12,083 research outputs found

    Power systems research at MSFC

    Get PDF
    Power systems research reviews at Marshall Space Flight Cente

    Pixel Detectors

    Full text link
    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh radiation environment at the LHC without severe compromises in performance. From these developments a number of different applications have spun off, most notably for biomedical imaging. Beyond hybrid pixels, a number of monolithic or semi-monolithic developments, which do not require complicated hybridization but come as single sensor/IC entities, have appeared and are currently developed to greater maturity. Most advanced in terms of maturity are so called CMOS active pixels and DEPFET pixels. The present state in the construction of the hybrid pixel detectors for the LHC experiments together with some hybrid pixel detector spin-off is reviewed. In addition, new developments in monolithic or semi-monolithic pixel devices are summarized.Comment: 14 pages, 38 drawings/photographs in 21 figure

    Diagnostic system design for the Ion Auxiliary Propulsion System (IAPS). Flight tests of two 8 cm mercury ion

    Get PDF
    The mechanical, thermal, electrical design and the ground test results of four types of detectors are explained. The DSS is designed to measure the thruster efflux material deposition and S/C potential relative to the local plasma in the vicinity of two 8 cm mercury ion thrusters. The DSS consists of two quartz crystal microbalance (QCM) detectors, one potential probe, nine solar cell arrays, seven ion collectors and two electronic packages

    A multi-view approach to cDNA micro-array analysis

    Get PDF
    The official published version can be obtained from the link below.Microarray has emerged as a powerful technology that enables biologists to study thousands of genes simultaneously, therefore, to obtain a better understanding of the gene interaction and regulation mechanisms. This paper is concerned with improving the processes involved in the analysis of microarray image data. The main focus is to clarify an image's feature space in an unsupervised manner. In this paper, the Image Transformation Engine (ITE), combined with different filters, is investigated. The proposed methods are applied to a set of real-world cDNA images. The MatCNN toolbox is used during the segmentation process. Quantitative comparisons between different filters are carried out. It is shown that the CLD filter is the best one to be applied with the ITE.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Science Foundation of China under Innovative Grant 70621001, Chinese Academy of Sciences under Innovative Group Overseas Partnership Grant, the BHP Billiton Cooperation of Australia Grant, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050 and the Alexander von Humboldt Foundation of Germany

    Radiation-Induced Error Criticality in Modern HPC Parallel Accelerators

    Get PDF
    In this paper, we evaluate the error criticality of radiation-induced errors on modern High-Performance Computing (HPC) accelerators (Intel Xeon Phi and NVIDIA K40) through a dedicated set of metrics. We show that, as long as imprecise computing is concerned, the simple mismatch detection is not sufficient to evaluate and compare the radiation sensitivity of HPC devices and algorithms. Our analysis quantifies and qualifies radiation effects on applications’ output correlating the number of corrupted elements with their spatial locality. Also, we provide the mean relative error (dataset-wise) to evaluate radiation-induced error magnitude. We apply the selected metrics to experimental results obtained in various radiation test campaigns for a total of more than 400 hours of beam time per device. The amount of data we gathered allows us to evaluate the error criticality of a representative set of algorithms from HPC suites. Additionally, based on the characteristics of the tested algorithms, we draw generic reliability conclusions for broader classes of codes. We show that arithmetic operations are less critical for the K40, while Xeon Phi is more reliable when executing particles interactions solved through Finite Difference Methods. Finally, iterative stencil operations seem the most reliable on both architectures.This work was supported by the STIC-AmSud/CAPES scientific cooperation program under the EnergySFE research project grant 99999.007556/2015-02, EU H2020 Programme, and MCTI/RNP-Brazil under the HPC4E Project, grant agreement n° 689772. Tested K40 boards were donated thanks to Steve Keckler, Timothy Tsai, and Siva Hari from NVIDIA.Postprint (author's final draft

    GUBS, a Behavior-based Language for Open System Dedicated to Synthetic Biology

    Full text link
    In this article, we propose a domain specific language, GUBS (Genomic Unified Behavior Specification), dedicated to the behavioral specification of synthetic biological devices, viewed as discrete open dynamical systems. GUBS is a rule-based declarative language. By contrast to a closed system, a program is always a partial description of the behavior of the system. The semantics of the language accounts the existence of some hidden non-specified actions possibly altering the behavior of the programmed device. The compilation framework follows a scheme similar to automatic theorem proving, aiming at improving synthetic biological design safety.Comment: In Proceedings MeCBIC 2012, arXiv:1211.347

    Mariner IV Mission to Mars. Part I

    Get PDF
    This technical report is a series of individual papers documenting the Mariner-Mars project from its beginning in 1962 following the successful Mariner-Venus mission. Part I is pre-encounter data. It includes papers on the design, development, and testing of Mariner IV, as well as papers detailing methods of maintaining communication with and obtaining data from the spacecraft during flight, and expected results during encounter with Mars. Part 11, post-encounter data, to be published later, will consist of documentation of the events taking place during Mariner IV's encounter with Mars and thereafter. The Mariner-Mars mission, the culmination of an era of spacecraft development, has contributed much new technology to be used in future projects
    • …
    corecore