
Order-Preserving Pattern Matching
Indeterminate Strings
Rui Henriques
INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Portugal
rmch@tecnico.ulisboa.pt (correspondence)

Alexandre P. Francisco
INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Portugal

Luís M. S. Russo
INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Portugal

Hideo Bannai
Department of Computer Science, Kyushu University, Japan

Abstract
Given an indeterminate string pattern p and an indeterminate string text t, the problem of order-
preserving pattern matching with character uncertainties (µOPPM) is to find all substrings of t
that satisfy one of the possible orderings defined by p. When the text and pattern are determ-
inate strings, we are in the presence of the well-studied exact order-preserving pattern matching
(OPPM) problem with diverse applications on time series analysis. Despite its relevance, the
exact OPPM problem suffers from two major drawbacks: 1) the inability to deal with indeterm-
ination in the text, thus preventing the analysis of noisy time series; and 2) the inability to deal
with indetermination in the pattern, thus imposing the strict satisfaction of the orders among all
pattern positions.

In this paper, we provide the first polynomial algorithms to answer the µOPPM problem
when: 1) indetermination is observed on the pattern or text; and 2) indetermination is observed
on both the pattern and the text and given by uncertainties between pairs of characters. First,
given two strings with the same length m and O(r) uncertain characters per string position, we
show that the µOPPM problem can be solved in O(mr lg r) time when one string is indeterminate
and r ∈ N+ and in O(m2) time when both strings are indeterminate and r=2. Second, given
an indeterminate text string of length n, we show that µOPPM can be efficiently solved in
polynomial time and linear space.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Order-preserving pattern matching, Indeterminate string analysis, Gen-
eric pattern matching, Satisfiability

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.2

Funding This work was developed in the context of a secondment granted by the BIRDS MASC
RISE project funded in part by EU H2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement no.690941. This work was further supported by national funds
through Fundação para a Ciência e Tecnologia (FCT) with reference UID/CEC/50021/2013.

1 Introduction

Given a pattern string p and a text string t, the exact order preserving pattern matching
(OPPM) problem is to find all substrings of t with the same relative orders as p. The
problem is applicable to strings with characters drawn from numeric or ordinal alphabets.

© Rui Henriques, Alexandre P. Francisco, Luís M. S. Russo, and Hideo Bannai;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 2; pp. 2:1–2:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/158841499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rmch@tecnico.ulisboa.pt (correspondence)
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Order-Preserving Pattern Matching Indeterminate Strings

Illustrating, given p=(1,5,3,3) and t=(5,1,4,2,2,5,2,4), substring t[1..4]=(1,4,2,2) is reported
since it satisfies the character orders in p, p[0]≤p[2]=p[3]≤p[1]. Despite its relevance, the
OPPM problem has limited potential since it prevents the specification of errors, uncertainties
or don’t care characters within the text.

Indeterminate strings allow uncertainties between two or more characters per position.
Given indeterminate strings p and t, the problem of order preserving pattern matching
uncertain text (µOPPM) is to find all substrings of t with an assignment of values that satisfy
the orders defined by p. For instance, let p=(1,2|5,3,3) and t=(5,0,1,2|1,2,5,2|3,3|4). The
substrings t[1..4] and t[4..7] are reported since there is an assignment of values that preserve
either p[0]<p[1]<p[2]=p[3] or p[0]<p[2]=p[3]<p[1] orderings: respectively t[1..4]=(0,1,2,2)
and t[4..7]=(2,5,3,3).

Order-preserving pattern matching captures the structural isomorphism of strings, there-
fore having a wide-range of relevant applications in the analysis of financial times series,
musical sheets, physiological signals and biological sequences [32, 39, 36]. Uncertainties
often occur across these domains. In this context, although the OPPM problem is already a
relaxation of the traditional pattern matching problem, the need to further handle localized
errors is essential to deal with noisy strings [33]. For instance, given the stochasticity of
gene regulation (or markets), the discovery of order-preserving patterns in gene expression
(or financial) time series needs to account for uncertainties [35, 34]. Numerical indexes
of amino-acids (representing physiochemical and biochemical properties) are subjected to
errors difficulting the analysis of protein sequences [38]. Another example are ordinal strings
obtained from the discretization of numerical strings, often having two uncertain characters
in positions where the original values are near a discretization boundary [33].

Let m and n be the length of the pattern p and text t, respectively. The exact OPPM
problem has a linear solution on the text length O(n+mlgm) based on the Knuth-Morris-
Pratt algorithm [41, 39, 22]. Alternative algorithms for the OPPM problem have also
been proposed [21, 12, 20]. Contrasting with the large attention given to the resolution of
the OPPM problem, to our knowledge there are no polynomial-time algorithms to solve
the µOPPM problem. Naive algorithms for µOPPM assess all possible pattern and text
assignments, bounded by O(nrm) when considering up to r uncertain characters per position.

This work proposes the first polynomial algorithms able to answer the µOPPM problem.
Accordingly, the contributions are organized as follows. First, we show that an indeterminate
string of length m order-preserving matches a determinate string with the same length in
O(mr lg r) time based on their monotonic properties. Second, we show that µOPPM two
indeterminate strings with the same length and r=2 can be solved in O(m2) time by reducing
µOPPM to a 2-satisfiability task. Third, given a text string of length n, we show that the
µOPPM problem is in polynomial time and linear space, and efficiently solved using effective
filtration procedures.

2 Background

Let Σ be a totally ordered alphabet and an element of Σ∗ be a string. The length of a string
w is denoted by |w|. The empty string ε is a string of length 0. For a string w=xyz, x, y and
z are called a prefix, substring, and suffix of w, respectively. The i-th character of a string w
is denoted by w[i] for each 1≤i≤|w|. For a string w and integers 1≤i≤j≤|w|, w[i..j] denotes
the substring of w from position i to position j. For convenience, let w[i..j]=ε when i>j.

Given strings x and y with equal length m, y is said to order-preserving against x
[41], denoted by x ≈ y, if the orders between the characters of x and y are the same, i.e.

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:3

x[i] ≤ x[j] ⇔ y[i] ≤ y[j] for any 1 ≤ i, j ≤ m. A non-empty pattern string p is said to
order-preserving match (op-match in short) a non-empty text string t iff there is a position i
in t such that p ≈ t[i− |p|+ 1..i]. The order-preserving pattern matching (OPPM) problem
is to find all such text positions.

2.1 The Problem
Given a totally ordered alphabet Σ, an indeterminate string is a sequence of disjunctive
sets of characters x[1]x[2]..x[n] where x[i] ⊆ Σ. Each position is given by x[i]=σ1..σr where
r≥1 ∧ σi∈Σ.

Given an indeterminate string x, a valid assignment $x is a (determinate) string with
a single character at position i, denoted $x[i], contained in the x[i] set of characters, i.e.
$x[1]∈x[1], .., $x[m]∈x[m]. For instance, the indeterminate string (1|3, 3|4, 2|3, 1|2) has 24

valid assignments. Given an indeterminate position x[i] ⊆ Σ, $xj [i] is the jth ordered value
of x[i] (e.g. $x0[i]=1 for x[i]=1|2). Given an indeterminate string x, let a partially assigned
string §x be an indeterminate string with an arbitrary number of uncertain characters
removed, i.e. §x[1]⊆x[1], .., §x[m]⊆x[m].

Given a determinate string x of length m, an indeterminate string y of equal length
is said to be order-preserving against x, identically denoted by x ≈ y, if there is a valid
assignment $y such that the relative orders of the characters in x and $y are the same, i.e.
x[i] ≤ x[j] ⇔ $y[i] ≤ $y[j] for any 1 ≤ i, j ≤ m. Given two indeterminate strings x and y
with length m, y preserves the orders of x, x ≈ y, if exists $y in y that respects the orders of
a valid assignment $x in x.

A non-empty indeterminate pattern string p is said to order-preserving match (op-match
in short) a non-empty indeterminate text string t iff there is a position i in t such that p ≈ t[i-
|p|+1..i]. The problem of order-preserving pattern matching with character uncertainties
(µOPPM) problem is to find all such text positions.

To understand the complexity of the µOPPM problem, let us look to its solution from a
naive stance yet considering state-of-the-art OPPM principles. The algorithmic proposal by
Kubica et al. [41] is still up to this date the one providing a lowest bound, O(n+q), where
q=m for alphabets of size mO(1) (q=m lgm otherwise). Given a determinate string x of
length m, an integer i (1≤i<m) is said in the context of this work to be an order-preserving
border of x if x[1..i] ≈ x[m-i+1..m]. In this context, given a pattern string p, the orders
between the characters of p are used to linearly infer the order borders. The order borders
can then be used within the Knuth-Morris-Pratt algorithm to find op-matches against a text
string t in linear time [41].

Given a determinate string p of length m and an indeterminate string t of length n, the
previous approach is a direct candidate to the µOPPM problem by decomposing t in all its
possible assignments, O(rn). Since determinate assignments to t are only relevant in the
context of m-length windows, this approach can be improved to guarantee a maximum of
O(rm) assignments at each text position. Despite its simplicity, this solution is bounded by
O(nrm). This complexity is further increased when indetermination is also considered in the
pattern, stressing the need for more efficient alternatives.

2.2 Related work
The exact OPPM problem is well-studied in literature. Kubica et al. [41], Kim et al. [39] and
Cho et al. [22] presented linear time solutions on the text length by respectively combining
order-borders, rank-based prefixes and grammars with the Knuth–Morris–Pratt (KMP)

CPM 2018

2:4 Order-Preserving Pattern Matching Indeterminate Strings

algorithm [40]. Cho et al. [21], Belazzougui et al. [12], and Chhabra et al. [20] presented
O(nm) algorithms that show a sublinear average complexity by either combining bad character
heuristics with the Boyer–Moore algorithm [13] or applying filtration strategies. Recently,
Chhabra et al. [18] proposed further principles to solve OPPM using word-size packed string
matching instructions to enhance efficiency.

In the context of numeric strings, multiple relaxations to the exact pattern matching
problem have been pursued to guarantee that approximate matches are retrieved. In norm
matching [7, 44, 1, 47], matches between numeric strings occur if a given distance threshold
f(x, y)≤θ is satisfied. In (δ,γ)-matching [14, 26, 24, 23, 42, 43, 45], strings are matched if the
maximum difference of the corresponding characters is at most δ and the sum of differences
is at most γ.

In the context of nominal strings, variants of the pattern matching task have also been
extensively studied to allow for don’t care symbols in the pattern [37, 25, 9], transposition-
invariant [42], parameterized matching [11, 6], less than matching [5], swapped matching
[2, 46], gaps [15, 16, 31], overlap matching [4], and function matching [3, 8].

Despite the relevance of the aforementioned contributions to answer the exact order-
preserving pattern matching and generic pattern matching, they cannot be straightforwardly
extended to efficiently answer the µOPPM problem.

3 Polynomial time µOPPM for equal length pattern and text

Section 3.1 introduces the first efficient algorithm to solve the µOPPM problem when
one string is indeterminate (r ∈ N+). Section 3.2 shows the existence of a polynomial
solution when both strings are indeterminate and uncertainties are observed between pairs of
characters (r=2). Based on the reducibility of the graph coloring problem to the formulations
proposed in Section 3.2, we hypothesize that op-matching indeterminate strings with an
arbitrary number of uncertain characters per position (r ∈ N+) is in class NPC. The proof
of this intuition is, nevertheless, considered out of the scope, being regarded as future work.

3.1 O(mr lg r) time µOPPM when one string is indeterminate
Given a determinate string x of length m, there is a well-defined permutation of positions,
π, that specifies a non-monotonic ascending order of characters in x. For instance, given
x=(1,4,3,1), then x[0]=x[3]<x[2]<x[1] and π=(0,3,2,1). Given a determinate string y with
the same length, y op-matches x if it y satisfies the same m-1 orders. For instance, given
x=(1,4,3,1) and y=(2,5,4,3), x orders are not preserved in y since y[0]6=y[3]<y[2]<y[1].

The monotonic properties can be used to answer µOPPM when one string is indeterminate.
Given an indeterminate string y, let xπ and yπ be the permuted strings in accordance with
π orders in x. To handle equality constraints, positions in yπ with identical characters in
xπ can be intersected, producing a new string y′π with s length (s≤m). Illustrating, given
x=(4,1,4,2) and y=(2|7, 2, 7|8, 1|4|8), then π=(1,3,0,2), xπ=(1,2,4,4), yπ=(2, 8|4|1, 7|2, 8|7)
and y′π=(yπ[0], yπ[1], yπ[2] ∩ yπ[3])=(2, 8|4|1, 7). To handle monotonic inequalities, y′π[i]
characters can be concatenated in descending order to compose z=y′π[0]y′π[1]..y′π[s] and the
orders between x and y verified by testing if the longest increasing subsequence (LIS) [29]
of z has s length. In the given example, z=(2, 8, 4, 1, 7), and the LIS of z=(2, 8,4, 1,7) is
w=(2,4,7). Since |w|=|y′π|=3, y op-matches x.

I Theorem 1. Given a determinate string x and an indeterminate string y, let xπ and yπ be
the sorted strings in accordance with π order of characters in x. Let the positions with equal

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:5

Algorithm 1: O(mr lg r) µOPPM algorithm with one indeterminate string
Input: determinate x, indeterminate y (|x|=|y|=m)
π ← sortedIndexes(x); // O(m) if |Σ| = mO(1) (O(m lgm) otherwise);
xπ ← permute(x,π), yπ ← permute(y,π); // O(m+mr)
j ← 0; y′

π[0] ← {yπ[0]};
foreach i ∈ 1..m-1 do // O(mr lg r)

if xπ[i] = xπ[i-1] then y′
π[j] ← y′

π[j] ∩ {yπ[i]}; // O(r lg r)
else j ← j+1; y′

π[j] ← {yπ[i]};
s ← |y′

π|, nextMin ← -∞;
foreach i ∈ 0..s-1 do // O(mr)

nextMin ← min{a | a ∈ y′
π[i], a>nextMin}; // O(r)

if 6 ∃ nextMin then return false;
return true;

characters in xπ be intersected in yπ to produce a new indeterminate string y′π. Consider zi
to be a string with y′π[i] characters in descending order and z=z1z2..zm, then:

|w| = |y′π| ⇔ y ≈ x where w = longest increasing subsequence in z (1)

Proof. (⇒) If the length of the longest increasing subsequence (LIS), |w|, equals the number
of monotonic relations in x, |y′π|, then y ≈ x. By sorting characters in descending order per
position, we guarantee that at most one character per position in y′π appears in the LIS
(respecting monotonic orders in x given y′π properties). By intersecting characters in positions
of y with identical characters in x, we guarantee the eligibility of characters satisfying equality
orders in x, otherwise empty positions in y′π are observed and the LIS length is less than |y′π|.
(⇐) If |w|<|y′π|, there is no assignment in y that op-matches x due to one of two reasons: 1)
there are empty positions in y′π due to the inability to satisfy equalities in x, or 2) it is not
possible to find a monotonically increasing assignment to y′π and, given the properties of y′π,
yπ cannot preserve the orders of xπ. J

Solving the LIS task on a string of size n is O(n lgn) [29] where n=|z|=O(rm). In addition,
set intersection operations are performed O(m) times on sets with O(r) size, which can be
accomplished in O(rm lg r) time. As a result, the µOPPM problem with one indeterminate
string can be solved in O(rm lg(rm)).

Given the fact that the candidate string for the LIS task has properties of interest, we
can improve the complexity of this calculus (Theorem 2) in accordance with Algorithm 1.

I Theorem 2. µOPPM two strings of length m, one being indeterminate, is in O(mr lg r)
time, where r ∈ N+.

Proof. In accordance with Algorithm 1, µOPPM is bounded by the verification of equalities,
O(mr lg r) [27]. Testing inequalities after set intersections can be linearly performed on the
size of y, O(mr) time, improving the O(mr lg(mr)) bound given by the LIS calculus. J

The analysis of Algorthim 1 further reveals that the µOPPM problem with one indeterm-
inate string requires linear space in the text length, O(mr).

3.2 O(m2) time µOPPM (r=2) with indeterminate pattern and text
As indetermination in real-world strings is typically observed between pairs of characters [33],
a key question is whether µOPPM on two indeterminate strings is in class P when r=2. To
explore this possibility, new concepts need to be introduced. In OPPM research, character
orders in a string of length m can be decomposed in 3 sequences with m unit sets:

CPM 2018

2:6 Order-Preserving Pattern Matching Indeterminate Strings

1 4 3 1

<

>
=

Pattern 1 4 3 1

Leq[i] ∅ ∅ ∅ {0}
Ordered indexes (asc) 0 3 2 1
Lmax[i] (nearest asc smaller not in Leq[i]) ∅ {0} {0} ∅
Ordered indexes (desc) 2 0 1 3
Lmin[i] (nearest desc smaller not in Leq[i]) ∅ ∅ {1} ∅

Figure 1 Orders identified for p=(1,4,3,1) in accordance with Kubica et al. [41].

I Definition 3. For i=0,...,m−1:
Leqx[i]={max{ k : k<i, x[i]=x[k] }} (∅ if there is no eligible k)
Lmaxx[i]={max{argmaxk{ x[k] : k<i, x[i]>x[k] }}} (∅ if there is no eligible k)
Lminx[i]={max{argmink{ x[k] : k<i, x[i]<x[k] }}} (∅ if there is no eligible k)

Leq, Lmax and Lmin capture =, > and < relationships between each character x[i] in
x and the closest preceding character x[k]. These orders can be inferred in linear time for
alphabets of size mO(1) and in O(m lgm) time for other alphabets by answering the “all
nearest smaller values” task on the sorted indexes [41]. Figure 1 depicts Leq, Lmax and
Lmin for x=(1,4,3,1). Given determinate strings x and y, A=Leqx[t+1], B=Lmaxx[t+1] and
C=Lminx[t+1], if x[1..t] ≈ y[1..t] then:

x[1..t+ 1] ≈ y[1..t+ 1]⇔ ∀a∈A(y[t+ 1] = y[a])∧∀b∈B(y[t+ 1] > y[b])∧∀c∈C(y[t+ 1] < y[c]). (2)

When allowing uncertainties between pairs of characters, previous research on the OPPM
problem cannot be straightforwardly extended due to the need to trace O(2m) assignments
on indeterminate strings.

I Lemma 4. Given a determinate string x, an indeterminate string y, and the singleton
sets A=Leqx[t+ 1], B=Lmaxx[t+ 1] and C=Lminx[t+ 1] containing a position in 1..t. If
x[1..t] ≈ y[1..t] is verified on a specific assignment of y characters, denoted §y, then:

x[1..t+ 1] ≈ y[1..t+ 1]⇔ ∃$y[t+1]∈§y[t+1]∀a∈A∃$y[a]∈§y[a]∀b∈B∃$y[b]∈§y[b]∀c∈C∃$y[c]∈§y[c]

$y[t+ 1] = $y[a] ∧ $y[t+ 1] > $y[b] ∧ $y[t+ 1] < $y[c]

Proof. (⇒) In accordance with Leq, Lmax and Lmin definition, for any a∈A, b∈B and c∈C
we have x[t+ 1]=x[a], x[t+ 1]>x[b] and x[t+ 1]<x[c]. If there is an assignment to y[1..t+ 1]
in §y that preserves the orders of x[1..t+1], then for each a∈A, b∈B and c∈C $y[t+1]=$y[a],
$y[t+ 1]>$y[b] and $y[t+ 1]<$y[c] (where $y[t+ 1] ∈ §y[t+ 1], $y[a] ∈ §y[a], $y[b] ∈ §y[b],
$y[c] ∈ §y[c]). (⇐) We need to show that x[1..t + 1] ≈ y[1..t + 1]. Since x[1..t] ≈ y[1..t],
for i < t, ∃$y[i]∈§y[i],$y[t+1]∈§y[t+1]: x[t+ 1]>x[i] ⇔ $y[t+ 1]>$y[i]. Assuming x[t+ 1]>x[i]
for some i ∈ {1..t}: by the definition of Lmax, ∀b∈Bx[b]>x[i]; by the order-isomorphism of
x[1..t] and $y[1..t] in §y[1..t], there is $y[i] ∈ §y[i] and $y[b] ∈ §y[b] that ∀b∈B$y[b]>$y[i];
and by the assumption of the lemma, ∀b∈B$y[t+ 1]>$y[b]; hence $y[t+ 1]>$y[i]. Similarly,
x[t+ 1]<x[i] (and x[t+ 1]=x[i]) implies $y[t+ 1]<$y[i] (and $y[t+ 1]=$y[i]), yielding the
stated equivalence. J

Given two strings of equal length, the µOPPM problem can be schematically represented
according to the identified order restrictions. Figure 2 represents restrictions on the inde-
terminate string y=(2, 4|5, 3|5, 1|2) in accordance with the observed orders in x=(1,4,3,1).

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:7

y[0] y[1] y[2] y[3]

2 4

5

3

5

1

2

<

>

y[0] y[1] y[2] y[3]

2 14

5

3

25

Figure 2 Schematic representation of the pairwise ordering restrictions for text y=(2, 4|5, 3|5, 1|2)
and pattern x=(1,4,3,1). In the left side, all order verifications are represented, while in the right
side only the order conflicts are signaled (e.g. y[1]=4 cannot be selected together with y[2]=5).

The left side edges are placed in accordance with Lemma 4 and capture assessments on the
orders between pairs of characters. The right side edges capture incompatibilities detected
after the assessments, i.e. pairs of characters that cannot be selected simultaneously (for
instance, y[0]=2 and y[3]=1, or y[1]=4 and y[2]=5). For the given example, there are two
valid assignments, $y1=(2,4,3,2) and $y2=(2,5,4,2), that satisfy x[0]=x[3]<x[2]<x[1], thus y
op-matches x.

To verify whether there is an assignment that satisfies the identified ordering restrictions,
we propose the reduction of µOPPM problem to a Boolean satisfiability problem.

Given a set of Boolean variables, a formula in conjunctive normal form is a conjunction of
clauses, where each clause is a disjunction of literals, and a literal corresponds to a variable
or its negation. Let a 2CNF formula be a formula in the conjunctive normal form with at
most two literals per clause. Given a CNF formula, the satisfiability (SAT) problem is to
verify if there is an assigning of values to the Boolean variables such that the CNF formula
is satisfied.

I Theorem 5. The µOPPM problem over two strings of equal length, one being indeterminate,
can be reduced to a satisfiability problem with the following CNF formula:

φ =
m−1∧
i=0

(∨
$y[i]∈y[i]

zi,$y[i]

)

∧
m−1∧
i=0

(∧
$y[i]∈y[i]

∧
j∈Leq[i],$y[j]∈y[j]

(
¬zi,$y[i]∨¬zj,$y[j]∨$y[i] = $y[j]

)
∧

∧
$y[i]∈y[i]

∧
j∈Lmax[i]
$y[j]∈y[j]

(
¬zi,$y[i]∨¬zj,$y[j]∨$y[i] > $y[j]

)

∧
∧

$y[i]∈y[i]

∧
j∈Lmin[i]
$y[j]∈y[j]

(
¬zi,$y[i]∨¬zj,$y[j]∨$y[i] < $y[j]

))
(3)

Proof. Let us show that if x op-matches y then φ is satisfiable, and if x does not op-match
y then φ is not satisfiable. (⇒) When x ≈ y, there is an assignment of values to y, $y, that
satisfy the orderings of x. φ is satisfiable if there is at least one variable assigned to true
per clause ∨$y[i]∈y[i] zi,$y[i] given conflicts ¬zi,$y[i] ∨ ¬zj,$y[j]. As conflicts do not prevent
the existence of a valid assignment (by assumption), then ∃$y ∧i∈{0..m−1} zi,$y[i] and φ is
satisfiable. (⇐) When x does not op-match y, there is no assignment of values $y∈y that

CPM 2018

2:8 Order-Preserving Pattern Matching Indeterminate Strings

can satisfy the orders of x. Per formulation, the conflicts ¬zi,$y[i] ∨ ¬zj,$y[j] prevent the
satisfiability of one or more clauses ∨$y[i]∈y[i] zi,$y[i], leading to a non-satisfiable formula. J

If the established φ formula is satisfiable, there is a Boolean assignment to the variables
that specify an assignment of characters in y, $y, preserving the orders of x (as defined by
Leq, Lmax and Lmin). Otherwise, it is not possible to select an assignment $y op-matching x.
φ has at most r×m variables, {zi,σ | i ∈ {0..m-1}, σ ∈ Σ}. The Boolean value assigned to a
variable zi,σ simply defines that the associated character σ from y[i] can be either considered
(when true) or not (when false) to compose a valid assignment $y that op-matches the given
determinate string x. The reduced (3) formula is composed of two major types of clauses:
∨$y[i]∈y[i]zi,$y[i], and (¬zi,$y[i] ∨ ¬zj,$y[j]∨bool) where bool is either given by $y[i] = $y[j],
$y[i] < $y[j]or $y[i] > $y[j]. Clauses of the first type specify the need to select at least one
character per position in y to guarantee the presence of valid assignments. The remaining
clauses specify ordering constraints between characters. If an inequality, such as $y[i] > $y[j],
is assessed as true, the associated clause is removed. Otherwise, (¬zi,σ1 ∨ ¬zj,σ2) is derived,
meaning that these σ1 and σ2 characters should not be selected simultaneously since they
do not satisfy the orders defined by a given pattern. For instance, the pairs of characters
in orange from Figure 2 should not be simultaneously selected due to order conflicts. To
this end, (¬z0,2 ∨ ¬z3,1) and (¬z1,4 ∨ ¬z2,5) clauses need to be included to verify if y ≈ x.
Considering y=(2, 4|5, 4|5, 1|2) and x=(1,4,3,1), schematically represented in Figure 2, the
associated CNF formula is:

φ = z0,2 ∧ (z1,4 ∨ z1,5) ∧ (z2,4 ∨ z2,5) ∧ (z3,1 ∨ z3,2) ∧ (¬z0,2 ∨ ¬z3,1) ∧ (¬z1,4 ∨ ¬z2,5)

I Theorem 6. Given two strings of length m, one being indeterminate with r=2, the µOPPM
problem can be reduced to a 2SAT problem with a CNF formula with O(m) size.

Proof. Given Theorem 5 and the fact that the reduced CNF formula has at most two
literals per clause – φ is a composition of ∨$y[i]∈y[i]zi,$y[i] clauses with |y[i]| ∈ {1, 2} and
(¬zi,$y[i]∨¬zj,$y[j]∨bool) clauses – µOPPM with r=2 and one indeterminate string is reducible
to 2SAT. The reduced formula has at most 10m clauses with 2 literals each, being linear in
m:

[clauses that impose the selection of at least one character per position in y] Since y
has m positions, and each position is either determinate (unitary clause) or defines an
uncertainty between a pair of characters, there are m clauses and at most 2m literals;
[clauses that define the ordering restrictions between two variables] A position in the
indeterminate string y[i] needs to satisfy at most two order relations. Considering that i,
Leq[i], Lmax[i] and Lmin[i] specify uncertainties between pairs of characters, there are
up to 12 restrictions per position: 4 ordering restrictions between characters in y[i] and
y[Leq[i]], y[Lmax[i]] and y[Lmin[i]]. Whenever the order between two characters is not
satisfied, a clause is added per position, leading to at most 12m clauses. J

I Theorem 7. The µOPPM between determinate and indeterminate strings of equal length
can be solved in linear time when r=2.

Proof. Given the fact that a 2SAT problem can be solved in linear time [10]1, this proof
directly derives from Theorem 6 as it guarantees the soundness of reducing µOPPM (r=2)
to a 2SAT problem with a CNF formula with O(m) size. J

1 2SAT problems have linear time and space solutions on the size of the input formula. Consider for
instance the original proposal [10], the formula φ is modeled by a directed graph G=(V,E), with two
nodes per variable zi in φ (zi and ¬zi) and two directed edges for each clause zi ∨ zj (the equivalent

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:9

x[0] x0[1] x1[1] x[2]

2 1 3 3

<

>

Pattern 2 1 3 3
i 0 1 1 2
j 0 0 1 0

Leq[i|j] ∅ ∅ ∅ {1}
Ordered indexes (asc) 1 0 2 3
Lmax[i|j] ∅ ∅ {0} {0,1}
Ordered indexes (desc) 2 3 0 1
Lmin[i|j] ∅ {0} ∅ ∅

Figure 3 Order relationships of x=(2, 1|3, 3) and the corresponding Lmax and Lmin vectors.

As the size of the mapped CNF formula φ is O(m) and the a valid algorithm to verify
its satisfiability would require the construction of a graph with O(m) nodes and edges, the
required memory for the target µOPPM problem is Θ(m).

When moving from one to two indeterminate strings, previous contributions are insufficient
to answer the µOPPM problem. In this context, the Leq, Lmax and Lmin vectors need to be
redefined to be inferred from an indeterminate string:

I Definition 8.
Leqx[i|j]={k : k<i, ∃p $xj [i]=$xp[k]} (∅ if there is no eligible k), for i=0,...,m−1
Lmaxx[i|j]={k : k<i, ∃p $xj [i]>$xp[k]} (∅ if there is no eligible k), for i=0,...,m−1
Lminx[i|j]={k : k<i, ∃p $xj [i]<$xp[k]} (∅ if there is no eligible k), for i=0,...,m−1

Figure 3 schematically represents the order relationships of x=(2, 1|3, 3) and the associated
Leq, Lmax and Lmin vectors. In this scenario, x[2] needs to be verified not only against
x0[1] but also against x1[1] in case x0[1] is disregarded. Understandably, due to character
uncertainties, O(m2) ordering verifications are required (Def.8).

I Lemma 9. Given indeterminate strings x and y, let Aj=Leqx[t+1|j], Bj=Lmaxx[t+1|j]
and Cj=Lminx[t+1|j] (Def.8) be the orders associated with $xj [t+1]. If x[1..t] ≈ y[1..t] is
verified on a partial assignment of y characters, denoted by §y, then:

x[1..t+ 1] ≈ y[1..t+ 1]⇔∃j∈{0,1}∃$y[t+1]∈§y[t+1]∀a∈Aj ,b∈Bj ,c∈Cj

∃$y[a]∈§y[a],$y[b]∈§y[b],$y[c]∈§y[c]

(
$y[t+1] = $y[a] ∧ $y[t+1] > $y[b] ∧ $y[t+1] < $y[c]

)
Proof. (⇒) Similar to the proof of Lemma 4, yet A, B and C conditional to x[t+ 1] (Def.3)
are now given by Aj , Bj and Cj conditional to xj [t+ 1] (Def.8). If there is an assignment
to y[1..t + 1] in §y that preserves one of the possible orders in x[1..t + 1], then for any
a ∈ Aj , b ∈ Bj and c ∈ Cj : $y[t + 1]=$y[a], $y[t + 1]>$y[b] and $y[t + 1]<$y[c] (where
$y[t+ 1] ∈ §y[t+ 1], $y[a] ∈ §y[a], $y[b] ∈ §y[b], $y[c] ∈ §y[c]).

(⇐) We need to show that x[1..t+ 1] ≈ y[1..t+ 1]. Since x[1..t] ≈ y[1..t], it is sufficient
to prove that for i≤t: exists $x[i] ∈ §x[i], $x[t + 1] ∈ §x[t + 1], $y[i] ∈ §y[i], $y[t + 1] ∈

implicative forms ¬zi ⇒ zj and ¬zj ⇒ zi). Given G, the strongly connected components (SCCs) of G
can be discovered in O(|V |+ |E|). During the traversal if a variable and its complement belong to the
same SCC, then the procedure stops as φ is determined to be unsatisfiable. Given the fact that both
V=O(m) and E=O(m) by Lemma 6, this procedure is O(m) time and space.

CPM 2018

2:10 Order-Preserving Pattern Matching Indeterminate Strings

x[0] x0[1] x1[1] x[2]

y[0]=2 y[1]=0 y0[2]=3

y1[2]=4

y[1]=0

Figure 4 Conflicts when op-matching y=(2, 0, 3|4) against x=(2, 1|3, 3).

§y[t+ 1] such that $x[t+ 1]=$x[i]⇔ $y[t+ 1]=$y[i], $x[t+ 1]>$x[i]⇔ $y[t+ 1]>$y[i] and
$x[t+ 1]<$x[i]⇔ $y[t+ 1]<$y[i]. This results from Def.8, the order-isomorphism property
and Lemma 4. J

Figure 4 represents encountered restrictions when op-matching x=(2, 1|3, 3) against
y=(2, 0, 3|4). The right side edges capture the detected incompatibilities, i.e. pairs of
characters that cannot be selected simultaneously. For the given example, there are 2 valid
assignments – $y1=(2,0,3) and $y2=(2,0,4) – satisfying $x0[1]<$x0[0]<$x0[2], thus x ≈ y.

To verify whether there is an assignment that satisfies the identified ordering restrictions,
Theorem 10 extends the previously introduced SAT mapping given by (3).

I Theorem 10. Given Lmax and Lmin (Def.8), µOPPM problem over two indeterminate
strings of equal length can be reduced to a satisfiability problem with the following CNF
formula:

φ =
∧

x[i]∈x∧|x[i]|=1

wi,x0[i] ∧
∧

x[i]∈x∧|x[i]|>1

((∨
$x[i]∈x[i]

wi,$x[i]

)
∧
(∨

$x[i]∈x[i]

¬wi,$x[i]

))
(4.1)

∧
m−1∧
i=0

(∧
$x[i]∈x[i]

(∨
$y[i]∈y[i]

zi,$x[i],$y[i]

)
∧
(∨

$y[i]∈y[i]

¬zi,$x[i],$y[i]

))
(4.2)

∧
m−1∧
i=0

((∧
$x[i]∈x[i]

∧
$y[i]∈y[i]

(
¬zi,$x[i],$y[i]∨wi,$x[i]

))
(4.3)

∧
m−1∧
i=0

∧
$y[i]∈y[i],$x[i]∈x[i]

(
∧

j∈Leq[i]

∧
$y[j]∈y[j],$x[j]∈x[j]

(
¬zi,$x[i],$y[i]∨¬zj,$x[j],$y[j]∨$y[i] = $y[j]

)
∧

∧
j∈Lmax[i]

∧
$y[j]∈y[j]
$x[j]∈x[j]

(¬zi,$x[i],$y[i]∨¬zj,$x[j],$y[j]
∨$y[i]>$y[j]

)

∧
∧

j∈Lmin[i]

∧
$y[j]∈y[j]
$x[j]∈x[j]

(¬zi,$x[i],$y[i]∨¬zj,$x[j],$y[j]
∨$y[i]<$y[j]

))
(4.4)

Proof. If x ≈ y then φ is satisfiable, and if x does not op-match y then φ is not satisfiable.
(⇒) When x op-matches y, there is an assignment of values in x and y such that $x ≈ $y.

φ is satisfiable if there is one and only one variable wi,$x[i] per ith position (4.1). This occurs
iff one of the variables zi,$x[i],$y[i] is true for a given ith position in accordance with (4.2) and

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:11

(4.3). As conflicts (4.4) do not prevent the existence of a valid assignment (by assumption),
one or more variables zi,$x[i],$y[i] can be selected per position. φ can then be satisfied by
fixing a single variable zi,$x[i],$y[i] per ith position as true and the remaining variables as
false. Given (4.3) equivalences between wi,$x[i] and zi,$x[i],$y[i] variables, φ is consequently
satisfiable.

(⇐) When x does not op-match y, there is no assignment of values $x∈x and $y∈y
such that $x ≈ $y. In this context, the conflicts (4.4) can prevent the satisfiability of
clauses (4.2) or (4.1), thus leading to an unsat formula. Per formulation, in the absence
of an order-preserving match, conflicts will prevent the assignment of at least one variable
zi,$x[i],$y[i] on compatible (i, $x[i]) pairs, which are necessarily shown as conflicts on (4.1)
clauses as a consequence of the assignment constraints placed by (4.2) and (4.3) clauses. J

If the formula is satisfiable, there is a Boolean assignment to the variables such that
there is an assignment of characters in y, $y, and in x, $x, such that both strings op-
match. Otherwise, it is not possible to select assignments such that x ≈ y. Given r=2, the
established φ formula has at most 6m Boolean variables: a) at most 2m variables of the type
{wi,σ | i ∈{0..m-1}, σ ∈ Σ} corresponding to characters in x; and b) at most 4m variables
of the type {zi,σ1,σ2 | i ∈{0..m-1}, σ1, σ2 ∈ Σ} defining combinations of characters in the
ith position of x and y. Boolean values assigned to variables wi,σ are used to find a valid
assignment of characters in x. Boolean values assigned to variables zi,σ1,σ2 define whether
characters σ1 ∈ x[i] and σ2 ∈ y[i] belong to an op-match. The reduced formula is composed
of four major types of clauses:

(4.1) a single character per x position should be selected if exists $x such that $x ≈ y;
(4.2) a single character per indeterminate y position should be selected if there is a valid
assignment $y such that $x ≈ $y, where $x is given by assignments to (4.1) clauses;
(4.3) clauses that guarantee an association between x and y: zi,$x[i],$y[i] ⇒ wi,$x[i];
(4.4) clauses specify ordering constraints between pairs of characters σ1 ∈ y[i] and y[Leq[i]],
y[Lmax[i]] and y[Lmin[i]]. If the inequalities $y[i]=$y[j], $y[i]>$y[j] and $y[i]<$y[j] are
assessed as false, these leads to clauses of the form (¬zi,σ1 ∨ ¬zj,σ2), meaning that these
characters should not be selected simultaneously in the given positions (see Figure 4).

To instantiate the proposed mapping, consider x=(2, 1|3, 3) and y=(2, 0, 3|4), schematically
represented in Figure 3. The associated CNF formula is:

φ = w0,2 ∧ (w1,1 ∨ w1,3) ∧ (¬w1,1 ∨ ¬w1,3) ∧ w2,3 //(4.1) one valid assignment to x
∧ (z2,3,3 ∨ z2,3,4) ∧ (¬z2,3,3 ∨ ¬z2,3,4) //(4.2) assignment to indeterminate y positions
∧ (¬z0,2,2 ∨ w0,2) ∧ (¬z1,1,0 ∨ w1,1) ∧ (¬z1,3,0 ∨ w1,3) ∧ (¬z2,3,3 ∨ w2,3)
∧ (¬z2,3,4 ∨ w2,3) //(4.3) implications between x and y: zi,$x[i],$y[i] ⇒ wi,$x[i]

∧ (¬z0,0,2 ∨ ¬z1,3,0) ∧ (¬z1,3,0 ∨ ¬z2,3,3) ∧ (¬z1,3,0 ∨ ¬z2,3,4) //4.4 character conflicts

I Theorem 11. When r=2, the µOPPM problem for two indeterminate strings of equal
length is reducible to a 2-satisfiability problem over a CNF formula with O(m2) size.

Proof. The reduced formula (4) is in the two conjunctive normal form (2CNF). (4.1), (4.2)
and (4.3) clauses have at most two literals given r=2. (4.4) clauses contain inequalities
dynamically assigned to true or false during the reduction phase, producing clauses with at
most two literals. There are at most 2m clauses given by (4.1) as x has at most 2 characters
per position; and at most 4m clauses given by (4.2) (as well as 4m clauses given by (4.3))
resulting from the combination of possible characters from a position in x and y. Since there is
a maximum of O(m) orders per position, there can be at most O(m2) order conflicts between
characters and thus O(m2) clauses given by (4.4) of the form (¬zi,$x[i],$y[i]∨¬xj,$x[j],$y[j]). J

CPM 2018

2:12 Order-Preserving Pattern Matching Indeterminate Strings

I Theorem 12. µOPPM indeterminate strings of equal length is in O(m2) time when r=2.

Proof. Given Theorem 11 and the ability to solve 2SAT tasks linearly in the size of the CNF
formula [10], the proof of this theorem follows naturally. J

As linear time algorithms to solve 2SAT problems require linear space (see appendix)
and the size of the mapped satisfiability formula φ is O(m2) (Theorem 11), the memory
complexity of the µOPPM problems between indeterminate strings with r=2 and equal
length is O(m2).

4 Polynomial time µOPPM

I Lemma 13. Given a pattern string of length m and a text string of length n, one being
indeterminate, the µOPPM problem can be solved in O(nmr lg r) time. When both the pattern
and text are indeterminate with r=2, the µOPPM problem can be solved in O(nm2) time.

Proof. From Lemmas 7 and 12: verifying if two strings of length m op-match can be either
done in O(mr lg r) time (indetermination in one string) or O(m2) time (indetermination on
both strings and r=2). At most n−m+1 verifications need to be performed. J

Lemma 13 confirms that the µOPPM problem with one indeterminate strings or uncer-
tainties between characters (r=2) is in class P. This lemma further triggers the research
question “Are O(nmr) and O(nm2) tight bounds to solve the µOPPM?”, here left as an open
research question.

Irrespectively of the answer, the analysis of the average complexity is of complementary
relevance. State-of-the-art research on the exact OPPM problem shows that the average
performance of algorithms in O(nm) time can outperform linear algorithms [20, 17, 19].

Motivated by the evidence gathered by these works, we suggest the use of filtration
procedures to improve the average complexity of the proposed µOPPM algorithm while still
preserving its complexity bounds. A filtration procedure encodes the input pattern and text,
and relies on this encoding to efficiently find positions in the text with a high likelihood
to op-match a given pattern. Despite the diversity of string encodings, simplistic binary
encodings are considered to be the state-of-the-art in OPPM research [20, 17]. In accordance
with Chhabra et al. [20], a pattern p can be mapped into a binary string p′ expressing
increases (1), equalities (0) and decreases (0) between subsequent positions. By searching for
exact pattern matches of p′ in an analogously transformed text string t′, we guarantee that
the verification of whether p[0..m-1] and t[i..i+m-1] orders are preserved is only performed
when exact binary matches occur. Illustrating, given p=(3,1,2,4) and t=(2,4,3,5,7,1,4,8),
then p′=(1,0,1,1) and t′=(1,1,0,1,1,0,1,1,0), revealing two matches t′[1..4] and t′[4..7]: one
spurious match t[1..5] and one true match t[4..8].

When handling indeterminate strings the concept of increase, equality and decrease needs
to be redefined. Given an indeterminate string x, consider x′[i]=1 if max(x[i])<min(x[i+1]),
x′[i]=0 if min(x[i])≥max(x[i+ 1]), and x′[i]=∗ otherwise. Under this encoding, the pattern
matching problem is identical under the additional guard that a character in p′ always
matches a don’t care position, t′[i]=∗, and vice-versa. Illustrating, given p=(6,2|3,5) and
t=(3|4,5,6|8,6|7,3,5,4|6,7|8,4), then p′=(0,1) and t′=(11∗01∗10), leading to one true match
t[3..5] – e.g. $t[3..5]=(6,3,5) – and one spurious match t[5..7]. Exact pattern matching
algorithms, such as Knuth-Morris-Pratt and Boyer-Moore, can be adapted to consider don’t
care positions while preserving complexity bounds [40, 13].

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:13

The properties of the proposed encoding guarantee that the exact matches of p′ in t′

cannot skip any op-match of p in t. Thus, when combining the premises of Lemma 13 with
the previous observation, we guarantee that the computed µOPPM solution is sound.

The application of this simple filtration procedure prevents the recurring O(mr lg r) or
O(m2) verifications n−m+1 times. Instead, the complexity of the proposed method to
solve the µOPPM problem becomes O(dmr lg r + n) (when one string is indeterminate) or
O(dm2 + n) (when both strings are indeterminate and r=2) where d is the number of exact
matches (d� n). According to previous work on exact OPPM with filtration procedures
[20], SBNDM2 and SBNDM4 algorithms [28] (Boyer-Moore variants) were suggested to
match binary encodings. In the presence of small patterns, Fast Shift-Or (FSO) [30] can be
alternatively applied [20].

A given string text can be read and encoded incrementally from the standard input
as needed to perform µOPPM, thus requiring O(mr) space. When filtration procedures
are considered, the aforementioned algorithms for exact pattern matching require O(m)
space [20], thus µOPPM space requirements are bound by substring verifications (Section 3):
O(mr) space when one string is indeterminate and O(m2) when indetermination is considered
on both strings and r=2.

5 Concluding remark

This work addressed the relevant yet scarcely studied problem of finding order-preserving
pattern matches on indeterminate strings (µOPPM). We showed that the problem has a
polynomial solution when uncertainties are verified between two characters by reducing the
µOPPM problem to a 2-satisfiability problem. To this end, we first demonstrated that the
problem of matching two strings with equal length can be solved in linear time and space
when considering indetermination in one string and in quadratic time when considering
indetermination on both the pattern and text strings. Finally, we showed that the µOPPM
problem can be efficiently solved in polynomial time by combining the proposed verifications
with filtration procedures.

References
1 Amihood Amir, Yonatan Aumann, Piotr Indyk, Avivit Levy, and Ely Porat. Efficient com-

putations of l1 and l infinity rearrangement distances. Theor. Comput. Sci., 410(43):4382–
4390, 2009. doi:10.1016/j.tcs.2009.07.019.

2 Amihood Amir, Yonatan Aumann, Gad M. Landau, Moshe Lewenstein, and Noa Lewen-
stein. Pattern matching with swaps. J. Algorithms, 37(2):247–266, 2000. doi:10.1006/
jagm.2000.1120.

3 Amihood Amir, Yonatan Aumann, Moshe Lewenstein, and Ely Porat. Function matching.
SIAM Journal on Computing, 35(5):1007–1022, 2006.

4 Amihood Amir, Richard Cole, Ramesh Hariharan, Moshe Lewenstein, and Ely Porat. Over-
lap matching. Inf. Comput., 181(1):57–74, 2003. doi:10.1016/S0890-5401(02)00035-4.

5 Amihood Amir and Martin Farach. Efficient 2-dimensional approximate matching of half-
rectangular figures. Inf. Comput., 118(1):1–11, 1995. doi:10.1006/inco.1995.1047.

6 Amihood Amir, Martin Farach, and S. Muthukrishnan. Alphabet dependence in paramet-
erized matching. Inf. Process. Lett., 49(3):111–115, 1994. doi:10.1016/0020-0190(94)
90086-8.

7 Amihood Amir, Ohad Lipsky, Ely Porat, and Julia Umanski. Approximate matching in
the l1 metric. In CPM, volume 5, pages 91–103. Springer, 2005.

CPM 2018

http://dx.doi.org/10.1016/j.tcs.2009.07.019
http://dx.doi.org/10.1006/jagm.2000.1120
http://dx.doi.org/10.1006/jagm.2000.1120
http://dx.doi.org/10.1016/S0890-5401(02)00035-4
http://dx.doi.org/10.1006/inco.1995.1047
http://dx.doi.org/10.1016/0020-0190(94)90086-8
http://dx.doi.org/10.1016/0020-0190(94)90086-8

2:14 Order-Preserving Pattern Matching Indeterminate Strings

8 Amihood Amir and Igor Nor. Generalized function matching. J. Discrete Algorithms,
5(3):514–523, 2007. doi:10.1016/j.jda.2006.10.001.

9 Alberto Apostolico. General pattern matching. In Mikhail J. Atallah and Marina Blan-
ton, editors, Algorithms and Theory of Computation Handbook, pages 15–15. Chapman &
Hall/CRC, 2010.

10 Bengt Aspvall, Michael F Plass, and Robert Endre Tarjan. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Information Processing Letters,
8(3):121–123, 1979.

11 Brenda S Baker. A theory of parameterized pattern matching: algorithms and applications.
In ACM symposium on Theory of computing, pages 71–80. ACM, 1993.

12 Djamal Belazzougui, A. Pierrot, M. Raffinot, and Stéphane Vialette. Single and multiple
consecutive permutation motif search. In Int. Symposium on Algorithms and Computation,
pages 66–77. Springer, 2013.

13 Robert S Boyer and J Strother Moore. A fast string searching algorithm. Communications
of the ACM, 20(10):762–772, 1977.

14 Emilios Cambouropoulos, M. Crochemore, C. Iliopoulos, L. Mouchard, and Yoan Pinzon.
Algorithms for computing approximate repetitions in musical sequences. Int. Journal of
Computer Mathematics, 79(11):1135–1148, 2002.

15 Domenico Cantone, Salvatore Cristofaro, and Simone Faro. An efficient algorithm for δ-
approximate matching with α-bounded gaps in musical sequences. In IW on Experimental
and Efficient Algorithms, pages 428–439. Springer, 2005.

16 Domenico Cantone, Salvatore Cristofaro, and Simone Faro. On tuning the (δ, α)-sequential-
sampling algorithm for δ-approximate matching with alpha-bounded gaps in musical se-
quences. In ISMIR, pages 454–459, 2005.

17 Domenico Cantone, Simone Faro, and M Oguzhan Külekci. An efficient skip-search ap-
proach to the order-preserving pattern matching problem. In Stringology, pages 22–35,
2015.

18 Tamanna Chhabra, Simone Faro, M. Oguzhan Külekci, and Jorma Tarhio. Engineering
order-preserving pattern matching with SIMD parallelism. Softw., Pract. Exper., 47(5):731–
739, 2017. doi:10.1002/spe.2433.

19 Tamanna Chhabra, M Oguzhan Külekci, and Jorma Tarhio. Alternative algorithms for
order-preserving matching. In Stringology, pages 36–46, 2015.

20 Tamanna Chhabra and Jorma Tarhio. A filtration method for order-preserving matching.
Inf. Process. Lett., 116(2):71–74, 2016. doi:10.1016/j.ipl.2015.10.005.

21 Sukhyeun Cho, Joong Chae Na, Kunsoo Park, and Jeong Seop Sim. Fast order-preserving
pattern matching. In Combinatorial Optimization and Applications, pages 295–305.
Springer, 2013.

22 Sukhyeun Cho, Joong Chae Na, Kunsoo Park, and Jeong Seop Sim. A fast algorithm for
order-preserving pattern matching. Information Processing Letters, 115(2):397–402, 2015.

23 Peter Clifford, Raphaël Clifford, and Costas Iliopoulos. Faster algorithms for δ, γ-matching
and related problems. In Annual Symposium on Combinatorial Pattern Matching, pages
68–78. Springer, 2005.

24 Raphaël Clifford and C Iliopoulos. Approximate string matching for music analysis. Soft
Computing-A Fusion of Foundations, Methodologies and Applications, 8(9):597–603, 2004.

25 Richard Cole, C. Iliopoulos, T. Lecroq, W. Plandowski, and Wojciech Rytter. On special
families of morphisms related to δ-matching and don’t care symbols. Information Processing
Letters, 85(5):227–233, 2003.

26 Maxime Crochemore, Costas S Iliopoulos, Thierry Lecroq, Wojciech Plandowski, and Wo-
jciech Rytter. Three heuristics for delta-matching: delta-bm algorithms. In CPM, pages
178–189. Springer, 2002.

http://dx.doi.org/10.1016/j.jda.2006.10.001
http://dx.doi.org/10.1002/spe.2433
http://dx.doi.org/10.1016/j.ipl.2015.10.005

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:15

27 Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. Adaptive set intersections,
unions, and differences. In In Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA. Citeseer, 2000.

28 Branislav Ďurian, Jan Holub, Hannu Peltola, and Jorma Tarhio. Improving practical exact
string matching. Information Processing Letters, 110(4):148–152, 2010.

29 Michael L. Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11(1):29–35, 1975. doi:10.1016/0012-365X(75)90103-X.

30 Kimmo Fredriksson and Szymon Grabowski. Practical and optimal string matching. In
SPIRE, volume 3772, pages 376–387. Springer, 2005.

31 Kimmo Fredriksson and Szymon Grabowski. Efficient algorithms for pattern matching
with general gaps, character classes, and transposition invariance. Information Retrieval,
11(4):335–357, 2008.

32 Xianping Ge. Pattern matching in financial time series data. final project report for ICS,
278, 1998.

33 Rui Henriques. Learning from High-Dimensional Data using Local Descriptive Models. PhD
thesis, Instituto Superior Tecnico, Universidade de Lisboa, Lisboa, 2016.

34 Rui Henriques, Cláudia Antunes, and SaraC. Madeira. Methods for the efficient discovery
of large item-indexable sequential patterns. In New Frontiers in Mining Complex Patterns,
volume 8399 of LNCS, pages 100–116. Springer International Publishing, 2014.

35 Rui Henriques and Sara C Madeira. Bicspam: flexible biclustering using sequential patterns.
BMC bioinformatics, 15(1):130, 2014.

36 Rui Henriques and Ana Paiva. Seven principles to mine flexible behavior from physiological
signals for effective emotion recognition and description in affective interactions. In PhyCS,
pages 75–82, 2014.

37 Jan Holub, William F. Smyth, and Shu Wang. Fast pattern-matching on indeterminate
strings. J. Discrete Algorithms, 6(1):37–50, 2008. doi:10.1016/j.jda.2006.10.003.

38 Shuichi Kawashima and Minoru Kanehisa. Aaindex: amino acid index database. Nucleic
acids research, 28(1):374–374, 2000.

39 Jinil Kim, Peter Eades, Rudolf Fleischer, Seok-Hee Hong, Costas S Iliopoulos, Kunsoo
Park, Simon J Puglisi, and Takeshi Tokuyama. Order-preserving matching. Theoretical
Computer Science, 525:68–79, 2014.

40 Donald E Knuth, James H Morris, Jr, and Vaughan R Pratt. Fast pattern matching in
strings. SIAM journal on computing, 6(2):323–350, 1977.

41 Marcin Kubica, Tomasz Kulczyński, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. A linear time algorithm for consecutive permutation pattern matching. Information
Processing Letters, 113(12):430–433, 2013.

42 Inbok Lee, Raphaël Clifford, and Sung-Ryul Kim. Algorithms on extended (δ, γ)-matching.
Computational Science and Its Applications-ICCSA 2006, pages 1137–1142, 2006.

43 Inbok Lee, Juan Mendivelso, and Yoan J Pinzón. δγ–parameterized matching. In Interna-
tional Symposium on String Processing and Information Retrieval, pages 236–248. Springer,
2008.

44 Ohad Lipsky and Ely Porat. Approximate matching in the linfinity metric. Inf. Process.
Lett., 105(4):138–140, 2008. doi:10.1016/j.ipl.2007.08.012.

45 Juan Mendivelso, Inbok Lee, and Yoan J Pinzón. Approximate function matching under
δ-and γ-distances. In SPIRE, pages 348–359. Springer, 2012.

46 S Muthukrishnan. New results and open problems related to non-standard stringology. In
Combinatorial Pattern Matching, pages 298–317. Springer, 1995.

47 Ely Porat and Klim Efremenko. Approximating general metric distances between a pattern
and a text. In ACM-SIAM symposium on Discrete algorithms, pages 419–427. SIAM, 2008.

CPM 2018

http://dx.doi.org/10.1016/0012-365X(75)90103-X
http://dx.doi.org/10.1016/j.jda.2006.10.003
http://dx.doi.org/10.1016/j.ipl.2007.08.012

	Introduction
	Background
	The Problem
	Related work

	Polynomial time muOPPM for equal length pattern and text
	O(mr lg r) time muOPPM when one string is indeterminate
	O(m^2) time muOPPM (r=2) with indeterminate pattern and text

	Polynomial time muOPPM
	Concluding remark

