403 research outputs found

    Quarantine-mode based live patching for zero downtime safety-critical systems

    Get PDF
    150 p.En esta tesis se presenta una arquitectura y diseño de software, llamado Cetratus, que permite las actualizaciones en caliente en sistemas críticos, donde se efectúan actualizaciones dinámicas de los componentes de la aplicación. La característica principal es la ejecución y monitorización en modo cuarentena, donde la nueva versión del software es ejecutada y monitorizada hasta que se compruebe la confiabilidad de esta nueva versión. Esta característica también ofrece protección contra posibles fallos de software y actualización, así como la propagación de esos fallos a través del sistema. Para este propósito, se emplean técnicas de particionamiento. Aunque la actualización del software es iniciada por el usuario Updater, se necesita la ratificación del auditor para poder proceder y realizar la actualización dinámica. Estos usuarios son autenticados y registrados antes de continuar con la actualización. También se verifica la autenticidad e integridad del parche dinámico. Cetratus está alineado con las normativas de seguridad funcional y de ciber-seguridad industriales respecto a las actualizaciones de software.Se proporcionan dos casos de estudio. Por una parte, en el caso de uso de energía inteligente, se analiza una aplicación de gestión de energía eléctrica, compuesta por un sistema de gestión de energía (BEMS por sus siglas en ingles) y un servicio de optimización de energía en la nube (BEOS por sus siglas en ingles). El BEMS monitoriza y controla las instalaciones de energía eléctrica en un edificio residencial. Toda la información relacionada con la generación, consumo y ahorro es enviada al BEOS, que estima y optimiza el consumo general del edificio para reducir los costes y aumentar la eficiencia energética. En este caso de estudio se incorpora una nueva capa de ciberseguridad para aumentar la ciber-seguridad y privacidad de los datos de los clientes. Específicamente, se utiliza la criptografía homomorfica. Después de la actualización, todos los datos son enviados encriptados al BEOS.Por otro lado, se presenta un caso de estudio ferroviario. En este ejemplo se actualiza el componente Euroradio, que es la que habilita las comunicaciones entre el tren y el equipamiento instalado en las vías en el sistema de gestión de tráfico ferroviario en Europa (ERTMS por sus siglas en ingles). En el ejemplo se actualiza el algoritmo utilizado para el código de autenticación del mensaje (MAC por sus siglas en inglés) basado en el algoritmo de encriptación AES, debido a los fallos de seguridad del algoritmo actual

    MLOS: An Infrastructure for Automated Software Performance Engineering

    Full text link
    Developing modern systems software is a complex task that combines business logic programming and Software Performance Engineering (SPE). The later is an experimental and labor-intensive activity focused on optimizing the system for a given hardware, software, and workload (hw/sw/wl) context. Today's SPE is performed during build/release phases by specialized teams, and cursed by: 1) lack of standardized and automated tools, 2) significant repeated work as hw/sw/wl context changes, 3) fragility induced by a "one-size-fit-all" tuning (where improvements on one workload or component may impact others). The net result: despite costly investments, system software is often outside its optimal operating point - anecdotally leaving 30% to 40% of performance on the table. The recent developments in Data Science (DS) hints at an opportunity: combining DS tooling and methodologies with a new developer experience to transform the practice of SPE. In this paper we present: MLOS, an ML-powered infrastructure and methodology to democratize and automate Software Performance Engineering. MLOS enables continuous, instance-level, robust, and trackable systems optimization. MLOS is being developed and employed within Microsoft to optimize SQL Server performance. Early results indicated that component-level optimizations can lead to 20%-90% improvements when custom-tuning for a specific hw/sw/wl, hinting at a significant opportunity. However, several research challenges remain that will require community involvement. To this end, we are in the process of open-sourcing the MLOS core infrastructure, and we are engaging with academic institutions to create an educational program around Software 2.0 and MLOS ideas.Comment: 4 pages, DEEM 202

    Fast algorithms for handling diagonal constraints in timed automata

    Full text link
    A popular method for solving reachability in timed automata proceeds by enumerating reachable sets of valuations represented as zones. A na\"ive enumeration of zones does not terminate. Various termination mechanisms have been studied over the years. Coming up with efficient termination mechanisms has been remarkably more challenging when the automaton has diagonal constraints in guards. In this paper, we propose a new termination mechanism for timed automata with diagonal constraints based on a new simulation relation between zones. Experiments with an implementation of this simulation show significant gains over existing methods.Comment: Shorter version of this article to appear in CAV 201

    Dynamic Choreographies: Theory And Implementation

    Get PDF
    Programming distributed applications free from communication deadlocks and race conditions is complex. Preserving these properties when applications are updated at runtime is even harder. We present a choreographic approach for programming updatable, distributed applications. We define a choreography language, called Dynamic Interaction-Oriented Choreography (AIOC), that allows the programmer to specify, from a global viewpoint, which parts of the application can be updated. At runtime, these parts may be replaced by new AIOC fragments from outside the application. AIOC programs are compiled, generating code for each participant in a process-level language called Dynamic Process-Oriented Choreographies (APOC). We prove that APOC distributed applications generated from AIOC specifications are deadlock free and race free and that these properties hold also after any runtime update. We instantiate the theoretical model above into a programming framework called Adaptable Interaction-Oriented Choreographies in Jolie (AIOCJ) that comprises an integrated development environment, a compiler from an extension of AIOCs to distributed Jolie programs, and a runtime environment to support their execution.Comment: arXiv admin note: text overlap with arXiv:1407.097

    Efficient signature verification and key revocation using identity based cryptography

    Get PDF
    Cryptography deals with the development and evaluation of procedures for securing digital information. It is essential whenever multiple entities want to communicate safely. One task of cryptography concerns digital signatures and the verification of a signer’s legitimacy requires trustworthy authentication and authorization. This is achieved by deploying cryptographic keys. When dynamic membership behavior and identity theft come into play, revocation of keys has to be addressed. Additionally, in use cases with limited networking, computational, or storage resources, efficiency is a key requirement for any solution. In this work we present a solution for signature verification and key revocation in constraned environments, e.g., in the Internet of Things (IoT). Where other mechanisms generate expensive overheads, we achieve revocation through a single multicast message without significant computational or storage overhead. Exploiting Identity Based Cryptography (IBC) complements the approach with efficient creation and verification of signatures. Our solution offers a framework for transforming a suitable signature scheme to a so-called Key Updatable Signature Scheme (KUSS) in three steps. Each step defines mathematical conditions for transformation and precise security notions. Thereby, the framework allows a novel combination of efficient Identity Based Signature (IBS) schemes with revocation mechanisms originally designed for confidentiality in group communications. Practical applicability of our framework is demonstrated by transforming four well-established IBS schemes based on Elliptic Curve Cryptography (ECC). The security of the resulting group Identity Based Signature (gIBS) schemes is carefully analyzed with techniques of Provable Security. We design and implement a testbed for evaluating these kind of cryptographic schemes on different computing- and networking hardware, typical for constrained environments. Measurements on this testbed provide evidence that the transformations are practicable and efficient. The revocation complexity in turn is significantly reduced compared to existing solutions. Some of our new schemes even outperform the signing process of the widely used Elliptic Curve Digital Signature Algorithm (ECDSA). The presented transformations allow future application on schemes beyond IBS or ECC. This includes use cases dealing with Post-Quantum Cryptography, where the revocation efficiency is similarly relevant. Our work provides the basis for such solutions currently under investigation.Die Kryptographie ist ein Instrument der Informationssicherheit und beschäftigt sich mit der Entwicklung und Evaluierung von Algorithmen zur Sicherung digitaler Werte. Sie ist für die sichere Kommunikation zwischen mehreren Entitäten unerlässlich. Ein Bestandteil sind digitale Signaturen, für deren Erstellung man kryptographische Schlüssel benötigt. Bei der Verifikation muss zusätzlich die Authentizität und die Autorisierung des Unterzeichners gewährleistet werden. Dafür müssen Schlüssel vertrauensvoll verteilt und verwaltet werden. Wenn sie in Kommunikationssystemen mit häufig wechselnden Teilnehmern zum Einsatz kommen, müssen die Schlüssel auch widerruflich sein. In Anwendungsfällen mit eingeschränkter Netz-, Rechen- und Speicherkapazität ist die Effizienz ein wichtiges Kriterium. Diese Arbeit liefert ein Rahmenwerk, mit dem Schlüssel effizient widerrufen und Signaturen effizient verifiziert werden können. Dabei fokussieren wir uns auf Szenarien aus dem Bereich des Internets der Dinge (IoT, Internet of Things). Im Gegensatz zu anderen Lösungen ermöglicht unser Ansatz den Widerruf von Schlüsseln mit einer einzelnen Nachricht innerhalb einer Kommunikationsgruppe. Dabei fällt nur geringer zusätzlicher Rechen- oder Speicheraufwand an. Ferner vervollständigt die Verwendung von Identitätsbasierter Kryptographie (IBC, Identity Based Cryptography) unsere Lösung mit effizienter Erstellung und Verifikation der Signaturen. Hierfür liefert die Arbeit eine dreistufige mathematische Transformation von geeigneten Signaturverfahren zu sogenannten Key Updatable Signature Schemes (KUSS). Neben einer präzisen Definition der Sicherheitsziele werden für jeden Schritt mathematische Vorbedingungen zur Transformation festgelegt. Dies ermöglicht die innovative Kombination von Identitätsbasierten Signaturen (IBS, Identity Based Signature) mit effizienten und sicheren Mechanismen zum Schlüsselaustausch, die ursprünglich für vertrauliche Gruppenkommunikation entwickelt wurden. Wir zeigen die erfolgreiche Anwendung der Transformationen auf vier etablierten IBSVerfahren. Die ausschließliche Verwendung von Verfahren auf Basis der Elliptic Curve Cryptography (ECC) erlaubt es, den geringen Kapazitäten der Zielgeräte gerecht zu werden. Eine Analyse aller vier sogenannten group Identity Based Signature (gIBS) Verfahren mit Techniken aus dem Forschungsgebiet der Beweisbaren Sicherheit zeigt, dass die zuvor definierten Sicherheitsziele erreicht werden. Zur praktischen Evaluierung unserer und ähnlicher kryptographischer Verfahren wird in dieser Arbeit eine Testumgebung entwickelt und mit IoT-typischen Rechen- und Netzmodulen bestückt. Hierdurch zeigt sich sowohl die praktische Anwendbarkeit der Transformationen als auch eine deutliche Reduktion der Komplexität gegenüber anderen Lösungsansätzen. Einige der von uns vorgeschlagenen Verfahren unterbieten gar die Laufzeiten des meistgenutzten Elliptic Curve Digital Signature Algorithm (ECDSA) bei der Erstellung der Signaturen. Die Systematik der Lösung erlaubt prinzipiell auch die Transformation von Verfahren jenseits von IBS und ECC. Dadurch können auch Anwendungsfälle aus dem Bereich der Post-Quanten-Kryptographie von unseren Ergebnissen profitieren. Die vorliegende Arbeit liefert die nötigen Grundlagen für solche Erweiterungen, die aktuell diskutiert und entwickelt werden

    Enabling Flexible and Robust Business Process Automation for the Agile Enterprise

    Get PDF
    During the last decade process-aware information systems (PAISs) have become increasingly popular to digitize business processes and to effectively support them at the operational level. In many application domains, however, PAISs will not be accepted by users if rigidity comes with them. Ensuring PAIS robustness, in turn, becomes extremely complicated if high flexibility demands need to be fulfilled. To cope with the dynamic nature of business processes, we developed AristaFlow, a next generation process management technology that enables comprehensive process lifecycle support. In addition to standard process management services, AristaFlow can handle exceptions, change the execution of running business cases on the fly, efficiently deal with uncertainty, and support the evolution of business processes over time. This paper discusses how AristaFlow assists the various stakeholders of a PAIS to cope with errors and exceptional situations, while still meeting robustness needs. In particular, we focus on new error handling procedures and capabilities utilizing the flexibility provided by ad-hoc changes

    Development of CAVLAB—A Control-Oriented MATLAB Based Simulator for an Underground Coal Gasification Process

    Get PDF
    The Cavity Simulation Model (CAVSIM) is a 3D, parameterisable simulator of the Underground Coal Gasification Process (UCG) that serves as a benchmark for UCG prediction. Despite yielding accurate outputs, CAVSIM has some limitations, which chiefly include inadequate graphical capabilities to visualise cavity geometry and gas production, time-ineffectiveness in terms of parametrisation, i.e., it involves editing, compiling multiple files and checking for errors, and lack of tools to synthesise a controller. Therefore, to compensate for these shortcomings, the services of third-party software, such as MATLAB, must be procured. CAVSIM was integrated with MATLAB to utilise its functionalities and toolboxes such as System Identification, Neural Network, and Optimization Toolbox etc. The integration was accomplished by designing C-mex files, and furthermore, the simulation results in both environments exhibit the same behaviour, demonstrating successful integration. Consequently, CAVSIM has also acquired a controllable structure, wherein parametrisation is now a single-click process; this is demonstrated by a case study outlining the implementation of Model Predictive Control (MPC) on a UCG plant. Moreover, the performance metrics, i.e., Mean Average Error (MAE) and Root Mean Square Error (RMSE) of 0.13, 0.23 for syngas heating value, and 0.012, 0.02 for flowrate quantitatively establishes the efficacy of CAVLAB in designing MPC for the UCG system. The novelty of this work lies in making the software package open-source with the aim of streamlining the research of multiple aspects of the UCG process

    Toward Automated Network Management and Operations.

    Full text link
    Network management plays a fundamental role in the operation and well-being of today's networks. Despite the best effort of existing support systems and tools, management operations in large service provider and enterprise networks remain mostly manual. Due to the larger scale of modern networks, more complex network functionalities, and higher network dynamics, human operators are increasingly short-handed. As a result, network misconfigurations are frequent, and can result in violated service-level agreements and degraded user experience. In this dissertation, we develop various tools and systems to understand, automate, augment, and evaluate network management operations. Our thesis is that by introducing formal abstractions, like deterministic finite automata, Petri-Nets and databases, we can build new support systems that systematically capture domain knowledge, automate network management operations, enforce network-wide properties to prevent misconfigurations, and simultaneously reduce manual effort. The theme for our systems is to build a knowledge plane based on the proposed abstractions, allowing network-wide reasoning and guidance for network operations. More importantly, the proposed systems require no modification to the existing Internet infrastructure and network devices, simplifying adoption. We show that our systems improve both timeliness and correctness in performing realistic and large-scale network operations. Finally, to address the current limitations and difficulty of evaluating novel network management systems, we have designed a distributed network testing platform that relies on network and device virtualization to provide realistic environments and isolation to production networks.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78837/1/chenxu_1.pd
    corecore