

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Workflow Fault Tree Generation Through Model Checking

Herbert, Luke Thomas; Sharp, Robin

Published in:
Safety, Reliability and Risk Analysis: Beyond the Horizon

Publication date:
2014

Link back to DTU Orbit

Citation (APA):
Herbert, L. T., & Sharp, R. (2014). Workflow Fault Tree Generation Through Model Checking. In R. D. J. M.
Steenbergen, P. H. A. J. M. van Gelder, S. Miraglia, & A. C. W. M. Ton Vrouwenvelder (Eds.), Safety, Reliability
and Risk Analysis: Beyond the Horizon: Proceedings (pp. 2229-2236). C R C Press LLC.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/18494448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/workflow-fault-tree-generation-through-model-checking(fc108a89-5c97-4524-9278-5b5da6300ae0).html

Workflow Fault Tree Generation Through Model Checking

Luke Herbert (lthhe@dtu.dk) & Robin Sharp (robs@dtu.dk)
DTU Compute - Technical University of Denmark
DK-2800 Lyngby - Denmark

ABSTRACT: We present a framework for the automated generation of fault trees from models of real-world
process workflows, expressed in a formalised subset of the popular Business Process Modelling and Notation
(BPMN) language. To capture uncertainty and unreliability in workflows, we extend this formalism with prob-
abilistic non-deterministic branching. We present an algorithm that allows for exhaustive generation of possible
error states that could arise in execution of the model, where the generated error states allow for both fail-stop
behaviour and continued system execution. We employ stochastic model checking to calculate the probabil-
ities of reaching each non-error system state. Each generated error state is assigned a variable indicating its
individual probability of occurrence. Our method can determine the probability of combined faults occurring,
while accounting for the basic probabilistic structure of the system being modelled. From these calculations, a
comprehensive fault tree is generated. Further, we show that annotating the model with rewards (data) allows
the expected mean values of reward structures to be calculated at points of failure.

KEYWORDS: BPMN, Stochastic BPMN, Stochastic Model Checking, Quantitative Model Checking, Formal
Risk Analysis, Fault Tree Analysis, Fault Tree Generation

1 INTRODUCTION

Creating fault tolerant and efficient process work-
flows poses a significant challenge. Individual faults,
defined as an abnormal conditions or defects in a com-
ponent, equipment, or sub-process (Crockford 1986),
must be handled so that the system may continue to
operate, and are typically addressed by implementing
various domain specific safeguards. In complex sys-
tems, individual faults may combine to give rise to
system failure, defined as a state or condition of not
meeting a desirable or intended objective (Crockford
1986). The safety analysis of such systems is labour-
intensive and requires a key creative step where safety
engineers imagine what undesirable events can occur
under which conditions.

Fault Tree Analysis (FTA) attempts to analyse the
failure of systems by composing logic diagrams of
separate individual faults to determine the probability
of larger compound faults occurring. FTA is a com-
monly used method (Ericson 2005) (Stephans 2005)
to derive and analyse potential failures and their im-
pact on overall system reliability and safety. Origin-
ally developed in 1962 at by H.A. Watson, FTA has
seen extensive refinement and widespread adoption
and is today considered a proven and accepted reliab-
ility engineering technique (Ericson 1999), often re-

quired for regulatory approval of systems. However,
fault trees are typically manually constructed (Eric-
son 2005) and determining the probabilities of faults
occurring in systems which exhibit stochastic beha-
viour in the course of their correct execution is diffi-
cult, time-consuming and error prone.

Ideally, safety engineering starts during the early
design of a system. Even at this stage in the design
process, systems may exhibit a high degree of com-
plexity (Roy et al. 2013), and formal modelling of the
system typically captures the ideal, fault-free, concep-
tion of the system. Subsequently, the resultant FTA
is based on an informal description of the underly-
ing system (Ericson 2005), or requires modelling the
system in an separate FTA specific modelling lan-
guage (Liggesmeyer & Rothfelder 1998, Banach &
Bozzano 2011). This makes it difficult to check the
consistency of the analysis, because it is possible that
causes are noted in the tree which do not lead to the
failure (incorrectness) or that some causes of failure
are overlooked (incompleteness).

FTA analysis is therefore often avoided early in a
system design due to the significant effort involved in
performing the analysis and ensuring its consistency
with the system of interest, balanced against the like-
lihood that changes will be made to the design. How-
ever, correcting problems late in the development pro-

cess can be costly, cause significant delays, and even
require complete system redesign. Being able to per-
form automated FTA directly from the initial concep-
tual models of a system is thus of vital importance.

1.1 Contribution

Liggesmeyer & Rothfelder 1998 coined the term
formal risk analysis and developed an approach for
automatically generating a fault tree from finite state
machine-based descriptions of a system where the
generated fault tree is complete with respect to all fail-
ures assumed possible. The ideas presented here can
been seen as an extension of their developments com-
bined with our previous work (Herbert & Sharp 2012,
Herbert & Sharp 2013b) where we presented a the-
oretical framework, based upon the Business Process
Modelling and Notation 2.0 (BPMN) (Object Man-
agement Group 2011) modelling language, which al-
lows the modelling and analysis, via model checking,
of a wide range of real-world workflows.

In this paper we present an approach where work-
flows are modelled in the industry standard BPMN
workflow language, which is a common choice
for traditional, non FTA orientated, systems model-
ling (Chinosi & Trombetta 2012). We formalise and
extend the BPMN formalism so that systems which
exhibit stochastic behaviour can be modelled, and
sketch how such models can be automatically conver-
ted into a format amenable to model checking. We
then present Probabilistic Computation Tree Logic
PCTL formulae, and an algorithm that exploits these
to generate fault trees which reflect the base stochastic
behaviour of the system from the generated statespace
of the BPMN model as shown in fig. 1.

Figure 1: BPMN Fault tree generation overview

In fig. 1, the grey boxes are the additional ma-
terial that must be supplied by a user in addition
to an BPMN model. Note that these additions are
simply annotations to an existing BPMN model and
require no structural changes to the model. The re-
ward structures are data annotations which are not
strictly needed to simply perform a qualitative FTA.
However, if data is associated with a system model
this can also be mapped to the resulting fault tree,
which allows the expected values of properties of in-
terest, such as time, power usage or financial cost,

to be included in the fault tree. This motivates our
choice of quantitative probabilistic model checking, a
formal verification method for the analysis of systems
which exhibit stochastic behaviour, as opposed to the
more limited methods of symbolic model checking
empoyed by Liggesmeyer & Rothfelder 1998.

1.2 Related Work

Work by Banach and Bozzano 2011 allows for the
automated generation of fault trees. However, their
work focuses on digital circuits, which must be mod-
elled in a custom modelling language for automated
generation to be possible. In order not to add a further
source of error, our models are automatically trans-
lated into fault trees with no remodelling required.

Work by Thums and Schellhorn 2003 Xiaocheng
et al. 2010 employs model checking to verify the cor-
rectness of an FTA and to perform model checking of
fault trees. In both cases, however, the source model
for the FTA requires custom modelling of the system
of interest and does not incorporate the use of rewards
into the analysis.

An interesting approach employing Duration Cal-
culus (DC) model checking is suggested by Schäfer
2003, where fault trees are generated from DC mod-
els. While similar to our approach, although lacking
reward structures, it does not have a practical imple-
mentation, as it has since been shown by Fränzle and
Hansen 2008 that model-checking of DC is a 4-fold
exponential complexity model checking problem.

2 BUSINESS PROCESS MODEL AND
NOTATION

The Business Process Model and Notation (BPMN)
language (Object Management Group 2011) is a
graphical notation for specifying workflows. Unfor-
tunately, the semantics and pragmatics of BPMN are
only informally defined in the relevant standards (Ob-
ject Management Group 2011), thus leaving a number
of questions open to interpretation.

The current version of BPMN (2.0) allows models
to consist of nearly 100 graphical elements, covering
the description of many categories of tasks, events, er-
rors, areas of responsibility, and general annotations.
However, there are essentially only two fundamental
types of object in BPMN, nodes and flows. Nodes rep-
resent basic elements of a workflow such as activ-
ities performed and decisions made. Flows are links
between nodes which express the relationship of one
node to another; predominantly expressing the simple
ordering in which elements of a workflow are per-
formed, but may also capture message passing or er-
rors. Finally, BPMN diagrams make use of various
structural elements which help organise nodes within
BPMN models.

(a) State (b) Start (c) End (d) Decision (e) Parallel
Gateway

(f) Sequence
Flow

(g) Message
Flow

(h) Pool

Figure 2: Core BPMN elements

2.1 Core BPMN

In this work, only a small subset of BPMN, often
known as the core subset of BPMN, will be used. It
consists of the eight elements found to be the most
commonly used in a large survey of real-world BPMN
usage by Muehlen and Recker 2008. The graphical
elements of core BPMN are shown in fig. 2 and de-
scribed below.

In core BPMN modelling, a workflow involves
composing a number of core BPMN elements into a
business process diagram (BPD).

Definition 1 (Core BPD). A core BPD is a tuple
BPD = (N,F ,P,pool,L, lab) where N ⊆ T ∪E ∪
G, is a set of nodes composed of the following disjoint
sets:

• Tasks T, are the basic actions done as part of a
given workflow.

• Events E ⊆ ES ∪ EE, where the disjoint sets
ES and EE respectively represent start and end
events.

• Gateways G ⊆GD ∪GF ∪GM, where the dis-
joint sets GD, GF and GM respectively rep-
resent exclusive decision gateways, parallel fork
gateways and parallel merge gateways.

F ⊆ S ∪M is a set of flow relations, where sequence
flows S ⊆ N × N relate nodes to each other and
M⊆ T×GM is a relation between tasks and par-
allel merge gateways. P ⊂ ℘(N) is a set of disjoint
pools and pool :N→ P maps nodes to a pool p ∈ P.
L is a set of unique labels and lab : F → L is a la-
belling function which assigns labels to flows.

The definition of a BPD given in definition 1 mod-
els workflows by using elements of F to define a
directed graph with nodes which are elements of N.
However, definition 1 allows for graphs which are
unconnected, do not have start or end elements, and
are free-form or have various other properties which
place them outside what is implied to be permitted in
standard BPMN models. To ensure that a BPD de-
scribes a meaningful workflow we have developed a
set of well-formedness rules, discussed at length in
previous work (Herbert & Sharp 2012), which enforce
restrictions on connecting elements, pool boundaries,
and message passing. These are chosen such that they

impose the minimum semantic interpretation neces-
sary to determine the control flow of a model. In the
case of a BPD, they add no more semantic interpret-
ation than implied by the standard (Object Manage-
ment Group 2011).

It should be noted that by combining several Core
BPMN elements any element of the complete BPMN
language can be simulated. Even inclusive gateways,
which pose a challenge as their implied semantics in-
cludes a non-trivial and non-local backwards search
of the flow graph of the BPD, can be addressed
through the work of Christiansen et al. 2011, who
present a method to translate this construct into other
BPMN processes with minor restructuring of the
overall BPD.

2.2 Stochastic Core BPMN with Rewards

BPMN makes use of external conditions on decision
gateways to select the outgoing flow from a decision
point. These decisions are modelled by the set L and
assigned to specific flows by the function lab intro-
duced in definition 1. In practice, decision points in a
workflow will have outcomes which depend on some
inherent property of the task or on outside factors.
The idea is that at a decision point an active choice
is made, and then that choice results in a number
of different possible probabilistic outcomes. This be-
haviour, which is similar to a Markov decision pro-
cess (White 1993), preserves the intention of actors in
a process while enabling probabilistic behaviour, and
can be effectively captured by annotating the possible
outcomes of specific decisions with pairs of labels and
probabilities (l, p). We employ the following function
to ensure meaningful assignment of these intention-
preserving probabilistic annotations.

Definition 2 (Gateway Flow Probability Function).
A decision gateway probability function is a partial
function Pg : S ×L→ [0,1] which for a node g ∈GD

and label l ∈ L assigns probabilities to all outgoing
sequence flows ((g,x), l), such that for a given l:∑

∀x∈out(g)

Ps((g,x), l)) = 1

Definition 2 ensures that all decision gateways have
an associated probability and that the sum of all prob-
abilities for a given label l is 1. Figure 3 illustrates the
application of P to a decision gateway g.

Figure 3: Assignment of label probability pairs to a decision
gateway. Here application of P requires p1 + p2 = 1 and p3 = 1

To enable quantitative analysis of a workflow we
add numerical data to our models by using the fol-
lowing function which associates positive real num-
bers with tasks in a BPD.

Definition 3 (BPD Task Reward Function). For a
BPD a reward function for a task t ∈ T is a partial
functionR : T→ R≥0.

This function captures the notion that certain nodes
have some reward or cost associated with the task.
There is no practical distinction between costs and re-
wards, and we can use these annotated values to keep
track of whichever quantities may be of interest in
a process. We may associate as many reward struc-
tures as we wish with a given BPD, so that a single
task may have multiple different numerical properties
which are incremented when the task is performed.
Further details of these structures and model checking
of these properties can be found in Herbert & Sharp
2012.

3 MODELLING FAULTS

To allow the automated generation of fault trees,
we extend the definition of tasks, and the relations
between them, in a BPD to include two types of
faults. The approach taken can be seen as employing
special gateway flow probability functions that direct
workflow execution to special faulty task states.

Note that faulty decision gateways in a workflow
can be modelled simply by redefining gateway flow
probability function P associated with a gateway.

3.1 Fault State Generation

We will allow for the addition of faults by means of
the following definitions:

Definition 4 (Fail-Stop Task Fault Injection Func-
tion). For a task tn ∈ T in a BPD, the partial func-

tion
9
E :T× [0,1]→ (T×T)× [0,1] adds a fail-stop

execution sequence to a BPD as follows:

9
E(tn, p) =

{
tn−1S

9
tn with probability p

tn−1Stn with probability 1− p

Application of definition 4 to add fail-stop beha-
viour to a task is illustrated in fig. 4. Here, after task

tn−1 has been performed, then with a probability of
P9
tn

the task tn is not performed and instead a trans-

ition tn−1S
9
tn, to a state

9
tn representing the process

halting (deadlocking) during execution of tn is made.

We denote the set of all fail-stop tasks as
9
T.

Figure 4: Fail-Stop behaviour

Definition 5 (Fail-Continue Task Fault Injection
Function). For a task tn ∈ T in a BPD, the partial

function
y
E :T× [0,1]→ (T×T)× (T×T)× [0,1]

adds a fail-continue execution sequence to a BPD as
follows:

y
E(tn, p) =

{
tn−1S

y
tnStn+1 with probability p

tn−1StnStn+1 with probability 1− p

Application of definition 5 to add Fail-continue be-
haviour to a task is shown in fig. 5. In this case, after
task tn−1 has been performed, then with a probability
of Py

tn
the task tn is not performed and instead a se-

quence of transitions tn−1S
y
tnStn+1 passing through

state
y
tn representing the task being performed in some

faulty, but not deadlocking, fashion. The set of all fail-

continue tasks will be denoted as
y
T.

Figure 5: Fail-Continue behaviour

Note that the total application of
9
E and

y
E produces

the maximal set of possible fault states, where all
tasks can exhibit both fail-stop and fail-continue be-
haviour. In practice it can be beneficial to restrict the
set of states believed to be prone to failure to elim-
inate false-positive failures that are impossible in the

system. However, total application of
9
E and

y
E is cer-

tain to find all failure states.

4 GENERATING FAULT TREES

Producing a fault tree involves systematically build-
ing all possible chains of one of more fail-continue

faults that can occur in the system. It is therefore ne-
cessary to examine all specific systems configurations
which are possible during execution. These state-
spaces can become extremely large and model check-
ing encompasses the current state of the art meth-
ods for efficiently searching this space. Specifically,
we employ the model checker PRISM (Kwiatkowska
et al. 2011) to perform this search.

4.1 Generating PRISM Code

The theoretical details of conversion of BPMN mod-
els to PRISM model code are comprehensively
covered in previous work (Herbert & Sharp 2012).
The central idea is to identify sub-processes of the
source Core BPMN model, and then map these to
modules of PRISM code so that the encoding would
be compositional, and will not impose further se-
mantic interpretation on the source BPMN model.

We employ a two pass algorithm to build lists of
pairs of linked nodes at each level of depth of nested
parallel fork gateways in the source model. We record
which pairs of nodes are present at a given parallel
fork gateway nesting depth of the BPDs pool. With
this list defined, the second pass translates a BPD
into PRISM code by constructing PRISM modules
where the corresponding fork and merge gateways
at a given depth are retained in both the level above
and below the parallel fork depth. Such that in the
outer containing level a fork gateway is linked dir-
ectly to a merge gateway. The concurrent synchron-
isation between modules is achieved by generating
appropriately named PRISM actions that enforce syn-
chronisation between modules, effectively simulating
concurrency by generating the set of all possible in-
terleavings of all parallel tasks. An illustration of this
process for a simple pair of parallel fork and merge
gateways is shown in fig. 6(a) and the resulting three
guarded PRISM modules are shown in fig. 6(b).

(a) BPMN parallel process

(b) PRISM Modules

Figure 6: Illustration of the BPMN to PRISM translation process
for parallel sequences.

When all pools are converted into appropriate sets
of modules, messages between pools are identified in
the form of dependent pairs of states, and appropri-
ate synchronising PRISM actions between them are
generated in a similar fashion. In addition, reward
structures are extracted from the BPD as they are
encountered and added to corresponding PRISM re-
ward elements which associate rewards with specific
configurations of the model.

4.2 Fault tree construction

Fault trees provide a convenient symbolic represent-
ation of the combination of faults causing a system
failure, and they are represented as a parallel or se-
quential combination of logical AND and OR gates.
Algorithm 1 employs the PRISM model checker to
construct a fault tree, by means of executing queries in
Probabilistic Computation Tree Logic (PCTL) (Aziz
et al. 1995), based on classical continuous stochastic
logic (Hansson and Jonsson 1994) extended to prob-
abilistic quantification of described properties. PCTL
is a rich temporal logic with a wide range of operat-
ors used to reason about properties of paths through a
state-space. However, to construct fault trees we will
rely only on the following operators (Kwiatkowska
et al. 2011):

• The P=? operator refers to the probability of an
event occurring, more precisely, the probability
that the observed execution of the model satisfies
a given specification.

• The Rl
=? operator is used to express properties

that relate to rewards, more precisely, the expec-
ted value of a random variable, associated with
particular reward structure. To distinguish differ-
ent reward structures we employ a label l.

• The binary until operator aUb specifies that, for a
given path, in some state of the path the property
b is true and in all preceding states the property
a is true.

• The eventually operator Fa specifies that, for a
given path, a eventually becomes true at some
point along the path.

In algorithm 1 a fault tree is constructed by per-
forming queries of the probabilities of, and the values
of rewards of interest, in each possible system config-
uration where one or more faults have occurred. In es-
sence these calculations are made for every possible

subsequence of elements of
y
T appended with every

element from
9
T∪∅. As the probabilities of every pos-

sible meaningful combination of faults are generated,
nodes of the faults tree are constructed and annotated
with the calculated rewards values.

Algorithm 1 is guaranteed to terminate as it oper-
ates over a finite set. It has an upper complexity bound

Algorithm 1: Fault Tree Generation

Input: BPD annotated via P ,R,
9
E and

y
E

functions.
Output: An exhuastive fault tree FT for the

input BPD

1 Let S be the set of U separated sub-strings of
y
T

2 for s ∈ S do
3 Q←Q∪ s
4 for t ∈

9
T do

5 Q←Q∪ (s append Ut)

6 for q ∈Q do
7 for l ∈ Labels do
8 p← P=?[Fq]
9 r← Rl

=?[Fq]

10 if q is length 1 then
11 Add OR node to Fault Tree FT with

probability p and rewards r
12 else
13 Add AND node to Fault Tree FT with

probability p and rewards r

14 Return FT

of O(|
y
T|! · |

9
T|), which while large is still feasible

as all queries are performed on the same state space
generated by the PRISM model checker, and the con-
struction of the statespace by PRISM still dominates
the computational burden.

5 EXAMPLE

A straightforward example of a workflow that can be
described using BPMN is shown in figure 7.

Figure 7: BPMN model of an unreliable ”Smart” security camera
system

In this example we have two BPMN pools model-
ling a security camera and control centre which re-

sponds to images sent from the camera. The camera
process begins by entering a ready state and then pro-
ceeds to perform a capture image task, which is an-
notated with reward structures to indicate the time
taken (60 seconds) and memory consumed (1 unit of
memory). After that, the camera analyses the image
to determine if there is suspicious activity. This pro-
cess is similiarly annotated with a time reward, but
also marked with a 0.3 probability of experiencing a
fail-continue behaviour (indicated by the + symbol),
e.g. the image buffer could be corrupted. The cam-
era process proceeds to make a choice if the image is
suspicious or not. If the image is not suspicious then,
with a probability of 1, the camera process loops back
to the ready state. If the image is suspicious the mes-
sage is sent to the control system, a task which may
also be faulty.

The control system, after entering its ready state,
will only progress to the receive image state when an
image has been received. The image is then reviewed
by a human operator who decides whether there is an
actual problem. In the case where there is a problem,
a non-deterministic choice is made between calling a
guard or calling the police, with probabilities of re-
spectively 0.7 and 0.3. In the case where a guard is
sent there is a possibility of fail-stop behaviour, indic-
ated by ! symbol and an associated probability of 0.2
that the guard does not respond to the call.

For this system, determining the fault tree of the
possible combined faults that could occur allows us
to obtain knowledge about how this system can fail to
maintain security. The fault tree shown in fig. 8 de-
termines probabilities, the minimum time taken and
the expected amount of memory used for every pos-
sible failure, and combination of failures, encoded in
the system model. The combination of failure prob-
abilities combined with quantitative system perform-
ance data determined by this analysis allows systems
designers to adjust the system reliability level. They
can see the effect these changes will have on perform-
ance directly from a industry standard system model
with just a few annotations.

6 CONCLUDING REMARKS

We have presented the central theoretical ideas of
a method for the direct generation of fault trees
from systems models in BPMN. Enhancing the ori-
ginal formal risk analysis concept of Liggesmeyer
and Rothfelder 1998 with direct translation from a in-
dustry standard modelling language and allowing for
the addition of data values at points of failure in a fault
tree. For the cost of a small amount of additional data
added to a workflow model we are able to automat-
ically derive rich fault trees with no user interaction
needed.

The method is computationally feasible and we
have built a prototype implementation of these ideas,
where some algorithm 1 is implemented with some

Figure 8: Generated fault tree for the example shown in fig. 7

practical tuning. This system, which is based upon the
PRISM model checker, is able to generate fault trees
for BPMN models with a total number of states, in-
cluding fault states, of up to 1010 (Kwiatkowska et al.
2011). The full details of this tool will be reported
elsewhere (Herbert & Sharp 2013c).

While this paper focused on BPMN, we have
developed a similar formalisation of UML state-
charts (Herbert & Sharp 2013a) which could equally
well have been used to illustrate the automatic de-
rivation of fault trees. Indeed, most workflow mod-
elling languages which are fundamentally based on a
graph structure should be amenable to extension with
stochastic behaviour, rewards and faults, and thus pos-
sible to analyse with the approach described.

6.1 Future Work

A novel approach by Mukherjee et. al. (Mukherjee
& Chakraborty 2007) to generating fault trees from
maintenance logs can be greatly enhanced by the
work presented here. Specifically, our methods allow
systems models with a considerably greater degree of
freedom in their behaviour to be built from logs prior
to fault tree generation creating fault trees which bet-
ter reflect the system and which include data.

The real-valued rewards introduced here can be ex-
panded to include rewards which functions which are
dependent on the variables of the overall system state.
These rewards can be analysed with PRISM with only
a modest complexity increase. Allowing for fault trees
where nodes are annotated with functions which de-
scribe the evolution of the reward at different times
when the failure can occur, e.g. in the example given
we would have not just the minimum time until a fault
happens but all the times of the cyclically occurring
moments when failure is possible.

Handling faults in message passing between pro-

cesses poses a similar set of problems to those ex-
plored in this paper. In this case lost messages and
also situations where messages are delayed and may
arrive out of sequence must be accounted for. In future
work we will present an approach to these faults by
constructing queues of lost messages which have as-
sociated probabilities of being sent each time a trans-
ition is made in the system. Further messages can be
received by different recipients than intended. Com-
bined with advanced rewards, this allows for mod-
elling and deriving fault trees for considerably more
complex systems.

REFERENCES

Aziz, A., V. Singhal, F. Balarin, R. K. Brayton, & A. L.
Sangiovanni-Vincentelli (1995). It usually works: The tem-
poral logic of stochastic systems. In P. Wolper (Ed.), Pro-
ceedings of the 7th International Conference on Computer
Aided Verification, Volume 939 of Lecture Notes in Com-
puter Science, pp. 155–165. Berlin, Heidelberg: Springer-
Verlag.

Banach, R. & M. Bozzano (2011). The mechanical generation of
fault trees for reactive systems via retrenchment ii: clocked
and feedback circuits. Formal Aspects of Computing Oct, 1–
49.

Chinosi, M. & A. Trombetta (2012, January). BPMN: An in-
troduction to the standard. Computer Standards & Inter-
faces 34(1), 124–134.

Christiansen, D. R., M. Carbone, & T. Hildebrandt (2011).
Formal semantics and implementation of BPMN 2.0 in-
clusive gateways. In Proc. of the 7th international conf. on
Web services and formal methods, Web Services and Formal
Methods 2010, Berlin, Heidelberg, pp. 146–160. Springer-
Verlag.

Crockford, N. (1986). An Introduction to Risk Management (2nd
Edition ed.). Cambridge England: Woodhead-Faulkner.

Ericson, C. A. (1999). Fault tree analysis - a history. In Pro-
ceedings of the 17th International System Safety Conference,
ISSC’99, Unionville, Virginia, USA, pp. 1–9. System Safety
Society.

Ericson, C. A. (2005). Fault tree analysis. In C. A. Ericson (Ed.),

Hazard Analysis Techniques for System Safety, pp. 183–221.
New Jersey, USA: John Wiley & Sons, Inc.

Fränzle, M. & M. R. Hansen (2008, November). Efficient model
checking for duration calculus based on branching-time ap-
proximations. In Proceedings of the 2008 Sixth IEEE Inter-
national Conference on Software Engineering and Formal
Methods, SEFM ’08, Washington, DC, USA, pp. 63–72.
IEEE Computer Society.

Hansson, H. & B. Jonsson (1994). A logic for reasoning about
time and reliability. Formal Aspects of Computing 6(5), 512–
535.

Herbert, L. & R. Sharp (2012, October). Using stochastic model
checking to provision complex business services. In High-
Assurance Systems Engineering (HASE), 2012 IEEE 14th In-
ternational Symposium on, pp. 98–105.

Herbert, L. & R. Sharp (2013a, July). Optimised safe execution
strategies for UML statecharts. In Proceedings of the Inter-
national SPIN Symposium on Model Checking of Software
(SPIN) 2013. (Forthcoming 2013 SPIN Symposium).

Herbert, L. & R. Sharp (2013b, March). Precise quantitative ana-
lysis of probabilistic BPMN workflows. Journal of Comput-
ing and Information Science in Engineering 13, 2–11.

Herbert, L. & R. Sharp (2013c). SBAT a stochastic BPMN ana-
lysis tool. In Proceedings of the 18th International Workshop
on Formal Methods for Industrial Critical Systems. (Forth-
coming 2013 FMICS Workshop).

Kwiatkowska, M. Z., G. Norman, & D. Parker (2011). PRISM
4.0: Verification of probabilistic real-time systems. In G. Go-
palakrishnan and S. Qadeer (Eds.), Proceedings of the 23rd
International Conference on Computer Aided Verification
(CAV’11), Volume 6806 of Lecture Notes in Computer Sci-
ence, London, UK, pp. 585–591. Springer-Verlag.

Liggesmeyer, P. & M. Rothfelder (1998, June). Improving sys-
tem reliability with automatic fault tree generation. In Fault-
Tolerant Computing, 1998. Digest of Papers. Twenty-Eighth
Annual International Symposium on, pp. 90–99.

Muehlen, M. Z. & J. Recker (2008). How much language is
enough? theoretical and practical use of the business process
modeling notation. In Proc. of the 20th international conf.
on Advanced Information Systems Engineering, Conference
on Advanced Information Systems Engineering 2008, Berlin,
Heidelberg, pp. 465–479. Springer-Verlag.

Mukherjee, S. & A. Chakraborty (2007, January). Automated
fault tree generation: Bridging reliability with text mining.
In Reliability and Maintainability Symposium, 2007. RAMS
’07. Annual, pp. 83–88.

Object Management Group (2011, January). Business pro-
cess model and notation (BPMN) 2.0. Standards Document
formal/2011-01-03, Object Management Group, Needham
MA, USA.

Roy, S., A. Sajeev, S. Bihary, & A. Ranjan (2013). An empirical
study of error patterns in industrial business process models.
IEEE Transactions on Services Computing 99(PrePrint).

Schäfer, A. (2003). Combining real-time model-checking and
fault tree analysis. In K. Araki, S. Gnesi, and D. Mandrioli
(Eds.), Proceedings of the 2003 International Symposium of
Formal Methods Europe, FME 2003, Volume 2805 of Lec-
ture Notes in Computer Science, Berlin, Heidelberg, pp. 522–
541. Springer-Verlag.

Stephans, R. A. (2005). Fault tree analysis. In R. A. Stephans
(Ed.), System Safety for the 21st Century, pp. 169–188. New
Jersey, USA: John Wiley & Sons, Inc.

Thums, A. & G. Schellhorn (2003). Model checking fta. In
K. Araki, S. Gnesi, and D. Mandrioli (Eds.), Proceedings
of the 2003 International Symposium of Formal Methods
Europe, FME 2003, Volume 2805 of Lecture Notes in Com-
puter Science, pp. 739–757. Berlin, Heidelberg: Springer-
Verlag.

White, D. J. (1993). Markov decision processes. John Wiley &
Sons.

Xiaocheng, G., R. Paige, & J. McDermid (2010, June). Ana-

lysing system failure behaviours with PRISM. In Secure
Software Integration and Reliability Improvement Compan-
ion (SSIRI-C), 2010 Fourth International Conference on, pp.
130–136.

	Introduction
	Contribution
	Related Work

	Business process model and notation
	Core BPMN
	Stochastic Core BPMN with Rewards

	Modelling Faults
	Fault State Generation

	Generating Fault Trees
	Generating PRISM Code
	Fault tree construction

	Example
	Concluding Remarks
	Future Work

