197 research outputs found

    ID-based Ring Signature and Proxy Ring Signature Schemes from Bilinear Pairings

    Get PDF
    In 2001, Rivest et al. firstly introduced the concept of ring signatures. A ring signature is a simplified group signature without any manager. It protects the anonymity of a signer. The first scheme proposed by Rivest et al. was based on RSA cryptosystem and certificate based public key setting. The first ring signature scheme based on DLP was proposed by Abe, Ohkubo, and Suzuki. Their scheme is also based on the general certificate-based public key setting too. In 2002, Zhang and Kim proposed a new ID-based ring signature scheme using pairings. Later Lin and Wu proposed a more efficient ID-based ring signature scheme. Both these schemes have some inconsistency in computational aspect. In this paper we propose a new ID-based ring signature scheme and a proxy ring signature scheme. Both the schemes are more efficient than existing one. These schemes also take care of the inconsistencies in above two schemes.Comment: Published with ePrint Archiv

    ID-based, proxy, threshold signature scheme

    Get PDF
    We propose the proxy threshold signature scheme with the application of elegant construction of verifiable delegating key in the ID-based infrastructure, and also with the bilinear pairings. The protocol satisfies the classical security requirements used in the proxy delegation of signing rights. The description of the system architecture and the possible application of the protocol in edge computing designs is enclosed

    Compartment-based and Hierarchical Threshold Delegated Verifiable Accountable Subgroup Multi-signatures

    Get PDF
    In this paper, we study the compartment-based and hierarchical delegation of signing power of the verifiable accountable subgroup multi-signature (vASM). ASM is a multi-signature in which the participants are accountable for the resulting signature, and the number of participants is not fixed. After Micali et al.’s and Boneh et al.’s ASM schemes, the verifiable-ASM (vASM) scheme with a verifiable group setup and more efficient verification phase was proposed recently. The verifiable group setup in vASM verifies the participants at the group setup phase. In this work, we show that the vASM scheme can also be considered as a proxy signature in which an authorized user (original signer, designator) delegates her signing rights to a single (or a group of) unauthorized user(s) (proxy signer). Namely, we propose four new constructions with the properties and functionalities of an ideal proxy signature and a compartment-based/hierarchical structure. In the first construction, we apply the vASM scheme recursively; in the second one, we use Shamir’s secret sharing (SSS) scheme; in the third construction, we use SSS again but in a nested fashion. In the last one, we use the hierarchical threshold secret sharing (HTSS) scheme for delegation. Then, we show the affiliation of our constructions to proxy signatures and compare our constructions with each other in terms of efficiency and security. Finally we compare the vASM scheme with the existing pairing-based proxy signature schemes

    SIGNCRYPTION ANALYZE

    Get PDF
    The aim of this paper is to provide an overview for the research that has been done so far in signcryption area. The paper also presents the extensions for the signcryption scheme and discusses the security in signcryption. The main contribution to this paper represents the implementation of the signcryption algorithm with the examples provided.ElGamal, elliptic curves, encryption, identity-based, proxy-signcryption, public key, ring-signcryption, RSA, signcryption

    Non-conventional digital signatures and their implementations – A review

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-19713-5_36The current technological scenario determines a profileration of trust domains, which are usually defined by validating the digital identity linked to each user. This validation entails critical assumptions about the way users’ privacy is handled, and this calls for new methods to construct and treat digital identities. Considering cryptography, identity management has been constructed and managed through conventional digital signatures. Nowadays, new types of digital signatures are required, and this transition should be guided by rigorous evaluation of the theoretical basis, but also by the selection of properly verified software means. This latter point is the core of this paper. We analyse the main non-conventional digital signatures that could endorse an adequate tradeoff betweeen security and privacy. This discussion is focused on practical software solutions that are already implemented and available online. The goal is to help security system designers to discern identity management functionalities through standard cryptographic software libraries.This work was supported by Comunidad de Madrid (Spain) under the project S2013/ICE-3095-CM (CIBERDINE) and the Spanish Government project TIN2010-19607

    EFFICIENT AND SCALABLE NETWORK SECURITY PROTOCOLS BASED ON LFSR SEQUENCES

    Get PDF
    The gap between abstract, mathematics-oriented research in cryptography and the engineering approach of designing practical, network security protocols is widening. Network researchers experiment with well-known cryptographic protocols suitable for different network models. On the other hand, researchers inclined toward theory often design cryptographic schemes without considering the practical network constraints. The goal of this dissertation is to address problems in these two challenging areas: building bridges between practical network security protocols and theoretical cryptography. This dissertation presents techniques for building performance sensitive security protocols, using primitives from linear feedback register sequences (LFSR) sequences, for a variety of challenging networking applications. The significant contributions of this thesis are: 1. A common problem faced by large-scale multicast applications, like real-time news feeds, is collecting authenticated feedback from the intended recipients. We design an efficient, scalable, and fault-tolerant technique for combining multiple signed acknowledgments into a single compact one and observe that most signatures (based on the discrete logarithm problem) used in previous protocols do not result in a scalable solution to the problem. 2. We propose a technique to authenticate on-demand source routing protocols in resource-constrained wireless mobile ad-hoc networks. We develop a single-round multisignature that requires no prior cooperation among nodes to construct the multisignature and supports authentication of cached routes. 3. We propose an efficient and scalable aggregate signature, tailored for applications like building efficient certificate chains, authenticating distributed and adaptive content management systems and securing path-vector routing protocols. 4. We observe that blind signatures could form critical building blocks of privacypreserving accountability systems, where an authority needs to vouch for the legitimacy of a message but the ownership of the message should be kept secret from the authority. We propose an efficient blind signature that can serve as a protocol building block for performance sensitive, accountability systems. All special forms digital signatures—aggregate, multi-, and blind signatures—proposed in this dissertation are the first to be constructed using LFSR sequences. Our detailed cost analysis shows that for a desired level of security, the proposed signatures outperformed existing protocols in computation cost, number of communication rounds and storage overhead

    Identity-based threshold group signature scheme based on multiple hard number theoretic problems

    Get PDF
    We introduce in this paper a new identity-based threshold signature (IBTHS) technique, which is based on a pair of intractable problems, residuosity and discrete logarithm. This technique relies on two difficult problems and offers an improved level of security relative to an individual hard problem. The majority of the denoted IBTHS techniques are established on an individual difficult problem. Despite the fact that these methods are secure, however, a prospective solution of this sole problem by an adversary will enable him/her to recover the entire private data together with secret keys and configuration values of the associated scheme. Our technique is immune to the four most familiar attack types in relation to the signature schemes. Enhanced performance of our proposed technique is verified in terms of minimum cost of computations required by both of the signing algorithm and the verifying algorithm in addition to immunity to attacks
    corecore