, the results are good enough.

However, if the collaboration between nodes is eliminated
and the filter in the nodes is improved, the system has shown
poor results. The system is not capable of discriminating
between the PUEs and normal behavior.
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Figure 7: PUE detection results in a network with 200 nodes.

0

10

20

30

40

50

60

70

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Fa
lse

 p
os

iti
ve

 (%
)

Standard deviations

14%
16%
18%

20%
22%
24%

Figure 8: False positives in a multiple PUE attack.

In order to prove the proper working of the system in
larger networks, we have simulated a new scenario with 200
nodes. Figure 7 shows that, if the percentage of collaborating
nodes is the same, the system keeps differentiating the PUE
attack in almost every simulation, but the results become
slightly worse. This is because more nodes in the same sce-
nario space can produce more anomalies such as collisions,
interference, higher noise level, or retransmissions.

As another interesting result, in Figure 8, the behavior of
the system can be observed against a multiple PUE attack,
where 10 malicious nodes attack the system after the learning
time. In this case, where 25% of the nodes are attackers, the
system behavior gets worse. But, even in this case, if the
number of collaborative nodes is over 20%, the results are
satisfactory.

The results conclude that the most important parameter
to improve PUE detection is the number of collaborative
nodes. Other parameters, such as the application algorithm
or filter and the margin to mark data as anomalous, affect the
results but to a lesser extent.

The same analysis has been studied using the bandwidth
occupied by the nodes. In this case, the results are not good
enough. The reason for the poor results is the behavior
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of the secondary users. As we have explained before, the
secondary nodes only send packets when the channel is free,
so the occupied bandwidth has a greater variance than in the
power detection-based scenarios. The PUE attack has been
impossible to detect with good precision using the occupied
bandwidth. This only means that the presented algorithm
does not work with our definition of the SUs.

8. Conclusions

In this paper, a new method of detecting PUE attacks on
CWSNs has been described based on cognitive features such
as sensing, learning, and collaboration. A new simulator
has been used to develop the scenarios that prove that
collaboration is essential for good anomaly detection. The
results have been extracted and presented in the graphics
shown in Section 7.3.

Different layers of cognitive architecture implement the
tasks to achieve the final objective, PUE detection. Cognitive
nodes sense the spectrum and create neighbor profiles in
order to model the behavior. The information stored in the
repository is used to warn the application about anomalous
data. The application is responsible for filtering the informa-
tion and collaborating with other nodes.

If the collaborative nodes are over 20% of the total,
the PUE attack detection has satisfactory results, with a
98% of attacks detected and a false negative rate near 0%,
independently of the number of nodes in the scenario.

As the results show, the collaborative systems and the
behavior models are valid to detect a PUE attack when there
are few PUE attacker nodes compared with the total number
of nodes in the network, and we assume that PUE attacker
should change its behavior in order to reach the malicious
goals.
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