3,954 research outputs found

    OCReP: An Optimally Conditioned Regularization for Pseudoinversion Based Neural Training

    Full text link
    In this paper we consider the training of single hidden layer neural networks by pseudoinversion, which, in spite of its popularity, is sometimes affected by numerical instability issues. Regularization is known to be effective in such cases, so that we introduce, in the framework of Tikhonov regularization, a matricial reformulation of the problem which allows us to use the condition number as a diagnostic tool for identification of instability. By imposing well-conditioning requirements on the relevant matrices, our theoretical analysis allows the identification of an optimal value for the regularization parameter from the standpoint of stability. We compare with the value derived by cross-validation for overfitting control and optimisation of the generalization performance. We test our method for both regression and classification tasks. The proposed method is quite effective in terms of predictivity, often with some improvement on performance with respect to the reference cases considered. This approach, due to analytical determination of the regularization parameter, dramatically reduces the computational load required by many other techniques.Comment: Published on Neural Network

    Algebraic shortcuts for leave-one-out cross-validation in supervised network inference

    Get PDF
    Supervised machine learning techniques have traditionally been very successful at reconstructing biological networks, such as protein-ligand interaction, protein-protein interaction and gene regulatory networks. Many supervised techniques for network prediction use linear models on a possibly nonlinear pairwise feature representation of edges. Recently, much emphasis has been placed on the correct evaluation of such supervised models. It is vital to distinguish between using a model to either predict new interactions in a given network or to predict interactions for a new vertex not present in the original network. This distinction matters because (i) the performance might dramatically differ between the prediction settings and (ii) tuning the model hyperparameters to obtain the best possible model depends on the setting of interest. Specific cross-validation schemes need to be used to assess the performance in such different prediction settings. In this work we discuss a state-of-the-art kernel-based network inference technique called two-step kernel ridge regression. We show that this regression model can be trained efficiently, with a time complexity scaling with the number of vertices rather than the number of edges. Furthermore, this framework leads to a series of cross-validation shortcuts that allow one to rapidly estimate the model performance for any relevant network prediction setting. This allows computational biologists to fully assess the capabilities of their models

    New kernel functions and learning methods for text and data mining

    Get PDF
    Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.Siirretty Doriast

    lassopack: Model selection and prediction with regularized regression in Stata

    Get PDF
    This article introduces lassopack, a suite of programs for regularized regression in Stata. lassopack implements lasso, square-root lasso, elastic net, ridge regression, adaptive lasso and post-estimation OLS. The methods are suitable for the high-dimensional setting where the number of predictors pp may be large and possibly greater than the number of observations, nn. We offer three different approaches for selecting the penalization (`tuning') parameters: information criteria (implemented in lasso2), KK-fold cross-validation and hh-step ahead rolling cross-validation for cross-section, panel and time-series data (cvlasso), and theory-driven (`rigorous') penalization for the lasso and square-root lasso for cross-section and panel data (rlasso). We discuss the theoretical framework and practical considerations for each approach. We also present Monte Carlo results to compare the performance of the penalization approaches.Comment: 52 pages, 6 figures, 6 tables; submitted to Stata Journal; for more information see https://statalasso.github.io

    Sparse multinomial kernel discriminant analysis (sMKDA)

    No full text
    Dimensionality reduction via canonical variate analysis (CVA) is important for pattern recognition and has been extended variously to permit more flexibility, e.g. by "kernelizing" the formulation. This can lead to over-fitting, usually ameliorated by regularization. Here, a method for sparse, multinomial kernel discriminant analysis (sMKDA) is proposed, using a sparse basis to control complexity. It is based on the connection between CVA and least-squares, and uses forward selection via orthogonal least-squares to approximate a basis, generalizing a similar approach for binomial problems. Classification can be performed directly via minimum Mahalanobis distance in the canonical variates. sMKDA achieves state-of-the-art performance in terms of accuracy and sparseness on 11 benchmark datasets
    corecore