491 research outputs found

    Efficient Matching of Substrings in Uncertain Sequences

    Full text link
    Substring matching is fundamental to data mining methods for se-quential data. It involves checking the existence of a short subse-quence within a longer sequence, ensuring no gaps within a match. Whilst a large amount of existing work has focused on substring matching and mining techniques for certain sequences, there are on-ly a few results for uncertain sequences. Uncertain sequences pro-vide powerful representations for modelling sequence behavioural characteristics in emerging domains, such as bioinformatics, sen-sor streams and trajectory analysis. In this paper, we focus on the core problem of computing substring matching probability in un-certain sequences and propose an efficient dynamic programming algorithm for this task. We demonstrate our approach is both com-petitive theoretically, as well as effective and scalable experimental-ly. Our results contribute towards a foundation for adapting classic sequence mining methods to deal with uncertain data.

    Highly Scalable Algorithms for Robust String Barcoding

    Full text link
    String barcoding is a recently introduced technique for genomic-based identification of microorganisms. In this paper we describe the engineering of highly scalable algorithms for robust string barcoding. Our methods enable distinguisher selection based on whole genomic sequences of hundreds of microorganisms of up to bacterial size on a well-equipped workstation, and can be easily parallelized to further extend the applicability range to thousands of bacterial size genomes. Experimental results on both randomly generated and NCBI genomic data show that whole-genome based selection results in a number of distinguishers nearly matching the information theoretic lower bounds for the problem

    String Searching with Ranking Constraints and Uncertainty

    Get PDF
    Strings play an important role in many areas of computer science. Searching pattern in a string or string collection is one of the most classic problems. Different variations of this problem such as document retrieval, ranked document retrieval, dictionary matching has been well studied. Enormous growth of internet, large genomic projects, sensor networks, digital libraries necessitates not just efficient algorithms and data structures for the general string indexing, but indexes for texts with fuzzy information and support for queries with different constraints. This dissertation addresses some of these problems and proposes indexing solutions. One such variation is document retrieval query for included and excluded/forbidden patterns, where the objective is to retrieve all the relevant documents that contains the included patterns and does not contain the excluded patterns. We continue the previous work done on this problem and propose more efficient solution. We conjecture that any significant improvement over these results is highly unlikely. We also consider the scenario when the query consists of more than two patterns. The forbidden pattern problem suffers from the drawback that linear space (in words) solutions are unlikely to yield a solution better than O(root(n/occ)) per document reporting time, where n is the total length of the documents and occ is the number of output documents. Continuing this path, we introduce a new variation, namely document retrieval with forbidden extension query, where the forbidden pattern is an extension of the included pattern.We also address the more general top-k version of the problem, which retrieves the top k documents, where the ranking is based on PageRank relevance metric. This problem finds motivation from search applications. It also holds theoretical interest as we show that the hardness of forbidden pattern problem is alleviated in this problem. We achieve linear space and optimal query time for this variation. We also propose succinct indexes for both these problems. Position restricted pattern matching considers the scenario where only part of the text is searched. We propose succinct index for this problem with efficient query time. An important application for this problem stems from searching in genomic sequences, where only part of the gene sequence is searched for interesting patterns. The problem of computing discriminating(resp. generic) words is to report all minimal(resp. maximal) extensions of a query pattern which are contained in at most(resp. at least) a given number of documents. These problems are motivated from applications in computational biology, text mining and automated text classification. We propose succinct indexes for these problems. Strings with uncertainty and fuzzy information play an important role in increasingly many applications. We propose a general framework for indexing uncertain strings such that a deterministic query string can be searched efficiently. String matching becomes a probabilistic event when a string contains uncertainty, i.e. each position of the string can have different probable characters with associated probability of occurrence for each character. Such uncertain strings are prevalent in various applications such as biological sequence data, event monitoring and automatic ECG annotations. We consider two basic problems of string searching, namely substring searching and string listing. We formulate these well known problems for uncertain strings paradigm and propose exact and approximate solution for them. We also discuss a constrained variation of orthogonal range searching. Given a set of points, the task of orthogonal range searching is to build a data structure such that all the points inside a orthogonal query region can be reported. We introduce a new variation, namely shared constraint range searching which naturally arises in constrained pattern matching applications. Shared constraint range searching is a special four sided range reporting query problem where two constraints has sharing among them, effectively reducing the number of independent constraints. For this problem, we propose a linear space index that can match the best known bound for three dimensional dominance reporting problem. We extend our data structure in the external memory model

    Efficient Indexing for Structured and Unstructured Data

    Get PDF
    The collection of digital data is growing at an exponential rate. Data originates from wide range of data sources such as text feeds, biological sequencers, internet traffic over routers, through sensors and many other sources. To mine intelligent information from these sources, users have to query the data. Indexing techniques aim to reduce the query time by preprocessing the data. Diversity of data sources in real world makes it imperative to develop application specific indexing solutions based on the data to be queried. Data can be structured i.e., relational tables or unstructured i.e., free text. Moreover, increasingly many applications need to seamlessly analyze both kinds of data making data integration a central issue. Integrating text with structured data needs to account for missing values, errors in the data etc. Probabilistic models have been proposed recently for this purpose. These models are also useful for applications where uncertainty is inherent in data e.g. sensor networks. This dissertation aims to propose efficient indexing solutions for several problems that lie at the intersection of database and information retrieval such as joining ranked inputs, full-text documents searching etc. Other well-known problems of ranked retrieval and pattern matching are also studied under probabilistic settings. For each problem, the worst-case theoretical bounds of the proposed solutions are established and/or their practicality is demonstrated by thorough experimentation

    Artificial Sequences and Complexity Measures

    Get PDF
    In this paper we exploit concepts of information theory to address the fundamental problem of identifying and defining the most suitable tools to extract, in a automatic and agnostic way, information from a generic string of characters. We introduce in particular a class of methods which use in a crucial way data compression techniques in order to define a measure of remoteness and distance between pairs of sequences of characters (e.g. texts) based on their relative information content. We also discuss in detail how specific features of data compression techniques could be used to introduce the notion of dictionary of a given sequence and of Artificial Text and we show how these new tools can be used for information extraction purposes. We point out the versatility and generality of our method that applies to any kind of corpora of character strings independently of the type of coding behind them. We consider as a case study linguistic motivated problems and we present results for automatic language recognition, authorship attribution and self consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression approach to Information Extraction and Classification" by A. Baronchelli and V. Loreto. 15 pages; 5 figure

    Order-Preserving Pattern Matching Indeterminate Strings

    Get PDF
    Given an indeterminate string pattern p and an indeterminate string text t, the problem of order-preserving pattern matching with character uncertainties (muOPPM) is to find all substrings of t that satisfy one of the possible orderings defined by p. When the text and pattern are determinate strings, we are in the presence of the well-studied exact order-preserving pattern matching (OPPM) problem with diverse applications on time series analysis. Despite its relevance, the exact OPPM problem suffers from two major drawbacks: 1) the inability to deal with indetermination in the text, thus preventing the analysis of noisy time series; and 2) the inability to deal with indetermination in the pattern, thus imposing the strict satisfaction of the orders among all pattern positions. In this paper, we provide the first polynomial algorithms to answer the muOPPM problem when: 1) indetermination is observed on the pattern or text; and 2) indetermination is observed on both the pattern and the text and given by uncertainties between pairs of characters. First, given two strings with the same length m and O(r) uncertain characters per string position, we show that the muOPPM problem can be solved in O(mr lg r) time when one string is indeterminate and r in N^+ and in O(m^2) time when both strings are indeterminate and r=2. Second, given an indeterminate text string of length n, we show that muOPPM can be efficiently solved in polynomial time and linear space
    • …
    corecore