8 research outputs found

    A Model Checking Procedure for Interval Temporal Logics based on Track Representatives

    Get PDF
    Model checking is commonly recognized as one of the most effective tools for system verification. While it has been systematically investigated in the context of classical, point-based temporal logics, it is still largely unexplored in the interval logic setting. Recently, a non-elementary model checking algorithm for Halpern and Shoham\u2019s modal logic of time intervals HS, interpreted over finite Kripke structures, has been proposed, together with a proof of the EXPSPACE-hardness of the problem. In this paper, we devise an EXPSPACE model checking procedure for two meaningful HS fragments. It exploits a suitable contraction technique that allows one to replace sufficiently long tracks of a Kripke structure by equivalent shorter ones

    Crossing the Undecidability Border with Extensions of Propositional Neighborhood Logic over Natural Numbers

    Get PDF
    Propositional Neighborhood Logic (PNL) is an interval temporal logic featuring two modalities corresponding to the relations of right and left neighborhood between two intervals on a linear order (in terms of Allen's relations, meets and met by). Recently, it has been shown that PNL interpreted over several classes of linear orders, including natural numbers, is decidable (NEXPTIME-complete) and that some of its natural extensions preserve decidability. Most notably, this is the case with PNL over natural numbers extended with a limited form of metric constraints and with the future fragment of PNL extended with modal operators corresponding to Allen's relations begins, begun by, and before. This paper aims at demonstrating that PNL and its metric version MPNL, interpreted over natural numbers, are indeed very close to the border with undecidability, and even relatively weak extensions of them become undecidable. In particular, we show that (i) the addition of binders on integer variables ranging over interval lengths makes the resulting hybrid extension of MPNL undecidable, and (ii) a very weak first-order extension of the future fragment of PNL, obtained by replacing proposition letters by a restricted subclass of first-order formulae where only one variable is allowed, is undecidable (in contrast with the decidability of similar first-order extensions of point-based temporal logics)

    Modelling and Analysis for Cyber-Physical Systems: An SMT-based approach

    Get PDF
    corecore