5,931 research outputs found

    Template Generation - A Graph Profiling Algorithm

    Get PDF
    The availability of high-level design entry tooling is crucial for the viability of any reconfigurable SoC architecture. This paper presents a template generation algorithm. The objective of template generation step is to extract functional equivalent structures, i.e. templates, from a control data flow graph. By profiling the graph, the algorithm generates all the possible templates and the corresponding matches. Using unique serial numbers and circle numbers, the algorithm can find all distinct templates with multiple outputs. A new type of graph (hydragraph) that can cope with multiple outputs is introduced. The generated templates pepresented by the hydragraph are not limited in shapes, i.e., we can find templates with multiple outputs or multiple sinks

    Hardware acceleration architectures for MPEG-Based mobile video platforms: a brief overview

    Get PDF
    This paper presents a brief overview of past and current hardware acceleration (HwA) approaches that have been proposed for the most computationally intensive compression tools of the MPEG-4 standard. These approaches are classified based on their historical evolution and architectural approach. An analysis of both evolutionary and functional classifications is carried out in order to speculate on the possible trends of the HwA architectures to be employed in mobile video platforms

    Subdivision surface fitting to a dense mesh using ridges and umbilics

    Get PDF
    Fitting a sparse surface to approximate vast dense data is of interest for many applications: reverse engineering, recognition and compression, etc. The present work provides an approach to fit a Loop subdivision surface to a dense triangular mesh of arbitrary topology, whilst preserving and aligning the original features. The natural ridge-joined connectivity of umbilics and ridge-crossings is used as the connectivity of the control mesh for subdivision, so that the edges follow salient features on the surface. Furthermore, the chosen features and connectivity characterise the overall shape of the original mesh, since ridges capture extreme principal curvatures and ridges start and end at umbilics. A metric of Hausdorff distance including curvature vectors is proposed and implemented in a distance transform algorithm to construct the connectivity. Ridge-colour matching is introduced as a criterion for edge flipping to improve feature alignment. Several examples are provided to demonstrate the feature-preserving capability of the proposed approach

    On Regularity and Integrated DFM Metrics

    Get PDF
    Transistor geometries are well into the nanometer regime, keeping with Moore's Law. With this scaling in geometry, problems not significant in the larger geometries have come to the fore. These problems, collectively termed variability, stem from second-order effects due to the small geometries themselves and engineering limitations in creating the small geometries. The engineering obstacles have a few solutions which are yet to be widely adopted due to cost limitations in deploying them. Addressing and mitigating variability due to second-order effects comes largely under the purview of device engineers and to a smaller extent, design practices. Passive layout measures that ease these manufacturing limitations by regularizing the different layout pitches have been explored in the past. However, the question of the best design practice to combat systematic variations is still open. In this work we explore considerations for the regular layout of the exclusive-OR gate, the half-adder and full-adder cells implemented with varying degrees of regularity. Tradeoffs like complete interconnect unidirectionality, and the inevitable introduction of vias are qualitatively analyzed and some factors affecting the analysis are presented. Finally, results from the Calibre Critical Feature Analysis (CFA) of the cells are used to evaluate the qualitative analysis

    FPGA Implementation of Convolutional Neural Networks with Fixed-Point Calculations

    Full text link
    Neural network-based methods for image processing are becoming widely used in practical applications. Modern neural networks are computationally expensive and require specialized hardware, such as graphics processing units. Since such hardware is not always available in real life applications, there is a compelling need for the design of neural networks for mobile devices. Mobile neural networks typically have reduced number of parameters and require a relatively small number of arithmetic operations. However, they usually still are executed at the software level and use floating-point calculations. The use of mobile networks without further optimization may not provide sufficient performance when high processing speed is required, for example, in real-time video processing (30 frames per second). In this study, we suggest optimizations to speed up computations in order to efficiently use already trained neural networks on a mobile device. Specifically, we propose an approach for speeding up neural networks by moving computation from software to hardware and by using fixed-point calculations instead of floating-point. We propose a number of methods for neural network architecture design to improve the performance with fixed-point calculations. We also show an example of how existing datasets can be modified and adapted for the recognition task in hand. Finally, we present the design and the implementation of a floating-point gate array-based device to solve the practical problem of real-time handwritten digit classification from mobile camera video feed

    Contract Theory.

    Get PDF

    Image segmentation evaluation using an integrated framework

    Get PDF
    In this paper we present a general framework we have developed for running and evaluating automatic image and video segmentation algorithms. This framework was designed to allow effortless integration of existing and forthcoming image segmentation algorithms, and allows researchers to focus more on the development and evaluation of segmentation methods, relying on the framework for encoding/decoding and visualization. We then utilize this framework to automatically evaluate four distinct segmentation algorithms, and present and discuss the results and statistical findings of the experiment
    • 

    corecore