
Citation: Liu, Q.; Kosarirad, H.;

Meisami, S.; Alnowibet, K.A.;

Hoshyar, A.N. An Optimal

Scheduling Method in IoT-Fog-Cloud

Network Using Combination of

Aquila Optimizer and African

Vultures Optimization. Processes 2023,

11, 1162. https://doi.org/10.3390/

pr11041162

Academic Editor: Olympia Roeva

Received: 19 February 2023

Revised: 25 March 2023

Accepted: 4 April 2023

Published: 10 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

An Optimal Scheduling Method in IoT-Fog-Cloud Network
Using Combination of Aquila Optimizer and African
Vultures Optimization
Qing Liu 1, Houman Kosarirad 2, Sajad Meisami 3, Khalid A. Alnowibet 4 and Azadeh Noori Hoshyar 5,*

1 School of Artificial Intelligence, Chongqing Creation Vocational College, Yongchuan,
Chongqing 402160, China

2 Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, 122 NH,
Lincoln, NE 68588, USA

3 Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA
4 Statistics and Operations Research Department, College of Science, King Saud University,

Riyadh 11451, Saudi Arabia
5 Institute of Innovation, Science and Sustainability, Federation University Australia,

Brisbane, QLD 4000, Australia
* Correspondence: a.noorihoshyar@federation.edu.au

Abstract: Today, fog and cloud computing environments can be used to further develop the Internet
of Things (IoT). In such environments, task scheduling is very efficient for executing user requests,
and the optimal scheduling of IoT task requests increases the productivity of the IoT-fog-cloud system.
In this paper, a hybrid meta-heuristic (MH) algorithm is developed to schedule the IoT requests in IoT-
fog-cloud networks using the Aquila Optimizer (AO) and African Vultures Optimization Algorithm
(AVOA) called AO_AVOA. In AO_AVOA, the exploration phase of AVOA is improved by using AO
operators to obtain the best solution during the process of finding the optimal scheduling solution. A
comparison between AO_AVOA and methods of AVOA, AO, Firefly Algorithm (FA), particle swarm
optimization (PSO), and Harris Hawks Optimization (HHO) according to performance metrics such
as makespan and throughput shows the high ability of AO_AVOA to solve the scheduling problem
in IoT-fog-cloud networks.

Keywords: Aquila Optimizer; African Vultures Optimization Algorithm; task scheduling; fog
computing; cloud computing; Internet of Things

1. Introduction

The Internet of Things (IoT) occupies a special place in today’s world as well as
in the world of information technology [1]. IoT devices including laptops, tablets, and
smartphones have their functions expanded using other smart devices [2]. IoT devices
generate a significant amount of information through their respective sensors. This collected
information requires different resources for processing and storage so that final decisions
can be made based on the result of the processing to achieve the goals and desires of the
user [3]. Cloud computing is an efficient computing environment to meet the needs of
different users around the world, and the information of IoT devices can be processed and
stored in the cloud. The cloud environment provides public access to resources for users [4].
Fog computing is a developed environment of cloud computing that has significantly fewer
computing resources than the cloud environment, is geographically closer to users, and
has high speed [5]. Therefore, fog computing can provide less traffic and less delay in
the IoT-fog-cloud network than cloud computing [6]. The three-layer architecture of the
IoT-fog-cloud network is shown in Figure 1.

The highest layer includes servers in the cloud environment that can store and process
significant amounts of user data. The middle layer consists of fog nodes and the edge of

Processes 2023, 11, 1162. https://doi.org/10.3390/pr11041162 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11041162
https://doi.org/10.3390/pr11041162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-5760-0216
https://doi.org/10.3390/pr11041162
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11041162?type=check_update&version=2

Processes 2023, 11, 1162 2 of 18

the network and includes mini-servers and smart gateways. The lower layer, which is the
edge of the IoT-fog-cloud network, includes IoT devices and end systems such as laptops,
smartphones, cars, personal computer machines, sensors, etc. [6–8]. Task scheduling is a
practical resource management approach in cloud and fog computing to allocate a set of
tasks requested by IoT to the most appropriate resources in the cloud and fog [9].

Processes 2023, 11, x FOR PEER REVIEW 2 of 19

and less delay in the IoT-fog-cloud network than cloud computing [6]. The three-layer
architecture of the IoT-fog-cloud network is shown in Figure 1.

Figure 1. The IoT-fog-cloud network structure.

The highest layer includes servers in the cloud environment that can store and pro-
cess significant amounts of user data. The middle layer consists of fog nodes and the edge
of the network and includes mini-servers and smart gateways. The lower layer, which is
the edge of the IoT-fog-cloud network, includes IoT devices and end systems such as lap-
tops, smartphones, cars, personal computer machines, sensors, etc. [6–8]. Task scheduling
is a practical resource management approach in cloud and fog computing to allocate a set
of tasks requested by IoT to the most appropriate resources in the cloud and fog [9].

In [10], a hidden Markov model (HMM) is used to predict the availability of fog
sources. Additionally, the DO-HHO hybrid algorithm (discrete opposition-based Harris
hawk optimization (HHO)) has been used to schedule IoT tasks. In [11], a scalable algo-
rithm is proposed to schedule time-sensitive tasks. In [12], the delay of the processing and
communication tasks of IoT devices that are distributed in a cloud and fog network is
investigated based on the two criteria of delay and consumed energy. In [13], a blockchain-
based protocol has been proposed for the development of e-health programs, in which the
Proof of Work (PoW) method is not used. In their method, the cost of the network, i.e.,
bandwidth and processor usage, is reduced.

The task scheduling in fog and cloud computing environments is considered as an
NP-hard problem [14]. For this reason, different task scheduling methods that have been
adopted using artificial intelligence algorithms have been proposed in the relevant work
section. Recently, meta-heuristic (MH) algorithms such as particle swarm optimization
(PSO) [15], Whale Optimization Algorithm (WOA) [16], Moth Flame Optimization (MFO)
[17], Artificial Bee Colony (ABC) [18], and Harris hawks optimizer (HHO) [19] have been
used to address said problems.

Optimization algorithms are very useful for solving problems in the fields of edge,
fog, cloud, and IoT [20–26]. In this paper, the combination of two algorithms, Aquila Op-
timizer and African Vultures, is used to solve the task scheduling problem. That is, the
combination of the ExploRation Phase (ERF) of Aquila with the ExploiTation Phase (ETP)
of African Vultures. The innovation of this paper relies on the combination of two algo-
rithms, Aquila Optimizer and African Vultures. The motivation of this paper is the com-
bination of these two algorithms. We have also investigated two algorithms, Aquila

Figure 1. The IoT-fog-cloud network structure.

In [10], a hidden Markov model (HMM) is used to predict the availability of fog
sources. Additionally, the DO-HHO hybrid algorithm (discrete opposition-based Harris
hawk optimization (HHO)) has been used to schedule IoT tasks. In [11], a scalable algorithm
is proposed to schedule time-sensitive tasks. In [12], the delay of the processing and
communication tasks of IoT devices that are distributed in a cloud and fog network is
investigated based on the two criteria of delay and consumed energy. In [13], a blockchain-
based protocol has been proposed for the development of e-health programs, in which the
Proof of Work (PoW) method is not used. In their method, the cost of the network, i.e.,
bandwidth and processor usage, is reduced.

The task scheduling in fog and cloud computing environments is considered as
an NP-hard problem [14]. For this reason, different task scheduling methods that have
been adopted using artificial intelligence algorithms have been proposed in the relevant
work section. Recently, meta-heuristic (MH) algorithms such as particle swarm optimiza-
tion (PSO) [15], Whale Optimization Algorithm (WOA) [16], Moth Flame Optimization
(MFO) [17], Artificial Bee Colony (ABC) [18], and Harris hawks optimizer (HHO) [19] have
been used to address said problems.

Optimization algorithms are very useful for solving problems in the fields of edge, fog,
cloud, and IoT [20–26]. In this paper, the combination of two algorithms, Aquila Optimizer
and African Vultures, is used to solve the task scheduling problem. That is, the combination
of the ExploRation Phase (ERF) of Aquila with the ExploiTation Phase (ETP) of African
Vultures. The innovation of this paper relies on the combination of two algorithms, Aquila
Optimizer and African Vultures. The motivation of this paper is the combination of these
two algorithms. We have also investigated two algorithms, Aquila Optimizer (AO) and
African Vultures Optimization (AVO), separately to solve the task scheduling problem. In
the comparison section, the AO_AVOA algorithm is compared with AO, AVOA, Firefly
Algorithm (FA), particle swarm optimization (PSO), and Harris hawks optimization (HHO)
algorithms and it is superior to the corresponding algorithms. The purpose of using this
combination is to solve the task scheduling problem in the IoT-fog-cloud network and
reduce the task makespan time, so that tasks are completed in the shortest possible time,

Processes 2023, 11, 1162 3 of 18

and so that the final solution of the problem is obtained by minimizing the fitness function.
In this paper, makespan time is used as the fitness function. Experiments are performed
on two datasets. The proposed method is compared with some other algorithms, and the
proposed method performs better than the compared algorithms.

The structure of this paper is as follows: Section 2 introduces the related works,
Section 3 introduces the system’s model and problem formulation, Section 4 includes
prerequisites, Section 5 introduces the proposed method, Section 6 includes evaluations
and experimental results, and Section 7 includes the conclusion.

2. Related Works

In this section, a number of existing works in the field of task/workflow scheduling are
briefly described. Nguyen et al. [27] have proposed an evolutionary algorithm to achieve an
optimal scheduling in order to create an optimal balance between task execution time and
task arrangements in the IoT-fog-cloud network. Boviri et al. [28] have proposed a method
in a multiprocessor environment using the improved Ant Colony Algorithm (IACO) in
order to optimize the sequence of tasks.

Tong et al. [29] have proposed a hybrid algorithm using a neural network and Q-
learning algorithm, in order to address the scheduling of IoT requests in the cloud envi-
ronment. Yang et al. [30] proposed a multi-objective evolutionary algorithm to solve the
task scheduling problem in the fog environment in order to reduce the time and optimally
allocate resources to the relevant tasks. Mtshali et al. [31] proposed a method in the fog
environment using the visualization method to build a suitable algorithm in order to reduce
energy consumption and reduce delay.

Qobaei Qobaei-Arani et al. [32] proposed a method in the fog environment using
the MFO algorithm in order to increase the quality of services (QoSs) and reduce the
performance time of the total tasks. Abualigah et al. [33] proposed a method in the
cloud environment using a gray wolf optimizer in order to find the time cost and optimal
allocation of resources to the relevant tasks. Zeng et al. [34] proposed a method in the
fog environment to support embedded systems in order to reduce the execution time of
tasks to keep users active. The authors of [35] proposed a task scheduling method using
the Genetic Algorithm (GA) in order to allocate resources to tasks, taking into account
customer needs and resource constraints. The authors’ objective was to reduce preparation
time and increase customer satisfaction.

Rjoub et al. [36] proposed a new solution based on using four deep reinforcement
learning (DRL)-based methods to optimize the process of task scheduling in cloud. The
authors’ objective was to reduce execution time and maximize resource utilization. Their
proposed DRL methods are Deep Q Networks (DQN), reinforcement learning (RL), recur-
rent neural network long short-term memory (RNNLSTM), and DRL combined with LSTM.
Jacob [37] proposed an algorithm for minimizing makespan time using the Bat Algorithm
(BA). Raghavan et al. [38] proposed a method using the BA in cloud computing, aiming to
reduce the whole cost.

In [39], DRL is used for task scheduling in heterogeneous computing, which implies
reducing the task completion time. In [40], in order to reduce energy consumption in
fog-cloud, a convolutional neural networks (CNNs) algorithm is used for task scheduling
to minimize the cost.

In the IoT-fog network, a task scheduling method was proposed to allocate resources
to IoT tasks, which optimally selects the best resources to execute the tasks [41,42]. Ranu-
mayee et al. [43] used the evolutionary learning method to optimize energy, makespan,
and cost and schedule tasks in the IoT-fog-cloud network. Mokni et al. [44] have used
the multi-objective fuzzy method to offload workflow in the fog-cloud network. Ranu-
mayee et al. [45] have used the WOA in order to allocate optimal resources and schedule
efficient tasks in the IoT-fog-cloud network. Panda et al. [46] presented a task scheduling
method in the cloud environment using pair. Shukla et al. [47] proposed a Fuzzy-AHP-
TOPSIS-Based Task Offloading method for scheduling workflows in the fog-cloud system.

Processes 2023, 11, 1162 4 of 18

Stewart et al. [48] proposed a bi-objective integer linear programming method in the cloud
in order to optimize energy consumption and makespan time.

A task scheduling method based on software-defined networking (SDN) is proposed
in the cloud computing environment in order to schedule the tasks of IoT devices using
the combination of WOA and Aquila Optimizer (AO), which minimizes the MST [49]. A
workflow scheduling method has been proposed in the cloud computing environment
using a combination of MFO and the Salp Swarm Algorithm (SSA), which are selected by
considering several objectives of energy consumption, makespan time, and throughput
time of the most optimal virtual machines (VMs) [50]. Task offloading methods in fog
and cloud environments have also been proposed by researchers using Dynamic Service
Caching [51] and D2D-Associated Mobile Edge Computing for IoT tasks [52].

The algorithms and methods mentioned above, which have been used to optimize the
task/workflow scheduling problem in fog and cloud environments, could not sufficiently
select the most optimal resources for the execution of tasks. The WOA, MFO, GA, and ACO
algorithms suffer from the weakness they have in each of the exploration and exploitation
phases and cannot obtain the most optimal solution.

The African Vultures Optimization Algorithm (AVOA) [53] is a meta-heuristic (MH)
algorithm inspired by nature. In AVOA, the ability to ERP is weaker than the ability to ETP
it during the process of searching for solutions. This problem reduces the quality of the
final output in AVOA. To solve this problem, in this paper, the high ERP ability of AO [54]
is combined with the high ETP ability of AVOA. Therefore, in this paper, an intelligent
task scheduling method for IoT requests, based on the combination of AO and AVOA
in the IoT-fog-cloud computing environment, is proposed, which is called AO_AVOA.
Therefore, the advantages of the power of AO ERP and AVOA ETP are combined to obtain
the best scheduling method that is stronger than AO and AVOA, which is used in the ETP
of one of the AO or AVOA methods. The main contribution of this paper is to present an
intelligent algorithm based on the integration of AO and AVOA to improve IoT services in
an IoT-fog-cloud computing environment using makespan time minimization.

3. System Model and Problem Formulation

This section explains the system model and formulation of the task scheduling problem
in this paper.

3.1. System Model

In this paper, it is assumed that the used architecture consists of three layers of fog,
cloud, and IoT devices (Figure 1). IoT devices may have requests to send as a set of tasks to
higher layers of fog and cloud for processing and storage. Tasks that are time-sensitive are
stored and processed in the nodes close to the devices, i.e., the fog environment, to reduce
the delay [55].

Additionally, compute-intensive tasks are sent to cloud servers because cloud servers
provide higher computing and storage capabilities than fog nodes for the corresponding
tasks. According to the characteristics of the tasks of IoT devices as well as the capabilities
of the resources available in the fog and cloud, the task scheduler schedules the tasks by
mapping the corresponding tasks on the corresponding computing nodes.

3.2. Problem Formulation

It is assumed that the n1 independent task is T = {T1, T2, T3, . . . , Tn1} from the side
of the IoT devices to be executed, which must be sent to the corresponding resources
to be processed in the corresponding fog-cloud computing environment. Each task has
characteristics such as task length (in million instructions), memory requirements, deadline,
and size of input and output files.

Additionally, it is assumed that the fog-cloud system consists of n2 computing nodes
as Node = {node1, node2, node3, . . . , noden2}, which includes fog and cloud nodes.
Each node includes characteristics such as CPU processing rate (in terms of millions of

Processes 2023, 11, 1162 5 of 18

instructions per second (MIPS)), memory size, storage capacity, and network bandwidth.
Therefore, for n1 tasks and n2 computing nodes, the expected computation time (ECT) for
task requests on nodes is represented by using the ECT matrix, which is of size n1 × n2.
The task scheduler uses the ECT matrix to make task scheduling decisions in the fog-cloud
environment. The ecti,j indicates the expected execution time of the i-th task on the j-th
computing node ecti,j as

ecti,j =
Task_lengthi

node.Powj
(1)

where Task_lengthi is the length of the i-th task, and node.Powj is the processing speed
of the j-th node. In the task scheduling problem, the main objective is to find the ideal
schedule in the fog-cloud system that reduces the task completion time or makespan time.
In this case, it can be guaranteed that there will be no task that requires a significant amount
of time to execute and complete it [6]. The amount of makespan time is obtained from the
following equation:

Makespan time = max
j ∈ 1, 2, ...,n2

∑n1
i=1 ecti,j (2)

4. Prerequisites

In this section, the two AO and AVOA algorithms, which are the main prerequisites
for the design of the combined AO_AVOA algorithm, are briefly described.

4.1. Aquila Optimizer

The Aquila Optimizer (AO) algorithm [54] is a swarm intelligence algorithm in which
Aquila provides four different hunting behaviors for different prey. AO, like other MH
algorithms, performs the optimization process using both ERP and ETP and finally con-
verges to the final optimal solution. A brief description of the mathematical model of the
AO algorithm follows.

Step 1: Explore the search space extensively. The mathematical model of this behavior
is as follows:

X(t + 1) = Xbest(t)× (1− t
T
)+(Xm (t)− Xbest(t)×rand) (3)

Xm(t) =
1
N ∑N

k=1 Xi(t) (4)

where Xm(t) represents the average location of all agents in the current iteration, Xbest(t)
represents the best position achieved so far, N is the population size, rand is a random
number between 0 and 1, and t and T are the current iteration and the maximum iteration
number, respectively.

Step 2: Narrow exploration to short attack the prey. The equation for updating
positions is as follows:

X(t + 1) = Xbest(t) × LF(D) + XR(t) + (y− x) × rand (5)

where D is the dimension size, XR(t) represents the random position of Aquila, and LF(D)
represents the Levy flight function, which is defined as follows:

LF(D) = s× u× σ

|v|
1
β

(6)

The parameter σ is obtained according to the following equation:

σ=

 r(1 + β)× sin(πβ
2)

r
(

1+β
2

)
× β× 2(

β−1
2)

 (7)

Processes 2023, 11, 1162 6 of 18

where s, u and v are random numbers between 0 and 1, β are fixed values equal to 0.01 and
1.5, respectively, y and x are used to represent the spiral shape of the algorithm in searching
the search space, which are defined as follows:

x = r× sin(θ)
y = r× cos(θ)
r = r1 + 0.00565× D1
θ = −w× D1 +

3×π
2

(8)

where, D1 is the integers from 1 to D and is equal to 0.005, and r1 means the number of
search cycles between 1 and 20 [54].

Stage 3: Extensive exploitation: Aquila vertical landing to attack the prey. This
behavior is defined as follows:

X(t + 1) = (Xbest (t)− Xm(t)) × α− rand + ((UB− LB) × rand + LB) × δ (9)

where UB and LB are the upper and lower bounds of the desired problem, respectively, and
α and δ are the ETP adjustment parameters that are equal to 0.1 [52].

Stage 4: Limited exploitation: moving and catching prey. The mathematical model of
this behavior is as follows:

X(t + 1) = QF× Xbest(t)− (G1 × X(t))× rand− G2 × LF(D) + rand× G1

QF(t) = t
(2×rand−1

(1−T)2
)

G1 = 2× rand− 1
G2 = 2×

(
1− t

T
) (10)

where X(t) represents the current location and QF(t) is the value of the used quality function
to creation balance the search strategy. G1 shows the movement parameter of the Aquila
when tracking the prey, which is a random number between [–1, 1]. G2 shows the flight
slope when chasing prey, which decreases linearly from 2 to 0. AO has good power in
the ERP, but it is a little weak in the ETP, and for this reason, it cannot find local optimal
solutions with high power and accurately. On the other hand, AVOA is the opposite of AO
and is slightly weaker than AO in the ERP.

However, AVOA has very good power in the ETP and can find local optimal solutions
with high accuracy compared to AO. For this reason, in this paper, the ERP of AO is
combined with the ETP of AVOA, and in this case, the combined AO-AVOA algorithm will
be obtained, which has very good power in both ERP and ETP, and in terms of finding final
optimal solutions it is better than AO and AVOA. Therefore, AO-AVOA can choose the
best and most suitable virtual machines for executing tasks on the user side.

4.2. African Vultures Optimization Algorithm

Like AO, the African Vulture optimization algorithm [53] is also formulated in four
separate steps.

First phase: determining the best agent in each group
After forming the initial population, the fitness value for all answers is calculated, the

best answer of the first Vulture group and the best answer of the second Vulture group are
determined, and other answers are selected using Equation (11).

R(i) =
{

BestVulture1 i f pi = L1
BestVulture2 i f pi = L2

(11)

where L1 and L2 are parameters that must be initialized with values between 0 and 1 before
the search operation, and the sum of both parameters is equal to 1. The probability of

Processes 2023, 11, 1162 7 of 18

choosing the best answer using the roulette wheel method for each group is obtained using
Equation (12).

pi=
Fi

∑n
i=1 Fi

(12)

The second phase: the level of hunger of Vultures
For mathematical modeling of this behavior, Equation (14) is used. It used to transition

from the ERP to the ETP, which is inspired by the speed of satiety or hunger of Vultures.

T = h× (sinw (
π

2
× iteri

max_iter
)+ cos(

π

2
× iteri

max_iter
) − 1) (13)

F = (2 × rand1+1)× z× (1− iteri
max_iter

) + t (14)

In Equations (13) and (14), F indicates that the agents are satiated, iteri is the current
iteration number, max_iter indicates the total number of iterations, and z is a random
number between −1 and 1 that changes each iteration, while h is a random number
between −2 and 2. rand1 has a random value between 0 and 1, w is a parameter with a
constant number that is set before the optimization operation. When the value of |F| > 1,
the agents look for food in different areas and AVOA enters the ERP. If the value of |F| < 1,
AVOA enters the ETP and agents forage in the neighborhood of solutions.

The third phase: exploration
In this step, the parameter P1, which has a value between 0 and 1, is used to choose

two different strategies. This parameter must be valued before the search operation. A
random number between 0 and 1 is generated to select each of the strategies in the ERP
randp1 . If this number is ≥ P1, Equation (16) is used. However, if randp1 < P1, Equation (17)
is used, as follows:

P1(i + 1) =
{

Equation (16) i f p1 ≥ randp1

Equation (17) i f p1 ≥ randp1

(15)

P1(i + 1) = R(i) − D(i) × F (16)

D(i) = |X × R(i) − P1(i)| (17)

where P1(i + 1) is the agent’s location vector in the next iteration, and F is the satiation rate
of the agent. In Equation (17), R(i) is one of the best agents. Furthermore, X is the agents
randomly moving to protect food from other agents and is given by X = 2 × rand where
rand is a random number between 0 and 1. P1(i) is the current location vector of the Vulture.

P1(i + 1) = R(i)− F + rand2×(UB− LB)×rand3 + LB) (18)

In Equation (18), rand2 has a random value between 0 and 1 and rand3 takes a number
close to 1.

The fourth phase: exploitation
In this step, if |F| < 1, AVOA enters the ETP, which also has two phases in which

two different strategies are used in each phase. The selection degree of each strategy in
each internal phase is determined by two parameters, namely P2 and P3. The P2 parameter
is used to select the strategies in the first stage and the P3 parameter is used to select the
strategies in the second stage. Both parameters must be set to 0 and 1 before performing
the search operation.

Exploitation (first stage):
AVOA enters the first stage in the ETP when |F| it is between 1 and 0.5. In the first

stage, two different strategies of turn flight and siege combat are performed. P2 is used to
specify the choice of each strategy, which must be evaluated before performing the search

Processes 2023, 11, 1162 8 of 18

operation, and the value must be between 0 and 1. At the beginning of this step, randp2 ,
which is a random number between 0 and 1, is generated. If this number is ≥ P2, the
Siegefight strategy is executed slowly. However, if this random number is < P2, the rotary
flight strategy is performed. This method is shown in Equation (19).

P1(i + 1) =
{

Equation(21) i f p2 ≥ randp2

Equation(24) i f p2 ≥ randp2

(19)

Competition for food:
When |F| ≥ 0.5, the agents are relatively full and have enough energy. When many

agents congregate on a food source, it can cause intense conflicts over food. In such cases,
agents with high physical strength prefer not to share food with other agents. The weaker
agents try to exhaust and take food from healthy agents by gathering around healthy agents.
Equations (20) and (21) are used to model this step.

P1(i + 1) = D(i)× (F + rand4)− d(t) (20)

d(t) = R(i) − P1(i) (21)

D(i) is calculated using Equation (17) and F is the satiety of agents which is calculated
using Equation (14). rand4 is a random number between 0 and 1, which is used to increase
the randomness factor. In Equation (21), R(i) is one of the best agents of the second category,
selected using Equation (11). In the current iteration, P1(i) is the agent’s current location
vector, by which the distance between the agent and one of the best agents in the second
category is obtained.

Circular flight of agents:
Agents often perform a circling flight. A spiral model has been used for mathematical

modeling of rotary flight. An equation (spiral) is created between all agents and one of the
top two agents. The rotational flight is explained by Equations (22) and (23).

S1 = R(i)× (
rand5 × P1(i)

2π
)×cos(P1(i)), S2 = R(i)× (

rand6 × P1(i)
2π

)× sin(P1(i)) (22)

P1(i + 1) = R(i)− (S1 + S2) (23)

In Equations (22) and (23), R(i) represents the location vector of one of the two best
agents in the current iteration, which is obtained by Equation (11). Cos and sin represent
the sine and cosine functions, respectively, rand5 and rand6 are random numbers between 0
and 1. S1 and S2 are obtained using Equation (22). Finally, using Equation (23), the location
of the agents is updated.

Exploitation (second stage):
In the second stage of ETP, the movements of two agents gather several types of agents

over the food source, and encirclement and aggressive fighting are carried out to find food.
If |F| < 0.5, this step of the algorithm is executed. At the beginning of this stage, randp3 is
generated, which is a random number between 0 and 1. If randp3 ≥ P3, the strategy is to
accumulate several types of agents on the food source. Otherwise, if the generated value is
< P3, the siege–fight–offensive strategy is executed. This method is shown in Equation (24).

P1(i + 1) =
{

Equation(27) i f p3 ≥ randp3

Equation (28) i f p3 ≥ randp3

(24)

Gathering of several types of agents on the food source:
The movement of all agents toward the food source is monitored. Occasionally, agents

become hungry and there is a significant amount of competition over food, which may

Processes 2023, 11, 1162 9 of 18

crowd several agent species into a food source. Equation (25) is used to formulate this
movement of the agents.

A1= BestVulture1(i)− BestVulture1(i)×p1(i)
BestVulture1(i)−p1(i)2 × F,

A2 = BestVulture2(i)− BestVulture2(i)×p1(i)
BestVulture2(i)−p1(i)2 × F

(25)

In Equation (25), BestVulture1(i) is the best agent from the first category in the current
iteration and BestVulture2(i) is the best agent from the second category in the current
iteration, while F is the satiety of the agent, which is calculated using Equation (14) and
P1(i) is the current vector location of the agent.

P1(i + 1) =
A1 + A2

2
(26)

Finally, the aggregation of all the agents is conducted using Equation (26), where A1
and A2 are obtained using Equation (25) and P1(i + 1) is the agent location vector in the
next iteration.

Aggressive competition for food:
When |F| < 5, head agents become hungry and weak and do not have enough energy

to fight other agents. On the other hand, other agents also become aggressive in search of
food. They move in different directions toward the agent head. Equation (27) is used to
model this movement.

P1(i + 1) = R(i) − |d(t)| × F × Levy(d) (27)

In Equation (27), d(t) represents the distance of the agent to one of the best agents
of the second category, which is calculated using Equation (21). Levy flight (LF) patterns
have been used to increase the effectiveness of AVOA in Equation (27), and LF has been
identified and used in many MH algorithms. LF is calculated using Equation (28).

LF(x) = 0.01× u× σ

|v|
1
p

, σ = (
Γ(1 + β)× sin

(
πβ
2

)
Γ(1 + β2)× β× 2

(
β−1

2

))
1
p

(28)

In Equation (28), d represents the dimensions of the problem, u and v are a random
number between 0 and 1, and β is a fixed number with a default value of 1.5.

5. Proposed Task Scheduling with AO_AVOA

The task scheduling in fog and cloud environments using the combination of AO
and AVOA algorithms is described in this section. In the task scheduling algorithm
using AO_AVOA, the solutions are competitively updated in the ETP using AO or AVOA
operators. However, in the ERP, only AO operators are used due to the fact that the AO
ERP is stronger than the AVOA. The flowchart of the proposed AO_AVOA algorithm for
scheduling in the fog-cloud network is shown in Figure 2.

In the initialization phase, the AO_AVOA algorithm starts by setting the N agents
and converting them into integers. This initial population is generated randomly, and
distributed appropriately for task scheduling in fog-cloud computing environments. This
behavior is modeled according to the following:

In the above equation, Lb = 1 and Ub is equal to the number of resources or VMs, fix(.)
is the same function used to convert real numbers to integers in AO_AVOA. Then, the
fitness function is calculated to evaluate the quality of each solution using the objective
function obtained from Equation (2). Considering that the task scheduling is assumed
to be a minimization problem in this paper, the solution with the smallest makespan
value is determined as the best solution, and in the ERP and ETP, X solutions are updated
according to it. In the ERP, the solutions are updated using AO operators according to

Processes 2023, 11, 1162 10 of 18

Equation (5). However, in the ETP, the solutions are updated using competition between
AO and AVOA operators.

Processes 2023, 11, x FOR PEER REVIEW 10 of 19

Figure 2. Diagram of the proposed AO_AVOA.

In the initialization phase, the AO_AVOA algorithm starts by setting the N agents
and converting them into integers. This initial population is generated randomly, and dis-
tributed appropriately for task scheduling in fog-cloud computing environments. This be-
havior is modeled according to the following:

In the above equation, Lb = 1 and Ub is equal to the number of resources or VMs, fix(.)
is the same function used to convert real numbers to integers in AO_AVOA. Then, the
fitness function is calculated to evaluate the quality of each solution using the objective
function obtained from Equation (2). Considering that the task scheduling is assumed to
be a minimization problem in this paper, the solution with the smallest makespan value
is determined as the best solution, and in the ERP and ETP, X solutions are updated ac-
cording to it. In the ERP, the solutions are updated using AO operators according to Equa-
tion (5). However, in the ETP, the solutions are updated using competition between AO
and AVOA operators.

Figure 2. Diagram of the proposed AO_AVOA.

In the ETP, the selection of any of the AO or AVOA algorithms to update the solutions
is achieved according to the Pi for each solution, which is defined as the following equation.

Therefore, the solution Pi is updated in the ETP using Equation (29). Updating the
solutions continues until the stopping condition is reached.

Pi=
f itnessi

∑N
i=1 f itnessi

(29)

Therefore, the solution posi is updated in the ETP using the following equation.

posi=

{
operators o f AO Pi > th
operators o f AVOA otherwise

(30)

Updating the solutions continues until the stopping condition is reached.

Processes 2023, 11, 1162 11 of 18

6. Evaluation Metrics and Experimental Results

In this paper, all the simulations for the proposed method and other algorithms have
been performed using MATLAB R2018b software. An ASUS laptop with a Core i5 processor
with 6 GB of memory and a frequency of 2.50 GHz and Windows 64-bit operating system
has been used. Six physical machines (hosts) and 25 different VMs are considered for
the fog-cloud computing environment. Table 1 shows the characteristics of the physical
machines and hypothetical VMs in these experiments. According to Table 1, the slowest
and fastest VMs have a speed of 100 MIPS and 5000 MIPS, respectively.

Table 1. Experiment parameters.

Specification Amount

Client Clients Count [60, 120]

Physical Machine

Hosts Count 6

CPU capacity [100, 5000]

Storage 1 TB

Network Bandwidth 10 Gb/s

RAM size 6 GB

Virtual Machine

VMs count 25

CPU capacity [100, 5000]

Storage 20 GB

RAM size 1 GB

Network Bandwidth 1 Gb/s

Processor Xen

Processors’ count 1

Two different datasets, namely High Performance Computing Center North (HPC2N)
and NASA Ames iPSC/860 [56], have been used in these tests, each of which has 500, 1000,
1500, and 2000 independent and non-preemptive tasks [56]. The features of the two datasets
used are given in Table 2.

Table 2. Dataset features of HPC2N and NASA iPSC.

Specification Amount

NASA iPSC

CPUs 240

Users 257

Tasks 202.871

Utilization 60.1%

Filename NASA-iPSC-1993-3.1-cln.swf

HPC2N

CPUs 128

Users 69

Tasks 18.239

Utilization 46.6%

Filename HPC2N-2002-2.2-cln.swf

That is, 240 processors or CPUs are needed for the NASA iPSC dataset, which is
related to 257 users. The average number of tasks in this dataset is 202.871. A total of
128 processors or CPUs are needed for the HPC2N dataset, which is related to 69 users. The
average number of tasks in this dataset is 18.239 [56]. The proposed AO_AVOA scheduling

Processes 2023, 11, 1162 12 of 18

algorithm is compared with five other algorithms including AVOA [53], AO [54], Firefly
Algorithm (FA) [57], PSO [15], and HHO [58]. In order to achieve more stable results for the
algorithms, each algorithm has been executed 30 times for each task set, and the average of
these 30 executions is considered as the output. Table 3 shows the fixed parameters used in
the AO_AVOA algorithm and other algorithms.

Table 3. Parameters’ settings in the MH algorithms.

Specification Amount

FA
E0 [−1, 1]

A 0.5

PSO
c1 1.49

c2 1.49

AO
A 0.1

∆ 0.1

AVOA

L1 0.8

L2 0.2

W 2.5

p1 0.6

p2 0.4

p3 0.6

HHO

B 0.2

Γ 1

W 0.9→ 0.4

In the next section, the evaluation metric examined in this paper as well as the com-
parison process of the AO_AVOA with other algorithms are described.

6.1. Evaluation Metrics

In this section, the evaluation metrics used in this metric, which include fitness function
value, makespan time, and throughput time, are explained.

6.1.1. Fitness Function Value

In problems that are solved using MH algorithms, the final solution of the problem
is obtained by minimizing or maximizing the value of the fitness function. Therefore, the
value of the fitness function can be used as an evaluation metric. In minimization prob-
lems, the lower the fitness function, the better the solutions obtained by the corresponding
optimizer algorithm. When it comes to comparing several MH algorithms, the MH algo-
rithm and the value of the fitness function are effective in determining the near-optimal
solution. In this paper, Equation (2) is used as the fitness function, which is the same as
makespan time.

6.1.2. Makespan Time

In task scheduling methods in different fog, cloud, and fog-cloud computing envi-
ronments, the value of makespan time is an metric to evaluate the method. The value of
makespan time is equal to the completion time of the last task (Equation (2)) [6]. The lower
value of makespan time indicates the superiority of the desired scheduling algorithm.

Processes 2023, 11, 1162 13 of 18

6.1.3. Throughput Time

The throughput time metric indicates the execution time of the tasks performed in
a metric period [6], which is obtained by using Equation (31). The lower the throughput
time, the better the scheduling algorithm.

Throughput time = ∑Tk∈T Exe.Time(Tk) (31)

6.1.4. Performance Improvement Rate

The next metric is performance improvement rate (PIR), which obtains the percentage
of performance improvement of an algorithm compared to other algorithms using the
value of its objective function [6]. The PIR value is obtained using Equation (32). The
lower the PIR value of one algorithm compared to another algorithm, the closer the two
algorithms are.

PIR(%) =
FitC − FitP

FitP
× 100 (32)

where FitC and FitP are the objective values obtained by each of the comparative algorithms
and AO_AVOA, respectively.

6.1.5. Comparison with Existing Works

In this section, the AO_AVOA is evaluated using fitness function, makespan time
(second or sec), and throughput time evaluation metrics and is compared with AO, AVOA,
PSO, HHO, and FA to improve the performance of AO_AVOA with AO, AVOA, PSO, HHO,
and FA. Table 4 shows the results of makespan time for NASA iPSC and HPC2N datasets.

Table 4. Makespan time (sec) for datasets.

Dataset NASA iPSC HPC2N
Tasks

Number
500 1000 1500 2000 500 1000 1500 2000

AO_AVOA 40.43 84.75 129.49 159.48 2566.39 9459.75 16,051.39 24,459.28
AO 47.61 89.38 138.29 168.41 3835.49 10,375.79 17,266.33 25,460.43

AVOA 49.44 93.45 148.72 179.31 4297.52 12,949.85 18,249.59 18,370.32
PSO 81.62 169.32 297.56 338.25 7945.46 19,789.69 32,459.72 47,141.17

HHO 53.75 105.32 160.52 199.79 4574.52 11,248.79 18,831.39 27,080.25
FA 75.85 149.81 276.48 329.12 7763.73 18,677.25 30,728.65 44,751.51

According to the results of Table 4, AO_AVOA has a lower makespan time than the
comparative algorithms. AO_AVOA outperforms AO, AVOA, PSO, HHO, and FA for both
datasets. Additionally, the value of makespan time is equal to the value of fitness, which is
the lowest for AO_AVOA.

The reason for the superiority of AO_AVOA compared to the compared algorithms
is that AO_AVOA was able to avoid becoming stuck in the local optimum by using the
combination of AO exploration phases and AVOA exploitation and obtain the best solutions
in a reasonable time for the task scheduling problem. In other words, AVOA is stronger
than both AO and AVOA because it takes advantage of the high power of AO’s exploration
phase and the high power of AVOA’s exploitation phase. However, AO is weak in the
exploitation phase and AVOA is weak in the exploration phase. Additionally, the HHO
algorithm is weaker than the AO, AVOA, and AO_AVOA algorithms, and this is related
to the HHO structure, due to the fact that HHO cannot obtain the best solutions like AO,
AVOA, and AO_AVOA due to its structure. The PSO and FA algorithms are much weaker
than the AO, AVOA, HHO, and AO_AVOA algorithms due to their structure.

Processes 2023, 11, 1162 14 of 18

For both datasets with 500, 1000, 1500, and 2000 tasks, the diagram of the difference in
makespan time value of the AO_AVOA with AO, AVOA, PSO, HHO, and FA methods is
shown in Figure 3. The difference value of makespan time is obtained using Equation (33):

di f f erence value o f makespan time = makespan_timeAO_AVOA −makespan_timei (33)
Processes 2023, 11, x FOR PEER REVIEW 15 of 19

(a) (b)

Figure 3. Diagram of the difference in makespan time for AO_AVOA with AO, AVOA, PSO, HHO,
and FA for both datasets. (a) NASA iPSC dataset. (b) HPC2N dataset.

In which makespan_time _ represents the makespan time of AO_AVOA and makespan_time represents the makespan time of each of the other algorithms. According
to Figure 3, AO_AVOA has a large difference with PSO, and it has the least difference with
AO. The performance strength of AO is higher than the AVOA, PSO, HHO, and FA algo-
rithms; AVOA is stronger than PSO, HHO and FA; and HHO is stronger than FA and PSO.
PSO has the worst performance. The main reason for the difference in the outputs of the
algorithms is the difference in their structure. Figure 4 shows the throughput time results
of the AO, AVOA, PSO, HHO, FA, and AO_AVOA algorithms for two datasets with 500,
1000, 1500, and 2000 tasks. According to Figure 4, AO_AVOA has lower throughput time
than AO, AVOA, PSO, HHO, and FA. This means that the relevant tasks have been com-
pleted by AO_AVOA in less time .

(a) (b)

Figure 4. Diagram of the throughput for AO_AVOA, AO, AVOA, PSO, HHO, and FA for both da-
tasets. (a) NASA iPSC dataset. (b) HPC2N dataset.

Figure 5 shows the diagram of PIR (%) of the makespan time for the datasets. Ac-
cording to Figure 5, AO has a lower PIR (%) than AVOA, PSO, HHO, and FA. AO executes
the set of tasks in less time than the AVOA, FA, PSO, and HHO algorithms. As it is made
clear from Figure 5, AO_AVOA has the least difference compared to AO and the biggest
difference compared to PSO.

Figure 3. Diagram of the difference in makespan time for AO_AVOA with AO, AVOA, PSO, HHO,
and FA for both datasets. (a) NASA iPSC dataset. (b) HPC2N dataset.

In which makespan_timeAO_AVOA represents the makespan time of AO_AVOA and
makespan_timei represents the makespan time of each of the other algorithms. According
to Figure 3, AO_AVOA has a large difference with PSO, and it has the least difference
with AO. The performance strength of AO is higher than the AVOA, PSO, HHO, and FA
algorithms; AVOA is stronger than PSO, HHO and FA; and HHO is stronger than FA and
PSO. PSO has the worst performance. The main reason for the difference in the outputs
of the algorithms is the difference in their structure. Figure 4 shows the throughput time
results of the AO, AVOA, PSO, HHO, FA, and AO_AVOA algorithms for two datasets with
500, 1000, 1500, and 2000 tasks. According to Figure 4, AO_AVOA has lower throughput
time than AO, AVOA, PSO, HHO, and FA. This means that the relevant tasks have been
completed by AO_AVOA in less time.

Processes 2023, 11, x FOR PEER REVIEW 15 of 19

(a) (b)

Figure 3. Diagram of the difference in makespan time for AO_AVOA with AO, AVOA, PSO, HHO,
and FA for both datasets. (a) NASA iPSC dataset. (b) HPC2N dataset.

In which makespan_time _ represents the makespan time of AO_AVOA and makespan_time represents the makespan time of each of the other algorithms. According
to Figure 3, AO_AVOA has a large difference with PSO, and it has the least difference with
AO. The performance strength of AO is higher than the AVOA, PSO, HHO, and FA algo-
rithms; AVOA is stronger than PSO, HHO and FA; and HHO is stronger than FA and PSO.
PSO has the worst performance. The main reason for the difference in the outputs of the
algorithms is the difference in their structure. Figure 4 shows the throughput time results
of the AO, AVOA, PSO, HHO, FA, and AO_AVOA algorithms for two datasets with 500,
1000, 1500, and 2000 tasks. According to Figure 4, AO_AVOA has lower throughput time
than AO, AVOA, PSO, HHO, and FA. This means that the relevant tasks have been com-
pleted by AO_AVOA in less time .

(a) (b)

Figure 4. Diagram of the throughput for AO_AVOA, AO, AVOA, PSO, HHO, and FA for both da-
tasets. (a) NASA iPSC dataset. (b) HPC2N dataset.

Figure 5 shows the diagram of PIR (%) of the makespan time for the datasets. Ac-
cording to Figure 5, AO has a lower PIR (%) than AVOA, PSO, HHO, and FA. AO executes
the set of tasks in less time than the AVOA, FA, PSO, and HHO algorithms. As it is made
clear from Figure 5, AO_AVOA has the least difference compared to AO and the biggest
difference compared to PSO.

Figure 4. Diagram of the throughput for AO_AVOA, AO, AVOA, PSO, HHO, and FA for both
datasets. (a) NASA iPSC dataset. (b) HPC2N dataset.

Figure 5 shows the diagram of PIR (%) of the makespan time for the datasets. Accord-
ing to Figure 5, AO has a lower PIR (%) than AVOA, PSO, HHO, and FA. AO executes

Processes 2023, 11, 1162 15 of 18

the set of tasks in less time than the AVOA, FA, PSO, and HHO algorithms. As it is made
clear from Figure 5, AO_AVOA has the least difference compared to AO and the biggest
difference compared to PSO.

Processes 2023, 11, x FOR PEER REVIEW 16 of 19

(a) (b)

Figure 5. PIR (%) diagram of the makespan time for AO, AVOA, PSO, HHO, and FA for both da-
tasets. (a) NASA iPSC dataset. (b) HPC2N dataset.

7. Conclusions
In this paper, the problem of task scheduling in the fog-cloud environment for the

implementation of IoT task requests was considered as an optimization problem consid-
ering more QoS requirements. The combination of the AVOA and AO algorithms was
used to solve the task scheduling problem in the fog-cloud environment, which is called
AO_AVOA. The AO_AVOA was used to improve the AVOA exploration process, and the
exploration phase of the AO algorithm was combined with the exploitation phase of
AVOA. The minimization of the makespan time function was used to evaluate the opti-
mizer algorithm to optimize the scheduling problem and find the best virtual machines in
the fog-cloud environment. AO_AVOA was applied to two datasets using the metrics of
makespan time, fitness function value, PIR, and throughput time. Then, AO_AVOA was
compared with the HHO, FA, PSO, AVOA, and AO algorithms, and it was proved that
AVOA performs better than the mentioned algorithms in terms of relevant evaluation met-
rics. Compared to the AO, AVOA, PSO, HHO, and FA algorithms, AO_AVOA improves
the makespan time by 8.36%, 2.61%, 104.38%, 17.56%, and 94.05%, respectively, for both
datasets. In the future, it will be attempted to combine deep learning methods with AVOA
to solve the task scheduling problem and examine more datasets, or AO_AVOA used as
multi-objective.

Author Contributions: Conceptualization, Q.L. and H.K.; Methodology, Q.L. and S.M.; Software,
S.M.; Validation, Q.L., H.K., and A.N.H.; Resources, H.K.; Data curation, Q.L. and H.K.; Formal
analysis, K.A.A. and A.N.H.; Writing—original draft, Q.L.; Writing—review and editing, K.A.A.
and A.N.H.; Supervision, A.N.H. All authors have read and agreed to the published version of the
manuscript.

Funding: Researchers Supporting Project number (RSP2023R305), King Saud University, Riyadh,
Saudi Arabia.

Data Availability Statement: The data will be available upon reasonable request.

Acknowledgments: The authors extend their appreciation to King Saud University, Saudi Arabia
for funding this work through Researchers Supporting Project number (RSP2023R305), King Saud
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–

32.

Figure 5. PIR (%) diagram of the makespan time for AO, AVOA, PSO, HHO, and FA for both datasets.
(a) NASA iPSC dataset. (b) HPC2N dataset.

7. Conclusions

In this paper, the problem of task scheduling in the fog-cloud environment for the
implementation of IoT task requests was considered as an optimization problem consid-
ering more QoS requirements. The combination of the AVOA and AO algorithms was
used to solve the task scheduling problem in the fog-cloud environment, which is called
AO_AVOA. The AO_AVOA was used to improve the AVOA exploration process, and
the exploration phase of the AO algorithm was combined with the exploitation phase of
AVOA. The minimization of the makespan time function was used to evaluate the opti-
mizer algorithm to optimize the scheduling problem and find the best virtual machines
in the fog-cloud environment. AO_AVOA was applied to two datasets using the metrics
of makespan time, fitness function value, PIR, and throughput time. Then, AO_AVOA
was compared with the HHO, FA, PSO, AVOA, and AO algorithms, and it was proved
that AVOA performs better than the mentioned algorithms in terms of relevant evaluation
metrics. Compared to the AO, AVOA, PSO, HHO, and FA algorithms, AO_AVOA improves
the makespan time by 8.36%, 2.61%, 104.38%, 17.56%, and 94.05%, respectively, for both
datasets. In the future, it will be attempted to combine deep learning methods with AVOA
to solve the task scheduling problem and examine more datasets, or AO_AVOA used as
multi-objective.

Author Contributions: Conceptualization, Q.L. and H.K.; Methodology, Q.L. and S.M.; Software,
S.M.; Validation, Q.L., H.K. and A.N.H.; Resources, H.K.; Data curation, Q.L. and H.K.; Formal
analysis, K.A.A. and A.N.H.; Writing—original draft, Q.L.; Writing—review and editing, K.A.A.
and A.N.H.; Supervision, A.N.H. All authors have read and agreed to the published version of
the manuscript.

Funding: Researchers Supporting Project number (RSP2023R305), King Saud University, Riyadh,
Saudi Arabia.

Data Availability Statement: The data will be available upon reasonable request.

Acknowledgments: The authors extend their appreciation to King Saud University, Saudi Arabia
for funding this work through Researchers Supporting Project number (RSP2023R305), King Saud
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

Processes 2023, 11, 1162 16 of 18

References
1. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32.

[CrossRef]
2. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
3. Masdari, M.; Khoshnevis, A. A survey and classification of the workload forecasting methods in cloud computing. Clust. Comput.

2020, 23, 2399–2424. [CrossRef]
4. Shakarami, A.; Ghobaei-Arani, M.; Shahidinejad, A.; Masdari, M.; Shakarami, H. Data replication schemes in cloud computing: A

survey. Clust. Comput. 2021, 24, 2545–2579. [CrossRef]
5. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things. In Proceedings of the First Edition

of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13–16.
6. Elaziz, M.A.; Abualigah, L.; Attiya, I. Advanced optimization technique for scheduling IoT tasks in cloud-fog computing

environments. Future Gener. Comput. Syst. 2021, 124, 142–154. [CrossRef]
7. Yang, M.; Ma, H.; Wei, S.; Zeng, Y.; Chen, Y.; Hu, Y. A multi-objective task scheduling method for fog computing in cyber-physical-

social services. IEEE Access 2020, 8, 65085–65095. [CrossRef]
8. Ghasempour, A.; Moon, T.K. Optimizing the number of collectors in machine-to-machine advanced metering infrastructure

architecture for internet of things-based smart grid. In Proceedings of the 2016 IEEE Green Technologies Conference, Kansas City,
MO, USA, 6–8 April 2016; pp. 51–55.

9. Chen, Z.G.; Zhan, Z.H.; Lin, Y.; Gong, Y.J.; Gu, T.L.; Zhao, F.; Qia, H. Multiobjective cloud workflow scheduling: A multiple
populations ant colony system approach. IEEE Trans. Cybern. 2018, 49, 2912–2926. [CrossRef]

10. Javaheri, D.; Gorgin, S.; Lee, J.A.; Masdari, M. An improved discrete harris hawk optimization algorithm for efficient workflow
scheduling in multi-fog computing. Sustain. Comput. Inform. Syst. 2022, 36, 100787. [CrossRef]

11. Ataie, I.; Taami, T.; Azizi, S.; Mainuddin, M.; Schwartz, D. D2FO: Distributed Dynamic Offloading Mechanism for Time-
Sensitive Tasks in Fog-Cloud-IoT-based Systems. In Proceedings of the 2022 IEEE International Performance, Computing, and
Communications Conference (IPCCC), Austin, TX, USA, 11–13 November 2022; pp. 360–366.

12. Taami, T.; Krug, S.; O’Nils, M. Experimental Characterization of Latency in Distributed IoT Systems with Cloud Fog Offloading.
In Proceedings of the 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS), Sundsvall, Sweden,
27–29 May 2019; pp. 1–4.

13. Meisami, S.; Beheshti-Atashgah, M.; Aref, M.R. Using Blockchain to Achieve Decentralized Privacy in IoT Healthcare. arXiv 2021,
arXiv:2109.14812. [CrossRef]

14. Wang, Y.; Wen, X.; Gu, B.; Gao, F. Power Scheduling Optimization Method of Wind-Hydrogen Integrated Energy System Based
on the Improved AUKF Algorithm. Mathematics 2022, 10, 4207. [CrossRef]

15. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

16. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
17. Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. Knowl. -Based Syst. 2015, 89,

228–249. [CrossRef]
18. Salehnia, T.; Fathi, A. Fault tolerance in LWT-SVD based image watermarking systems using three module redundancy technique.

Expert Syst. Appl. 2021, 179, 115058. [CrossRef]
19. Raziani, S.; Salehnia, T.; Ahmadi, M. Selecting of the best features for the knn classification method by Harris Hawk algorithm.

In Proceedings of the Conference: 8th International Conference on New Solutions in Engineering, Information Science and
Technology of the Century, Online, 7–9 June 2021.

20. Cao, B.; Fan, S.; Zhao, j.; Tian, S.; Zheng, Z.; Yan, Y.; Yang, P. Large-Scale Many-Objective Deployment Optimization of Edge
Servers. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3841–3849. [CrossRef]

21. Cao, B.; Gu, Y.; Lv, Z.; Yang, S.; Zhao, J.; Li, Y. RFID Reader Anticollision Based on Distributed Parallel Particle Swarm
Optimization. IEEE Internet Things J. 2021, 8, 3099–3107. [CrossRef]

22. Cao, B.; Zhao, J.; Lv, Z.; Yang, P. Diversified Personalized Recommendation Optimization Based on Mobile Data. IEEE Trans.
Intell. Transp. Syst. 2021, 22, 2133–2139. [CrossRef]

23. Cao, B.; Li, M.; Liu, X.; Zhao, J.; Cao, W.; Lv, Z. Many-Objective Deployment Optimization for a Drone-Assisted Camera Network.
IEEE Trans. Netw. Sci. Eng. 2021, 8, 2756–2764. [CrossRef]

24. Sun, B.; Li, Y.; Zeng, Y.; Chen, J.; Shi, J. Optimization planning method of distributed generation based on steady-state security
region of distribution network. Energy Rep. 2022, 8, 4209–4222. [CrossRef]

25. Lin, Y.; Song, H.; Ke, F.; Yan, W.; Liu, Z.; Cai, F. Optimal caching scheme in D2D networks with multiple robot helpers. Comput.
Commun. 2022, 181, 132–142. [CrossRef]

26. Zheng, W.; Yin, L. Characterization inference based on joint-optimization of multi-layer semantics and deep fusion matching
network. PeerJ Comput. Sci. 2022, 8, e908. [CrossRef]

27. Nguyen, B.M.; Thi Thanh Binh, H.; The Anh, T.; Bao Son, D. Evolutionary algorithms to optimize task scheduling problem for the
IoT based bag-of-tasks application in cloud-fog computing environment. Appl. Sci. 2019, 9, 1730. [CrossRef]

28. Boveiri, H.R.; Khayami, R.; Elhoseny, M.; Gunasekaran, M. An efficient swarm-intelligence approach for task scheduling in
cloud-based internet of things applications. J. Ambient Intell. Humanized Comput. 2019, 10, 3469–3479. [CrossRef]

https://doi.org/10.1109/JIOT.2014.2306328
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1007/s10586-019-03010-3
https://doi.org/10.1007/s10586-021-03283-7
https://doi.org/10.1016/j.future.2021.05.026
https://doi.org/10.1109/ACCESS.2020.2983742
https://doi.org/10.1109/TCYB.2018.2832640
https://doi.org/10.1016/j.suscom.2022.100787
https://doi.org/10.5121/ijci.2023.120208
https://doi.org/10.3390/math10224207
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.eswa.2021.115058
https://doi.org/10.1109/TITS.2021.3059455
https://doi.org/10.1109/JIOT.2020.3033473
https://doi.org/10.1109/TITS.2020.3040909
https://doi.org/10.1109/TNSE.2021.3057915
https://doi.org/10.1016/j.egyr.2022.03.078
https://doi.org/10.1016/j.comcom.2021.09.027
https://doi.org/10.7717/peerj-cs.908
https://doi.org/10.3390/app9091730
https://doi.org/10.1007/s12652-018-1071-1

Processes 2023, 11, 1162 17 of 18

29. Tong, Z.; Chen, H.; Deng, X.; Li, K.; Li, K. A scheduling scheme in the cloud computing environment using deep Q-learning.
Inform. Sci. 2020, 512, 1170–1191. [CrossRef]

30. Yang, X.; Rahmani, N. Task scheduling mechanisms in fog computing: Review. trends, and perspectives. Kybernetes 2020, 50,
22–38. [CrossRef]

31. Mtshali, M.; Kobo, H.; Dlamini, S.; Adigun, M.; Mudali, P. Multi-objective optimization approach for task scheduling in fog
computing. In Proceedings of the 2019 International Conference on Advances in Big Data, Computing and Data Communication
Systems, IcABCD, KwaZulu Natal, South Africa, 5–6 August 2019; pp. 1–6.

32. Ghobaei-Arani, M.; Souri, A.; Safara, F.; Norouzi, M. An efficient task scheduling approach using moth-flame optimization
algorithm for cyber-physical system applications in fog computing. Trans. Emerg. Telecommun. Technol. 2020, 31, e3770. [CrossRef]

33. Abualigah, L.; Shehab, M.; Alshinwan, M.; Alabool, H.; Abuaddous, H.Y.; Khasawneh, A.M.; Diabat, M.A. TS-GWO: IoT tasks
scheduling in cloud computing using Grey Wolf optimizer. In Swarm Intelligence for Cloud Computing, Chapman and Hall; CRC:
Boca Raton, FL, USA, 2020; pp. 127–152.

34. Zeng, D.; Gu, L.; Guo, S.; Cheng, Z.; Yu, S. Joint optimization of task scheduling and image placement in fog computing supported
software-defined embedded system. IEEE Trans. Comput. 2016, 65, 3702–3712. [CrossRef]

35. Jena, T.; Mohanty, J. Ga-based customer-conscious resource allocation and task scheduling in multi-cloud computing. Arab. J. Sci.
Eng. 2018, 43, 4115–4130. [CrossRef]

36. Rjoub, G.; Bentahar, J.; Wahab, O.A.; Bataineh, A.S. Deep and reinforcement learning for automated task scheduling in large-scale
cloud computing systems. Concurr. Comput. Pract. Exp. 2020, 33, e5919. [CrossRef]

37. Jacob, L. Bat algorithm for resource scheduling in cloud computing. Int. J. Res. Appl. Sci. Eng. Technol. 2014, 2, 53–57.
38. Raghavan, S.; Sarwesh, P.; Marimuthu, C.; Chandrasekaran, K. Bat algorithm for scheduling workflow applications in cloud. In

Proceedings of the 2015 International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV),
Shillong, India, 29–30 January 2015; pp. 139–144.

39. Lin, Z.; Li, C.; Tian, L.; Zhang, B. A scheduling algorithm based on reinforcement learning for heterogeneous environments. Appl.
Soft Comput. 2022, 130, 109707. [CrossRef]

40. Iftikhar, S.; Ahmad, M.M.M.; Tuli, S.; Chowdhury, D.; Xu, M.; Gill, S.S.; Uhlig, S. HunterPlus: AI based energy-efficient task
scheduling for cloud-fog computing environments. Internet Things 2022, 21, 100667. [CrossRef]

41. Wadhwa, H.; Aron, R. Optimized task scheduling and preemption for distributed resource management in fog-assisted IoT
environment. J. Supercomput. 2023, 79, 2212–2250. [CrossRef]

42. Shaheen, Q.; Shiraz, M.; Hashmi, M.U.; Mahmood, D.; Zhiyu, Z.; Akhtar, R. A Lightweight Location-Aware Fog Framework
(LAFF) for QoS in Internet of Things Paradigm. Mob. Inf. Syst. Hindawi 2020, 2020, 8871976. [CrossRef]

43. Sing, R.; Bhoi, S.K.; Panigrahi, N.; Sahoo, K.S.; Bilal, M.; Shah, S.C. EMCS: An Energy-Efficient Makespan Cost-Aware Schedul-
ing Algorithm Using Evolutionary Learning Approach for Cloud-Fog-Based IoT Applications. Sustainability 2022, 14, 15096.
[CrossRef]

44. Mokni, M.; Yassa, S.; Hajlaoui, J.E.; Omri, M.N.; Chelouah, R. Multi-objective fuzzy approach to scheduling and offloading
workflow tasks in Fog–Cloud computing. Simul. Model. Pract. Theory 2023, 123, 123–102687. [CrossRef]

45. Sing, R.; Bhoi, S.K.; Panigrahi, N.; Sahoo, K.S.; Jhanjhi, N.; AlZain, M.A. A Whale Optimization Algorithm Based Resource
Allocation Scheme for Cloud-Fog Based IoT Applications. Electronics 2022, 19, 3207. [CrossRef]

46. Panda, S.K.; Nanda, S.S.; Bhoi, S.K. A pair-based task scheduling algorithm for cloud computing environment. J. King Saud
Univ.—Comput. Inf. Sci. 2022, 34, 1434–1445. [CrossRef]

47. Shukla, P.; Pandey, S.; Hatwar, P.; Pant, A. FAT-ETO: Fuzzy-AHP-TOPSIS-Based Efficient Task Offloading Algorithm for Scientific
Workflows in Heterogeneous Fog–Cloud Environment. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2023, 18, 1–15. [CrossRef]

48. Stewart, R.; Raith, A.; Sinnen, O. Optimising makespan and energy consumption in task scheduling for parallel systems. Comput.
Oper. Res. 2023, 154, 106212. [CrossRef]

49. Salehnia, T.; Montazerolghaem, A.; Mirjalili, S. An SDN-based optimal task scheduling method in Fog-IoT network using the
combination of Aquila and Whale otimization ogorithms. Compr. Metaheuristics Algorithms Appl. 2023, 2, 48–65.

50. Salehnia, T.; Naderi, S.; Ahmadi, M.; Mirjalili, S. A workflow scheduling in cloud environment using a combination of Moth-Flame
and Salp Swarm algorithms. Appl. Soft Comput. 2023, 18, 135–153.

51. Dai, X.; Xiao, Z.; Jiang, H.; Alazab, M.; Lui, J.C.S.; Min, G.; Dustdar, S.; Liu, J. Task Offloading for Cloud-Assisted Fog Computing
With Dynamic Service Caching in Enterprise Management Systems. IEEE Trans. Ind. Inform. 2023, 19, 662–672. [CrossRef]

52. Dai, X.; Xiao, Z.; Jiang, H.; Alazab, M.; Lui, J.C.S.; Dus, S.; Liu, J. Task Co-Offloading for D2D-Assisted Mobile Edge Computing in
Industrial Internet of Things. IEEE Trans. Ind. Inform. 2023, 19, 480–490. [CrossRef]

53. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuris-
tic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]

54. Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic
optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]

55. Cao, B.; Sun, Z.; Zhang, J.; Gu, Y. Resource Allocation in 5G IoV Architecture Based on SDN and Fog-Cloud Computing. IEEE
Trans. Intell. Transp. Syst. 2021, 22, 3832–3840. [CrossRef]

https://doi.org/10.1016/j.ins.2019.10.035
https://doi.org/10.1108/K-10-2019-0666
https://doi.org/10.1002/ett.3770
https://doi.org/10.1109/TC.2016.2536019
https://doi.org/10.1007/s13369-017-2766-x
https://doi.org/10.1002/cpe.5919
https://doi.org/10.1016/j.asoc.2022.109707
https://doi.org/10.1016/j.iot.2022.100667
https://doi.org/10.1007/s11227-022-04747-2
https://doi.org/10.1155/2020/8871976
https://doi.org/10.3390/su142215096
https://doi.org/10.1016/j.simpat.2022.102687
https://doi.org/10.3390/electronics11193207
https://doi.org/10.1016/j.jksuci.2018.10.001
https://doi.org/10.1007/s40010-023-00809-z
https://doi.org/10.1016/j.cor.2023.106212
https://doi.org/10.1109/TII.2022.3186641
https://doi.org/10.1109/TII.2022.3158974
https://doi.org/10.1016/j.cie.2021.107408
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1109/TITS.2020.3048844

Processes 2023, 11, 1162 18 of 18

56. Parallel Workloads Archive. Available online: http://www.cse.huji.ac.il/labs/parallel/workload/logs.html (accessed on 31
July 2020).

57. Yang, X.S. Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 2013, 29, 175–184. [CrossRef]
58. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.cse.huji.ac.il/labs/parallel/workload/logs.html
https://doi.org/10.1007/s00366-012-0254-1
https://doi.org/10.1016/j.future.2019.02.028

	Introduction
	Related Works
	System Model and Problem Formulation
	System Model
	Problem Formulation

	Prerequisites
	Aquila Optimizer
	African Vultures Optimization Algorithm

	Proposed Task Scheduling with AO_AVOA
	Evaluation Metrics and Experimental Results
	Evaluation Metrics
	Fitness Function Value
	Makespan Time
	Throughput Time
	Performance Improvement Rate
	Comparison with Existing Works

	Conclusions
	References

