269,729 research outputs found

    Towards the AlexNet Moment for Homomorphic Encryption: HCNN, theFirst Homomorphic CNN on Encrypted Data with GPUs

    Get PDF
    Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this paper, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved a sufficient security level (> 80 bit) and reasonable classification accuracy (99%) and (77.55%) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (> 8,000) without extra overhead

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure

    Edge Computing in the Dark: Leveraging Contextual-Combinatorial Bandit and Coded Computing

    Full text link
    With recent advancements in edge computing capabilities, there has been a significant increase in utilizing the edge cloud for event-driven and time-sensitive computations. However, large-scale edge computing networks can suffer substantially from unpredictable and unreliable computing resources which can result in high variability of service quality. Thus, it is crucial to design efficient task scheduling policies that guarantee quality of service and the timeliness of computation queries. In this paper, we study the problem of computation offloading over unknown edge cloud networks with a sequence of timely computation jobs. Motivated by the MapReduce computation paradigm, we assume each computation job can be partitioned to smaller Map functions that are processed at the edge, and the Reduce function is computed at the user after the Map results are collected from the edge nodes. We model the service quality (success probability of returning result back to the user within deadline) of each edge device as function of context (collection of factors that affect edge devices). The user decides the computations to offload to each device with the goal of receiving a recoverable set of computation results in the given deadline. Our goal is to design an efficient edge computing policy in the dark without the knowledge of the context or computation capabilities of each device. By leveraging the \emph{coded computing} framework in order to tackle failures or stragglers in computation, we formulate this problem using contextual-combinatorial multi-armed bandits (CC-MAB), and aim to maximize the cumulative expected reward. We propose an online learning policy called \emph{online coded edge computing policy}, which provably achieves asymptotically-optimal performance in terms of regret loss compared with the optimal offline policy for the proposed CC-MAB problem

    Guaranteed bandwidth implementation of message passing interface on workstation clusters

    Get PDF
    Due to their wide availability, networks of workstations (NOW) are an attractive platform for parallel processing. Parallel programming environments such as Parallel Virtual Machine (PVM), and Message Passing Interface (MPI) offer the user a convenient way to express parallel computing and communication for a network of workstations. Currently, a number of MPI implementations are available that offer low (average ) latency and high bandwidth environments to users by utilizing an efficient MPI library specification and high speed networks. In addition to high bandwidth and low average latency requirements, mission critical distributed applications, audio/video communications require a completely different type of service, guaranteed bandwidth and worst case delays (worst case latency) to be guaranteed by underlying protocol. The hypothesis presented in this paper is that it is possible to provide an application a low level reliable transport protocol with performance and guaranteed bandwidth as close to the hardware on which it is executing. The hypothesis is proven by designing and implementing a reliable high performance message passing protocol interface which also provides the guaranteed bandwidth to MPI and to mission critical distributed MPI applications. This protocol interface works with the Fiber Distributed Data Interface (FDDI) driver which has been designed and implemented for Performance Technology Inc. commercial high performance FDDI product, the Station Management Software 7.3, and the ADI / MPICH (Argonne National Laboratory and Mississippi State University\u27s free MPI implementation)

    Domain Computing: The Next Generation of Computing

    Get PDF
    Computers are indispensable in our daily lives. The first generation of computing started the era of human automation computing. These machine’s computational resources, however, were completely centralized in local machines. With the appearance of networks, the second generation of computing significantly improved data availability and portability so that computing resources could be efficiently shared among the networks. The service-oriented third generation of computing provided functionality by breaking down applications into services, on-demand computing through utility and cloud infrastructures, as well as ubiquitous accesses from wide-spread geographical networks. Services as primary computing resources are far spread from lo- cal to worldwide. These services loosely couple applications and servers, which allows services to scale up easily with higher availability. The complexity of locating, utilizing and optimizing computational resources becomes even more challenging as these resources become more available, fault-tolerant, scalable, better per- forming, and spatially distributed. The critical question becomes how do applications dynamically utilize and optimize unique/duplicate/competitive resources at runtime in the most efficient and effective way without code changes, as well as providing high available, scalable, secured and easy development services. Domain computing proposes a new way to manage computational resources and applications. Domain computing dy- namically manages resources within logic entities, domains, and without being bound to physical machines so that application functionality can be extended at runtime. Moreover, domain computing introduces domains as a replacement of a traditional computer in order to run applications and link different computational resources that are distributed over networks into domains so that a user can greatly improve and optimize the resource utilization at a global level. By negotiating with different layers, domain computing dynamically links different resources, shares resources and cooperates with domains at runtime so applications can more quickly adapt to dynamically changing environments and gain better performance. Also, domain computing presents a new way to develop applications which are resource stateless based. In this work, a prototype sys- tem was built and the performance of its various aspects has been examined, including network throughput, response time, variance, resource publishing and subscription, and secured communications

    An optimal scheduling method in iot-fog-cloud network using combination of aquila optimizer and african vultures optimization

    Get PDF
    Today, fog and cloud computing environments can be used to further develop the Internet of Things (IoT). In such environments, task scheduling is very efficient for executing user requests, and the optimal scheduling of IoT task requests increases the productivity of the IoT-fog-cloud system. In this paper, a hybrid meta-heuristic (MH) algorithm is developed to schedule the IoT requests in IoT-fog-cloud networks using the Aquila Optimizer (AO) and African Vultures Optimization Algorithm (AVOA) called AO_AVOA. In AO_AVOA, the exploration phase of AVOA is improved by using AO operators to obtain the best solution during the process of finding the optimal scheduling solution. A comparison between AO_AVOA and methods of AVOA, AO, Firefly Algorithm (FA), particle swarm optimization (PSO), and Harris Hawks Optimization (HHO) according to performance metrics such as makespan and throughput shows the high ability of AO_AVOA to solve the scheduling problem in IoT-fog-cloud networks. © 2023 by the authors

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi
    corecore