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Abstract

Computers are indispensable in our daily lives. The first generation of computing started the era of human

automation computing. These machine’s computational resources, however, were completely centralized in

local machines. With the appearance of networks, the second generation of computing significantly improved

data availability and portability so that computing resources could be efficiently shared among the networks.

The service-oriented third generation of computing provided functionality by breaking down applications

into services, on-demand computing through utility and cloud infrastructures, as well as ubiquitous accesses

from wide-spread geographical networks. Services as primary computing resources are far spread from lo-

cal to worldwide. These services loosely couple applications and servers, which allows services to scale up

easily with higher availability. The complexity of locating, utilizing and optimizing computational resources

becomes even more challenging as these resources become more available, fault-tolerant, scalable, better per-

forming, and spatially distributed. The critical question becomes how do applications dynamically utilize and

optimize unique/duplicate/competitive resources at runtime in the most efficient and effective way without

code changes, as well as providing high available, scalable, secured and easy development services. Domain

computing proposes a new way to manage computational resources and applications. Domain computing dy-

namically manages resources within logic entities, domains, and without being bound to physical machines so

that application functionality can be extended at runtime. Moreover, domain computing introduces domains

as a replacement of a traditional computer in order to run applications and link different computational

resources that are distributed over networks into domains so that a user can greatly improve and optimize

the resource utilization at a global level. By negotiating with different layers, domain computing dynamically

links different resources, shares resources and cooperates with domains at runtime so applications can more

quickly adapt to dynamically changing environments and gain better performance. Also, domain computing

presents a new way to develop applications which are resource stateless based. In this work, a prototype sys-

tem was built and the performance of its various aspects has been examined, including network throughput,

response time, variance, resource publishing and subscription, and secured communications.
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Chapter 1

Introduction

Seven years ago, Apple introduced the first iPod Touch to the world, which was the starting point in the

growth of personal mobile computing. In the years that followed, varieties of mobile devices have continued

to be introduced into our lives. Some examples are smart cell phones, tablets, the transform notebook

and the emergence of smart wearable devices. Not only are these new mobile devices small and portable

but they also have significant processing capability. Mobile computing has become a reality because of the

convergence of two technologies: the appearance of powerful portable computers and the development of

fast reliable networks [52]. So these portable devices are going to continue to make mobile computing more

prevalent and widely used. According to a recent report from Cisco [23], in 2013 the number of smartphones

increased 77 percent, average smartphone usage grew 50 percent, global mobile data traffic grew 81 percent,

and, on an average, a smart device generated 29 times more traffic than a non-smart device. In the report, it

was forecasted that by 2018 there will be nearly 1.4 mobile devices per capita. Another important trend in

mobile computing is that individual users are going to own more and more devices. Comparing the increase

to nearly 1.4 mobile devices per person by 2018 to just 10 years ago, most people only had a desktop and

maybe heavy movable laptop as the primary computation resource. Today most users not only own multiple

devices like smartphones, tablets, smart TVs, smart fridges and even smart sensors in houses but much more

time is being spent on them.

Cloud computing refers to both the applications delivered as services over the Internet and the hardware

and systems software in the data centers that provide those services [4]. Cloud computing provides users a

new opportunity to consume services in a reliable, flexible, energy-efficient and less expensive way. The cloud

computing services are not necessarily only available in a local or a small geographic areas since these services

are provided over the Internet. For example, a user can access the application services in the Google data

center located in the US, hosting services on the Amazon EC2 platform in Europe or the storage services on

Apple cloud located in China from anywhere in the world. In fact, the simplicity, flexibility, and efficiency of

services that cloud computing provides to users renders the importance of the geographic location of services

irrelevant. Additionally, the computational resources used for providing such services are much more widely

distributed indeed. Not only does cloud computing provide services via the Internet, but these services have

also become a core IT infrastructure. IDC’s forecast [35] for the period of 2013 - 2017 shows that public IT

cloud services will have a compound annual growth rate (CAGR) of 23.5%, five times that of the IT industry
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as a whole. As a result, there is a strong possibility that more business will adapt cloud platforms over

desktop machines in the near future.

Cloud computing offers an infrastructure that supports large data processing as well as enabling highly

scalable computing platforms. Additionaly, cloud computing can be configured on demand to meet constant

application changes in a pay-per-use mode. Furthermore, cloud computing can, because of scalability, quickly

and efficiently process a large magnitude of centralized data by simply adding more computing resources.

However, when data sources are distributed across multiple locations and networks, low latency is indispens-

able and the centralized data processing in cloud fails to achieve real-time analytics and decision making.

Another issue for cloud computing is privacy. The cloud is typically built and owned by a corporation. Be-

cause of corporate ownership, many users do not want to upload and store their sensitive and personal data,

like the data gathered by activity trackers, into an uncontrolled cloud. Cloud computing can’t help process

the data because users are more likely to retain personal and private dataon their devices. The inability of

cloud computing to process this type of data has created the need for an alternative computational paradigm

that will utilize more capable devices, which are geographically closer to those devices on the edge of the

network than to the clouds, to perform data processing. Data can be aggregated by building local views of

data flows, which can then be sent the cloud for further analysis offline - this is where fog computing [14] fits.

Fog computing is a distributed computing system that extends the services that are provided by the cloud

to the edge of the network. Fog computing utilizes management, networking, and data storage in order to

bridge the gap between data centers and those devices on the edge of the network.

The Internet of Things [8] environment connects devices via heterogeneous networks. The significant

amount of data collected from IoT devices allows us to perform pattern detection, predictive analysis, and

optimization and smarter decision making in a timely manner. Data flowing in the IoT is classified into two

categories: the data stream and big data. The data stream is captured continuously from the devices, while

big data refers to data and knowledge that is centrally stored in cloud storage. In recent years, the IoT

has experienced significant growth. By 2011, the IoT had a market value of $44 billion. Moreover, the IoT

will continue to grow at a fast rate in the coming years because more and more devices posses networking

capabilities and the potential to connect directly to the Internet. According to market research, the IoT

and Machine-to-Machine (M2M) market will approximately $498.92 billion by 2019 and the IoT market will

reach $1423.09 billion by 2020. Figure 1.1 [17] shows that by 2018 the number of active devices will surpass

30 million, compared to less than 10 million in 2011. In addition to all of these fantastic and optimistic

opportunities, in order for the current IoT to reach its potential there needs to be various innovations and

progress in different areas. Furthermore, IoT adoption and market growth will increase with cooperation and

information-sharing between leading companies, such as Microsoft, IBM, Google, Amazon, Samsung, Cisco,

Intel, ARM, and Fujitsu, as well as smaller businesses and start-ups. For example, The UK government has

initiated a $5 million project to spur innovation and technological advances in the IoT [61]. Similarly, IBM

in the US has plans to invest billions of dollars on IoT research and its industrial applications. So, in the
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Figure 1.1: IoT Trend Forecast

near future, millions of devices will directly connect to the Internet and generate millions of computational

resources, which will be distributed among ever widening networks.

1.1 Thesis Structure

• Chapter 2 - identifies and discusses the problem with current computation models

• Chapter 3 - reviews related works, including the history of computing

• Chapter 4 - proposes a domain computing architecture

• Chapter 5 - evaluates the performance of the prototype system and architecture

• Chapter 6 - summary of this research

• Chapter 7 - concludes this research and outlines areas for future investigation

3



Chapter 2

Problem Definition

Computational models have evolved since the invention of the first computing machine. Regardless of

the generations of computing, computational resources have always been the key to applications. That is

to says, computing tasks simply can’t be functional or will run in a less efficiency way without the proper

computational resources. For example, we can’t monitor our houses without the proper sensors installed.

Likewise, we will experience extremely slow random disk reads without SSDs. To some extent, computing

is a war of resources: resources keep computing tasks running and computing tasks die when the resources

run out. Resources can be identified in terms of their functionality. Figure 2.1 shows that there are three

main categories of resources: (1) Unique, (2) Duplicate, and (3) Competitive. A unique resource offers the

uniqueness of functionality in all reachable resources. A duplicate resource means that there is more than

one instance of exactly the same functionality in all reachable resources. A competitive resource means that

two or more resources serve the same purpose but have different performance response regarding response

time and efficiency. Many computing resources are significantly increased when millions of small devices

are used for IoT. As network and energy technologies become profitable, and millions small IoT devices

(Figure 2.2) join the networks, millions of resources become available and reachable for applications. The

increase in availability and reachability of resources for applications will continue to grow in terms of their

type, number and locations. With this growth comes an increase in the complexity of locating, utilizing and

optimizing computational resources, which becomes even more challenging. The current computing models

miss the capability of dynamically utilizing and redistributing I/O in distributed systems in a flexible way.

Additionally, current computing models are also very difficult to extend, group, and to connect functionality

at runtime without changing code. Furthermore, current programming models are too complicated to be

used to develop and deploy new applications, which rapidly evolve.

So, how can applications dynamically utilize and optimize the three categories of resources -unique,

duplicate, and competitive - at runtime in the most efficient and effective way without code changes, yet

provide a highly available, scalable, and secure and easy development service given current programming

models. That is to say, with or without minimum code changes, how can we enable applications to dynamically

optimize resource utilization to gain better performance when a new unique/duplicate/competitive resource

is added at runtime? How do we ensure that they flexibly and seamlessly cooperate with multiple existing

computing models like cloud and fog computing? How do we dynamically extend or modify an application

4



Figure 2.1: Types of Computational Resources

Figure 2.2: Number of devices
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functionality by redistributing resources for high availability, performance, and scalability? How do we

develop applications and evolve them at runtime along with improved or new technologies on the network,

bandwidth, or with better/competitive resources available? How do we build applications without worrying

about the coded resources that have been changed and replaced at runtime? Can we build applications

that do not rely on the resources available at design time? How do we build applications that can run

easily across different platforms? How do we help people, who do not have coding knowledge, to improve an

application’s performance or to extend its functionality? These questions, along with constantly changing

network environments and available resources, present challenges that require the development of a new

computing model that is flexible and dynamic.

In the following chapters, the following contributions are discussed in detail:

1. Propose a new computational model, called Domain Computing, in Chapter 4

2. Build a prototype of the Domain Computing model in Chapter 5

3. Examine the model’s feasibility and effectiveness in Chapter 5 with respect to its performance of:

• Network throughput, response time, and their variability

• Resource publishing and subscription

• Secured communications

6



Chapter 3

Related Works

A computational task involves multiple components to accomplish the task by using a computer, network,

operating system, software, etc. They all can be seen as resources in general. Regardless the computational

models, resources are always their fundamental part although they manage the resources in very different

ways. In order to understand the difference with respect to resource management between domain comput-

ing and the previous generations of computing, it is necessary to review each generation of computing and

how they utilize the resources. I/O is another critical component in the computational models. It connects

the resources together and outputs the final results. Different I/O patterns are used in different scenarios.

Applying an appropriate I/O subsystem to the domain computing is crucial. So in this chapter, different gen-

erations of computing and their representative models are reviewed including mainframe, PC, client/server,

cluster, grid, ubiquitous, SOA, utility, cloud, MCC, fog, iot, and micro-service. Different I/O patterns are

reviewed as well including UNIX pipe, message queue, stream, batch, ESB, and dataflow.

In the 1930s, when the first computers were invented, the computer as a new term had been used for almost

a century [65]. The purpose of computation also has been moved far away from war services. Computers

are used as control systems for a very wide variety of industrial and consumer devices. Their size is from

room or factory size like a data center, portable size like a personal laptop to palm size including tablet,

smartphone and even smaller wearable devices. Not only do they play an important role but also completely

change the ways of our lives. File Management and Document processing software allow us to organize

data/information in much more efficient and effective way. After networks, especially Internet, connect

million of devices together, applications are not limited in local anymore. Services like web, mail, storage,

trading information, calendar, weather forecast are widespread among the networks. We can consume these

services from anywhere hence bringing about mobility and conveniency to our lives. Meanwhile, computers

are changing our lives along with their decade’s history, computation model relying on these computers has

evolved many generations as well. In this chapter, different generations of computation model are discussed

and the problems of those models are identified.
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Figure 3.1: The First Generation: Local Computing

3.1 First Generation: Local Computing

In 1936, Alan Turing presented the formulation of a computational engine called the Turing machine, which

was the first vision for computers and influenced the architecture of all future computational devices [65].

The world first real computer was built during World War II for message decryption purposes.

3.1.1 Mainframe

Since Turing’s machine, large mainframe computers have been built. Large companies, such as IBM and

DEC, developed many different types of mainframe computers [9]. Because of its complexity and cost at

the time, mainframe computers were only bought and consumed by large corporations and used for critical

tasks. For example, the US government has used mainframe computers for both its moon landing and

military decryption of enemy messages. The price and size of mainframe computers put it out of the reach of

affordability for individuals. The mainframe computer can automate much of the data processing and support

business activities involving tedious calculations. Although a mainframe computer could support many users,

computations were done within a single, local computer. All resources needed for such computations must

be found in a local environment.
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3.1.2 Personal Computer

From the late 1960s, visionaries recognized opportunities for improving human performance through indi-

vidual tasks and computation [20], and a computer designed for individual use was produced. The most

well-known symbols of the era of the personal computer were IBM PC and Apple II. For example, PC ex-

plored applications for individuals to automate various calculations, such as Spreadsheet. PC sales boomed

in the 1980s after their price became more affordable as compared to the large and expensive mainframe com-

puter. Corporations started buying PCs for their employees, which led to PCs finally moving into homes.

Like mainframe computers, PCs accomplish all computation tasks on a local CPU and memory, meaning

that the computational resources are centralized in a single local machine.

3.1.3 Summary

The first generation of computing started the era of human automation computing. However, computational

resources were completely centralized in local machines, as shown in Figure 3.1, due to the various limita-

tions of technologies at that time, including network, protocols, and the need for communications between

computers.

3.2 Second Generation: Network Computing

The first generation of computing ran tasks using local resources. Although these first generation computers

became more powerful in terms of higher CPU frequency, larger and faster memory and disk storage, they

were missing an efficient way to exchange and share information. This limitation of first generation com-

puters limited applications and the ability to accomplish complex tasks in efficient ways. Floppy disks could

transport data but they were less effective, had less capacity and were very costly. In the 1960s, ARPANET

was developed and symbolized the start of the second generation of computing, network computing. In 1965,

Thomas Marill and Lawrence G. Roberts created the first wide area network (WAN). In 1969, a group of

universities, including the University of California at Los Angeles/Santa Barbara, the Stanford Research In-

stitute and the University of Utah, connected and exchanged data together despite their limited bandwidth

of 50Kb/s, which looks tiny in comparison today’s bandwidth. In 1973, Robert Metcalfe proposed Ethernet

at Xerox PARC, which is one of the fundamental protocols for computer networking.

3.2.1 Client/Server and Browser/Server

Once computers can connect via networks, network applications are possible. Network applications run at

the network application layer and above in the TCP/IP stack. Network applications provide data storage,

manipulation, presentation, communication or other capabilities, which are often implemented using a client-

server or peer-to-peer architecture based on application layer network protocols [11] [3] [57]. For example,
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Figure 3.2: The Second Generation: Network Computing

file sharing and video broadcasting. In a network application, there are two distinct roles: server and client.

Usually, the server runs on a dedicated powerful computer and offers different services, which can be accessed

via networks by the client. Although the client and server can both run on the same machine in many cases,

they typically run on different computers in order to achieve a better performance and balanced workload.

3.2.2 Cluster

As the computation tasks become complicated and hard to accomplish on a single machine, cluster computers

were developed to solve such problems. A computer cluster consists of computers connected together via

public or dedicated networks, and they can be viewed as a single system that provides services. Clusters are

usually built for improving performance and availability [18] [71] [70] [24]. A computer cluster can be from the

simplest form of a two-node PC system to the most complex form of a supercomputer. Although each cluster

size is different, the cluster architecture can also be used to achieve very high levels of performance. The TOP

500 fastest supercomputers are often built on many clusters. A cluster relies on a centralized management

approach which makes the nodes available as shared servers. A cluster differs from other methods such as

peer-to-peer or grid computing, which also use many nodes, but with a far more distributed style.
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3.2.3 Grid Computing

Each node in a cluster is set to perform the same task which is controlled and scheduled by software. For

example, you can access and retrieve the data that is queried from any node in a database cluster. Each

node does the same job to locate the data, grab the data and return the data to you no matter which node

you connect to. Instead, grid computing is a distributed system that contains the collection of computer

resources from multiple locations to accomplish a common goal [31] [10] [69] [16] [69]. Each node in a grid

performs different tasks/applications. The computers and clusters in a grid are loosely coupled and connected

via heterogeneous networks. The size of grids are quite varied and are geographically dispersed. Some of the

grids can also be very large, spanning across corporations, cities and even states and provinces. Grids are often

constructed as general-purpose systems via middleware software libraries. The middleware is used to divide

tasks into pieces and distribute them on several computers or clusters. Coordinating different applications

on grids is complex due to distributed computing resources. Grids are generally used for computationally

intensive scientific, mathematical, and academic problems, and/or economic forecasting and data processing

in support of e-commerce and Web services in commercial corporations.

3.2.4 Ubiquitous/Pervasive Computing

Unlike the server computing models discussed above, ubiquitous computing focuses on the user side. In the

1980s, Mark Weiser [64] articulated a new model whereby computing is anytime and everywhere. Weiser

envisioned individuals owning and interacting with multiple devices possessing with different sizes and capa-

bilities. Similar to personal desktop computing, ubiquitous computing can use any device, in any location,

and in any format. The computers are not in a single form, and they could be laptops, mobile devices and

even home appliances like TVs or fridges. The early forms of ubiquitous computing, such as PDAs (Personal

Digital Assistant), were simply used to synchronize calendar and contact information from PCs via wired

cables so that people could continue to process data and information when they were mobile [63]. As network

technologies, especially wireless networks, improved and become available in more places, Synchronization

not only became more efficient but many other applications were also developed, which significantly impact

our lives. After the Internet had been widely adopted, portable devices were able to engage remote services

around the world when users moved and traveled. Also, the processing power of mobile devices can now

compete with PCs and the applications used to run on PCs are running on these mobile devices. Ubiquitous

computing engages various technologies including networks, software middlewares, artificial intelligence, sen-

sors, user interfaces, Internet, and protocols so as to allow a better and virtually seamless user experience

[63] [39] [2] [64]. Sometimes, ubiquitous computing is also called pervasive computing. Pervasive computing

engages smart software layers to detect changing computing environment, analyze situations through some

AI components, and to deliver consistent and seamless services - although context and user-relevant data

detection are complex [53] [22] [51]. Users are not concerned about how to adjust the software to adapt to
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new environments. Nevertheless, ubiquitous and pervasive computing share a vision that inexpensive and

small devices with network connections are distributed at all scales throughout.

3.2.5 Summary

Because of networks, the second generation computing significantly improves data availability and portability

so that computing resources can be efficiently shared among the networks. A lot of network applications have

changed the way we read, the way we shop, and the way we live. Networks bring opportunities to consume

computing resources around the world and, again, they are not limited to a local environment. The network

applications allocate, utilize, and collaborate wider distributed network resources to provide a single and

compound service, like file service, mail service, and web service for users to consume.

3.3 Third Generation: Service-Based Computing

While first generation computing only utilizes computing resources locally, the second generation computing

can consume the resources distributed around the world via networks. Although network computing sig-

nificantly improves data availability and portability, it primarily builds a single and compound service as

a computing resource, which simplifies application development. One classic example is a web server. At

that time, web servers provided a single front web page that integrated all news, stock, weather or the other

information together. The problem of a single front page was that if we only wanted stock or weather up-

dates, we had to download the entire web page, do our own page parsing, and then grab the information we

needed. Third generation computing, also called service-oriented computing, tries to solve this problem. The

basic idea behind this computing model is to break a gigantic application into smaller services, so that users

can consume the services on demand. On-demand service consumption also pushes application development

into consuming remote services instead of obtaining all the resources in local and run tasks locally. Services

can be discovered from networks via Service-Oriented Architecture (SOA). This not only allows you to push

complex tasks that run in remote but it also speeds up the application development cycle by focusing on

message processing and result presentation.

3.3.1 Service-Oriented Architecture (SOA)

As time changes, services become fundamental components of applications, especially in enterprise environ-

ments. SOA is a design paradigm used for software development and deployment [46] [28] [38] [44] [12]. An

application can be composed of single or multiple local and remote services via communication protocols and

networks. A service can be seen as an independent unit of functionality and can be implemented and run

on different programming languages, platforms and locations. Because of this loose coupling characteristic,

services can be developed independently from different vendors, products, and technologies, which accelerates

development and deployment cycles. A service can engage multiple services and combine them in an ad hoc
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Figure 3.3: SOA Architecture

manner. SOA makes it easier to distribute services over networks, cooperate and collaborate with the other

services so that it can build applications quickly from available services. For example, an online shopping

website may utilize the services from its shipping partners and allow the customers to track their deliveries.

This same shopping website may also utilize payment services from VISA or Mastercard organizations to

speed up customer payment processes. However, all the underlying services are transparent to the customers.

Customers can complete shopping via the website as a single integrated service.

In SOA, there are three distinct roles required: (1) service provider, (2) service broker, and (3) service

consumer. A service provider is an entity who provides actual services and register these services to a service

broker with description metadata, which indicate the characteristics of the service, data format, and how the

service is called and how to parse messages. A service consumer asks a service broker to list all its registered

and available services then it communicates to the service providers directly where the chosen services are

running.

3.3.2 Utility computing

Mainframe computers used to dominate in the business world, particularly for large organizations. Mainframe

computers offer strong computing power and storage to support critical business tasks, including business

transactions and databases. However, mainframe computers are not always used nowadays because better x86
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servers have changed the market. As Intel and AMD processors perform much better, PC architecture servers

become even more competitive, not only on performance but especially also on price. A mainframe computer

can easily cost more than a millions dollars, which can only be afforded by a few large corporations. As cost

effective PC servers came into the market, they become very competitive for medium and small business. In

fact, more PC servers are deployed in worldwide data centers.

Another problem in the business world is peak hours. For example, Christmas time is a busy season for

promotions. Shopping volumes are increased beginning in early December, and this volume can be 3-5 times

more than the normal volume for the other months of the year. Handling a large amount of requests is never

easy in a short time . The companies have to build a ”monster” system to support the transactions during

this time. Unfortunately, the cost efficiency of such a business model is very low because the extra processing

power is significant, and energy and maintenance cost are completely wasted during the non-holiday seasons,

which are the majority of a year.

If there is a way to maximize the efficient use of computing resources and minimize associated costs,

that would be vital for businesses. Businesses can add and remove computing resources on demand. Utility

computing is a service-oriented computing model. Utility computing packages computing resources, such as

computation, storage, and services, as a measurable service and charges based on usage [48] [45] [50] [15]. This

is just like paying electricity, water and gas bills based on how much we use. The utility model reduces the

initial cost to acquire computer resources and add more as needed later. Utility computing usually engages

virtualization technology so that storage or computing power. can be constructed and rented dynamically or

when needed.

3.3.3 Cloud Computing

Utility computing solves the on-demand computing problem and allows computations run in a pay-as-you-go

fashion. Utility computing can dynamically add new computing resources like computers, networks, and

storage as needed. Hardware virtualization allows the seamless extension of current computing capability

by adding virtual machines, or VMs, as one of core technologies adapted in utility computing. Some of the

utility computing providers also integrate software middlewares and development environments into the VMs,

which allows developers to concentrate on application logic instead of building platforms and infrastructures.

Nevertheless, utility computing provides both platform and infrastructure services in a pay-as-you-go way.

However, utility computing lacks yet another important functionality which is software as a service. For

example, database services or big data mining services. In recent years, cloud computing has become popular.

The IDC forecast for 2013 - 2017 shows that public IT cloud services will have a compound annual growth

rate (CAGR) of 23.5%, or five times that of the IT industry as a whole [35]. This growth presupposes that

more business will move to a cloud platform in the near future.

Cloud computing refers to both the applications delivered as services over the Internet and the hardware

and systems software in the datacenters that provide those services [4] [42] [19] [72] [34] [5] [32]. Cloud
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Figure 3.4: Cloud Computing

computing can enable ubiquitous, on-demand access to computing resources like computer networks, servers,

storage, applications, and services, which can be rapidly deployed with the least amount of management

effort. Furthermore, cloud computing avoids a company’s upfront infrastructure costs like building servers

or clusters so that the company can focus on its core businesses. Without the burdens of infrastructure, a

business will have its applications up and running faster, with easier management and lower maintenance

costs, and the flexibility to adjust computing resources according to workloads or new business demands.

Cloud computing also pushes business models to service integration.

In cloud computing, service types are clearly cataloged. Cloud computing offers three major types of

services: (1) IaaS, (2) PaaS and (3)SaaS. First, IaaS (Infrastructure as a Service) providers offer computing

infrastructure, virtual machines, and other resources, as a service to users. The virtual machine abstracts

the user from the details of infrastructure like physical computing resources, location, data partitioning,

scaling, security, and backup. IaaS also offers additional resources such as a virtual-machine disk-image

library, raw block or file storage, load balancers, IP addresses, firewalls, and virtual local area networks and

software bundles. Cloud users install operating system images and the associated application software on the

virtual machines. Although the OS and software are still needed to be maintained, the physical computer

maintenance cost is removed.

Second, PaaS (Platform as a service) offers application developers a development environment. Necessary
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Figure 3.5: Mobile Cloud Computing

toolkit and standards for development are provided. The service delivers a computing platform, typically

including operating system, programming language execution environment, database, and a web server. Some

vendors even provide a scalable infrastructure to scale up. So, application developers can develop and run

their software without infrastructure worries.

Third, SaaS (Software as a service) allows users to gain access to application software. Application

software is running somewhere in the cloud, which is under management by the cloud infrastructure and

platform. For cloud users, this eliminates the need for installation, execution, maintenance, availability, and

scalability, and load-balancing. Cloud users can access the software as a single access point from cloud clients

without knowing where it is running. SaaS is usually charged as a pay-per-use basis or a subscription fee.

When we benefit from cloud computing’s simplicity, flexibility, and efficiency, we do not care about the

locations where the services run. The services can be located in the data center in your city or another end

of the world because a faster Internet makes it possible. So the computational resources used for providing

services are much more widely distributed. Cloud computing does not only make services available over the

Internet but also allows companies to build a global IT infrastructure.
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3.3.4 Mobile Cloud Computing

When people start owning multiple devices, such as tablets and smartphones, a lot of daily-used applications

have been pushed from the traditional desktop and laptop computers to those mobile devices. Also, wireless

communication technologies like WIFI and cellular networks have become sophisticated with higher band-

width, meaning that it is possible to access services on the Internet from such small devices. Cloud services

used to be consumed by the relatively powerful personal computers, but are now being moved to smart

devices. Mobile Cloud Computing (MCC) connects mobile devices with cloud services via wireless networks

to explore and utilize more computational resources [26] [30] [47] [60]. Mobile devices’ rich user experience,

combined with the cloud’s rich services and powerful processing capability, makes mobile applications more

toward unrestricted functionality, storage, and mobility. Clouds provide mobile device services at anywhere

and at anytime through the Internet, regardless of heterogeneous environments and platforms. Resource-

constrained mobile devices can push intensive computational tasks to clouds and then simply present their

results on screens.

3.3.5 Fog Computing

Cloud computing enables highly scalable and available computing platforms that can be configured to meet

constant application changes in a pay-as-you-go mode. So, the large volume of centralized data volume can be

processed in a fast and efficient way in scalable clouds. However, the centralized data processing in the cloud

fails to achieve real-time analytic decision making when data sources are available across multiple locations

and networks with low latency are unavailable.

Privacy is another security issue for cloud computing. The cloud is, generally, built and owned by large

IT companies and, in many cases, that makes users not want to upload and store their sensitive and personal

data into an uncontrolled cloud environment. For example, activity tracking data. In those cases where users

do not upload their data, cloud computing can not help process it.

These issues create the need for the development of an alternative paradigm that is capable of bringing

the computation to those capable devices that are geographically closer to those devices on the edge of the

network than they are to clouds, building local views of data flows and aggregating data to be sent to the

cloud for further offline analysis. This is where fog computing fits. Fog computing is a distributed computing

paradigm that fundamentally extends the services provided by the cloud to the edge of the network [14] [56]

[13] [59] [1]. Fog computing can function as an intermediate layer to accomplish tasks without sending to

backend clouds. Furthermore, fog computing utilizes management, networking, and storage to bridge data

centers and edge devices. Fog computing helps reduce network traffics, which is particularly useful when

the network bandwidth is restricted and a fast response time is required. While a lot of simple tasks and

decisions can be processed quickly in fogs without unnecessary delay in clouds, it provides a better control

of privacy and optimization by utilizing all of the local computational resources.
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Figure 3.6: Fog Computing

3.3.6 IoT

Although networks have been developed for decades, and millions computers are connected to Internet already,

there are still many devices that do not have connections due to limitations in functionality, energy, and size.

In 1999, Kevin Ashton raised an idea of a global network of objects connected to RFID (Radio-Frequency

Identification.) This global networkof RFID-connected objects is considered the original form of IoT (Internet

of Things), although this concept has been far extended. The IoT in recent years has grown very fast.

From 2003 to 2010, the number of devices connected to the Internet increased by 25 times [29]. The IoT

interconnects heterogeneous devices together from different manufacturers with diverse functionalities [37]

[62] [7] [33] [58] [43] [40]. The IoT expects good connection coverage to different kinds of devices and services.

The connectivity of the IoT even extends the Internet to those devices without Ethernet interfaces like sensors

and wearable devices. Additionally, this connectivity enables advanced applications and smart cities, smart

homes, and smart health. For example, people can monitor their health via their smart watches or wearable

monitors. The history health data is analyzed through remote data mining services in clouds. The IoT not

only utilizes machine-to-machine (M2M) communications, heterogeneous networks, protocols, and domains

but also engages an enormous number of objects. The communicating objects are shifting from computer

systems to sensors, actuators and smart embedded devices in vehicles, buildings, and public facilities, which

become principal objects in the IoT context. The physical objects can be represented as sensors that convert
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Figure 3.7: Internet of Things

physical world dimensions to cyber worlds. Because of this capability of mapping/conversion, the term

of ’Things’ can now refer to various devices such as heart monitoring implants, biochips on farm animals,

pollution monitors in city waters, automobiles with built-in sensors, safety analysis devices for environmental

and food monitoring or even field operation devices that assist police in search and rescue operations. The

IoT offers many possibilities to enable advanced applications that will result in improved efficiency, accuracy,

and economic benefits. With the expansion of enormous sensors, the IoT generates massive amounts of data

from diverse devices and locations, which challenges the way we index, store, and process data. Another

big challenge is managing a large volume and variety of computational resources that are connected to

heterogeneous networks.

3.3.7 Micro-Service

Although Peter Rodgers introduced ”Micro-Web-Services” in 2005 [49], it was not until 2011 that micro-

service was first described in a software workshop [27]. Micro-service was then explored as an extension of

SOA. Micro-service, seen as a fine-grained SOA architecture, can be used to build distributed systems in a

fast, flexible and scalable way. The principle of micro-service is to build an atom service that provides a

fine-grained form of a single complete functionality, so that it is easy to test, deploy, and replace. Because

micro-service is a symmetrical architecture instead of hierarchical one, it is elastic, composable, and used for
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Figure 3.8: Microservice Architecture

building modular structure applications. The benefit of breaking down a big compound service into smaller

services is that the cohesion is enhanced while the coupling is decreased. This benefit not only gives the

flexibility to scale a system up and down at any time, but also to accelerate the cycles that we implement

and deploy applications by continuous refactoring. As extended from SOA, micro-services have some similar

features with SOA. Both services communicate with each other over a network and can be implemented in

different programming languages and platforms as needed. However, micro-service differs slightly from SOA.

Both are service-oriented architectures but with different goals. SOA focuses more on reusing and integrating

various existing services, whereas micro-service focuses on building an incrementally evolving system, which

means that at the beginning of building a system we do not have to build everything but, as time progresses,

we can easily add, improve, and redeploy functionality.

3.3.8 Summary

The service-oriented third generation computing provides functionality by breaking down applications into

services, on-demand computing through utility, and cloud infrastructures and ubiquitous accesses from wide-

spread geographical networks. As figure 3.9 shows, services as primary computing resources are far spread

from local to worldwide. Service-oriented third generation computing loosely couple applications and servers,

which make services easy to scale up with higher availability. As network technologies become prosperous,

20



Figure 3.9: The Third Generation: Service-Oriented Computing

and millions of small IoT devices connect to networks, a variety of services will continue to bloom in terms

of their type, number, and location. The complexity of locating, utilizing, and optimizing computational

resources becomes even more challenging.

3.4 Input/Output Patterns

3.4.1 UNIX Pipeline

The concept of pipelines was proposed by Douglas McIlroy during the UNIX development at Bell Labs [41].

The UNIX pipeline is named by analogy to a physical pipeline because of conceptual similarity. In Unix

systems, pipelines are widely used to connect processes’ inputs and outputs. Unix allows the grouping of

processes by connecting them together with a special commands so that the output of each process directly

feeds into the next one as input. For example, this UNIX command line:

ls− al | grep key

filters out the file names containing the key in the current directory where the command runs. Although

UNIX allows pipelines to establish connections between processes, only standard streams can flow in the

pipes including stdin, stdout, and stderr and they can only build in a local system.
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3.4.2 Message Queue

As a different paradigm to communicate between processes or machines is message queue which provides an

asynchronous communication paradigm. This paradigm refers to when a sender sends a message, it is not

bound to a receiver at the same time. The receiver can receive the message at another time. This loose

coupling between senders and receivers gives a more flexible and efficient way to communicate. The messages

sent out by a sender are put into a queue before a recipient receives and removes it from the queue. The

sender’s thread or process runs even more efficiently because it is not blocked to handle the next instructions.

Message queues have been widely used in a variety of systems, especially heavily used in communication

systems and the communication industry. In a heterogeneous system environment, the message queue is a

better way to communicate by removing differences among systems and platforms. Although the message

queue has advantages on asynchronous communication, its effectiveness is limited by the capacity of the

queue.

3.4.3 Stream and Batch Data Processing

From a data processing perspective, there are two main methods to handle data: streaming and batching.

The data can be a message, raw binary or have a finite length. A stream is a sequence of data elements that

are continuously available over time. A batch job is a series of data elements where each is on a set of inputs,

rather than a single or infinite input. It takes a series of steps to process the input set. Streams are processed

differently from batch jobs. The system can not handle streaming data as a whole all at once because the

data continues flowing into the system in a potentially unlimited stream. Streaming data can be converted,

transformed or filtered as new outputs or can become inputs of the next processes. IoT devices typically

produce streaming data because millions of sensors continuously generate a massive amount of data every

second. Batch processing is very different than streaming data. Unlike streaming data, batch data will not

be processed until an entire set of data has been received because the size of inputs can be calculated and

managed. For example, bank transaction systems typically shift a large batch of data for processing after

business hours. In general, batch processing has a better efficiency and flexibility of data processing than

stream processing but, in many cases, stream data is the nature of data that is produced by sensors.

3.4.4 Enterprise Service Bus

In service-oriented architecture (SOA), services are distributed not only over different types of networks

but also heterogeneous systems. Different types and generations of networks use variety of hardware and

software protocols to communicate, and heterogeneous systems have their own software stacks, metadata,

and protocols in order to exchange information. Hybrid systems run together to provide business support

due to reasons like legacy, vendors, and functionality, particularly in an enterprise production environments.

An enterprise service bus (ESB) is a software architecture model that is used for designing and implementing
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communication between heterogeneous and complex applications and systems [21] [54]. ESB connects various

services and components over networks, and allows them exchange data by using a standard, structured, and

general purpose concept for describing implementation of loosely coupled systems because of its similarity to

computer bus concept. That is to say, ESB promotes anagile and flexible communication infrastructure for

enterprises.

3.4.5 Dataflow

Dataflow is a term used in computing that focuses on stages instead of actors so that dataflow oriented

programming becomes a data-centric programming model [36] [6]. Dataflow models a program as a directed

graph of the data flowing between operations. Data is exchanged and managed through connections and flow

policies defined by users. In a traditional program data is treated as a series of instructions that occur in a

specific order and then the program executes these instructions one by one. A dataflow program, however,

focuses on data movement and the connections between the input and output operations. Operations are like

black boxes and produce results when all of the necessary inputs are ready. The boxes can be reconnected

by flows to form different applications without the internal changes.

There are two major programming categories in a dataflow programming paradigm: reactive programming

and flow-based programming. Reactive programming refers to data orientation and change propagation.

Any change applied to the source data will be propagated along the flows automatically once a data flow is

established. For example, z in the expression z = x + y will be automatically updated if any value of x and

y is changed. A classic application is Spreadsheet, and if one cell is changed then all of the other cells that

reply to this cell are changed too.

Flow-based programming (FBP) is the second programming category in the dataflow programming

paradigm. FBP defines an application not as a single, sequential process. Rather, FBP defines an ap-

plication as asynchronous processes connecting and communicating by data streams to form a network as

an application. FBP focuses on the data generated, flow directions, and their transformations to the desired

output. In FBP, the network is defined externally to the processes. Different processes in the network execute

the same or different functions, depending on the computing contexts. The data belongs to either a process

or a transit status between two processes at any given time. Because it treats the processes as a black box,

FBP’s loose coupling of the processes means that they can be distributed over networks via proper protocols.

Dataflow works well in parallel, large, and decentralized systems. Dataflow can be used for concurrent and

stream processing because of its data-centric nature. Since SOA is a loose coupling architecture, dataflow

fits it well. Examples of cloud dataflow platforms are Microsoft Azure Data Factory, Google Cloud Dataflow,

and Apache NiFi.
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3.4.6 Summary of Related Works

As shown in Table 3.1, computational resources have been changed dramatically in terms of variety and

distribution along the previous generations of computing. The first generation of local computing provided

and linked the resource locally, which greatly limited the possibility of applications. The second generation of

network computing significantly improved data availability and portability so that computing resources could

be efficiently shared among the networks. The second generation of network computing contributed a lot to

the resource’s distribution but not much on the variety. By breaking down traditional applications, the third

generation of service-oriented computing took the advantages of network computing including the utilization

of different networks, and provision of numerous services, and functionality precision. Furthermore, the third

generation of service oriented computing loosely coupled applications and servers, which make services easier

to scale up with higher availability. However, all three generations of computing lack the ability to connect

to the selected resources and form a virtual computer, or a domain. This ability to connect resources to form

a virtual computer becomes a necessity, particularly in the environment where a number of the available

resources becomes larger and larger thus making them disperse worldwide, where they cross heterogeneous

platforms and networks. Also, current I/O models are unable to connect to such resources together in

a efficient and effective way. Although some I/O patterns, like UNIX pipe, and ESB and dataflow, can

connect to some types of resources, none can connect resources to form resource networks across systems and

platforms with access control within a functional and defined domain level instead of an application level.

A new generation of domain computing is needed because of these missing functionalities in the current

generations of computing. A new generation of domain computing is discussed in the next chapter.
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Local Computing Mainframe, PC 1) provides and links the resource completely in local

2) greatly limits possibilities of applications

Network Computing CS, BS,

Cluster,

Grid Computing,

Ubiquitous Computing

1) significantly improves data availability and portability

2) resources can be efficiently shared

3) contributes a lot on the resource’s distribution but not

much on the variety

Service-Based Computing SOA,

Utility Computing,

Cloud Computing,

Fog Computing,

MCC, IoT,

Micro-Service

1) breaks down traditional applications and provides nu-

merous services with precise functionality

2) create a variety of resources via heterogeneous networks

with a higher bandwidth and faster response time

3) loosely couples applications and servers which enables

services to easily scale up with higher availability

4) still lacks the ability to connect to selected resources over

networks and form a virtual computer

I/O Patterns UNIX pipeline,

Message Queue,

Stream, Batch,

ESB, Dataflow

1) connect to some types of resources in a certain way with

regards to scenarios

2) none of them can connect resources to form resource

networks across systems and platforms with access control

within a unit

Table 3.1: Summary of Related Works
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Chapter 4

Domain Computing and Architecture

Domain computing proposes a new way to manage computational resources and applications (Figure 4.1.)

Domain computing dynamically manages resources within logic entities, domains, and without being bound

to physical machines so that application functionality can be extended at runtime. The domains can be

created for different purposes, and users can have as many domains as needed. The computational resources

in domains can be added, removed, and updated locally and remotely, even from existing computing models

like the cloud, fog, and IoT devices. A resource in the domains can be seen as a function with self-executing

capability. Furthermore, a resource in the domains, unlike traditional resources, is not a static resource.

Since it can be executed, this resource can be easily redistributed to various platforms and systems. Also,

the data link between resources can be relinked at runtime. This relinking is an excellent feature because,

not only does it allow dynamic function extension, but it also changes the application development model.

A traditional application development model requires every resource to be implemented precisely at coding

time. However, domain computing development model will allow applications to start with a small amount of

functionality but then evolve with time without any changes to the code. Due to this dynamic feature, users

can perform a lot of runtime optimization for performance, scalability, and availability as well as function

extension by best utilizing the resource pool and relinking data flows between resources. In this case, the

dynamic feature becomes a critical to functionality when the computational resources change dramatically

in terms of variety, number, and function with respect to IoT devices.

4.1 Architecture

Domain computing consists of different parts and these parts perform various roles in the system, as shown

in Figure 4.1.

An application is the top layer in the architecture. Applications are the programs that take the inputs

and transforms them to different I/O ports following a logical sequence. An I/O port indicates a data flow

for a certain functional purpose, and it can be a local file, a sensor, a transformation function or a remote

stream. An application can be viewed as a logic set of I/O ports plus their connections. All data flows in

and out of the domain layer underneath.

The domain layer is the second layer in the architecture, following the application layer. The domain is
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Figure 4.1: Domain Computing Architecture
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a logical entity that represents a computer in traditional programming, and it can be viewed as a virtual

resource pool that includes all necessary computational resources needed for an application. A domain can

be defined in many ways depending on context. A domain can be all of the devices and their functions owned

by a single person, all of the resources required for a project, or even all of the computational assets in an

organization. The extent of a domain is at various levels and it ranges from an individual up to a large

organization. The domain layer provides inputs to the application layer and takes the applications’ outputs

for further processes. Since a domain is similar to the concept of a computer, the domain layer consists of

many components that manage the operation of applications and return the results from physical devices.

Task management, Resource management, and Access control are three main components of the domain

layer. Therefore having these three components in a domain will enable the management of all registered

resources, allow data and I/O ports to access based on user rules, and to schedule applications to run on

different devices and platforms.

The operating System (OS) layer is under the domain layer and all applications run within this layer. As a

traditional OS, it controls a physical machine and provides the ability to run the user’s programs. A physical

machine, like a PC, laptop, tablet or even a smartphone, has the real computation capability. However, in

this system, the OS layer extends the capability of the traditional OSs in order to provide services for upper

layers. In addition to providing existing functions, the OS layer also should provide resource management

in fine-granularity level so that all of the resources on the machine can be accessed and shared for different

computation purposes. A flow control subsystem is used to manage the I/O port connections between local

and remote resources at runtime. The flow control subsystem also maintains a complete list of data pipes in

the local. The OS scheduler extends functionality to handle different requests on the same resource by time

sharing or by another fashion. The resource conflict can be resolved in traditional OSs. All communication

I/O ports, especially network I/O ports, are placed in a different layer in an OS. These ports are underneath

of the flow control system so that applications can choose different ports for communicating, which will later

allow smart I/O routing in terms of availability and throughput.

Different key components in domain computing are discussed in the coming sections.

4.2 Components

Domain computing consist of several key components such as resource management, task management, and

runtime. These key components are distributed in different layers. Components in the application layer

will be discussed first, whereas components in the domain layer will follow in the next section. Finally,

components in the OS layer will be discussed.
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4.2.1 Application Layer

In previous generations of computing, the focus was on local resources, networking resources, and service

resources. Although networks are faster and more widely spread, computer processing is more powerful, and

application development models change along the resource supply chains. Computation and relevant research

has, so far, focused on the resource and service provision. There is no doubt that resources’ availability and

scalability are much more improved than in the past. In facts, availability is up to .9999999% failure time

per year, and is easy to scale up to hundreds of node clusters.

Although they are used for different applications, the technologies behind utility computing, grid com-

puting, and cloud computing are mainly used to provide services. For example, Cloud computing utilizes

clusters to provide uninterrupted services around the world, no matter IaaS, PaaS or SaaS, so that we can

consume services from anywhere with an Internet connection. This provision of uninterrupted services makes

calendars, emails, stocks and weather information, as computation resources, available regardless of time. A

client application running on a desktop, tablet or smartphone simply connects to the services via RESTful

interfaces to represent the results. The main computation task is pushed and accomplished on the cloud

side. Although, in many cases, a client can consume multiple services at the same time, and then filter and

aggregate the results to form a new presentation and screen output, it becomes a central point to control the

whole data flow, which means that all of the services have to flow to the central device first to be processed.

Networks have grown incredibly during the evolution of subsequent generations of computing. Networks

can be easily found nearly everywhere in our lives, like utilities such as water, gas, and electricity. Although

they have been used for different purposes, a variety of network technologies for short and long distance com-

munication have been developed, including Ethernet, Bluetooth, WiFi, and Celluar. Additionally, networks

provide a facility to connect and distribute resources within a large geographic area with high bandwidth

and fast response time.

Applications can be seen as running on a resource network. Each node in the network represents a

resource, and the edge between the node is a data link or flow. An application has to have its resource

network to run. The current computing models contribute to the creation of many resource nodes and

they will continue to create even more in future. However, connections between these resources are not

easy to build. Physical networks have been broadly built and applied, but data flow involves much more of

the networks and includes the connections between systems, platforms, software, and protocol stacks. For

example, utility computing and cloud computing have created many services over the Internet, but as users

we have to connect to different services from our client devices, grab all of the results from each service, and

then aggregate or analyze the final results in the local device. An application has to run locally as a central

control procedure despite computational resources being widely distributed over networks

So, there is a need to build a resource network, specifically a virtual resource network, to link all required

resources together, regardless of physical machines and locations. Applications do not run on a physical

machine anymore. Rather, they run on whatever resources are available in the network. Applications
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running no longer running on a physical machine is the one key feature that differentiates domain computing

from all of the other computing models. Actually, a traditional application can be seen as a special form of

domain computing where all of the resources are located on the same machine.

4.2.2 Domain Layer

The domain, as a key part of domain computing, is used to define the boundary of your computational

resources. A domain can be created for different purposes and it crosses multiple physical machines. A user

can have as many domains as needed. These domains contain and provide the resources needed to support

applications. The relationship between applications and domains is flexible. Many applications can run on

the same domain if the domain includes all of the resources required for each application. Or a domain only

run a dedicated application as a one-to-one relationship. The one-to-one relationship between a domain and

a dedicated application is related to application scenarios. For example, if you register every resource you

own from all your devices and machines, you can certainly run multiple applications using it. Conversely,

if you isolate a special set of resources from all of your resources, only a dedicated application will be able

to run on it. Thus, domains provide the flexibility and opportunity to manage resources and applications as

demand.

Resource Management

The resource management component, as a part of the domain layer, is used for managing all resources. A

resource in this context is a broad concept and any resource used for computation is considered a resource.

For example, a file operator, sensors, functions and communications are all considered resources. A finer

granularity of a resource is better to build dynamic applications, but a compound resource as a black box still

can be treated as a whole and viewed as a resource. The complexity of functions determines the granularity

of a resource. If a resource performs only a single and simple function, it has a finer granularity than the

one providing a single service that groups multiple functions internally. For example, a function returning

a file list in a current directory that is sorted by size is considered a compound resource because it includes

two functions: one function that lists all of the files in current directory and another function that sorts a

list according to the input list. Resources can also be virtual, meaning that they do not have to be physical

devices. Virtual resources provide great flexibility to redistribute data flows and extend the functionality at

runtime in dynamic environments.

As mentioned earlier, a domain is a logical entity that represents a traditional computer. The resources

required by the applications can be registered in a domain so that they can run tasks over the resources.

The number and type of resources registered in a domain are determined by applications, management, and

different scenarios. The more resources that are registered provides greater flexibility for different applications

while fewer resources that are registered are reserved for dedicated purposes.

In network computing, the appearance of networks has made a variety of resources possible, and this has
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been further extended in the service-oriented computing. Domain computing continues to extend resource

varieties by establishing a virtual resource network that crosses machines and networks. The resource man-

agement component builds a resource network within the domain, and each resource registered possesses the

possibility to communicate with the other resources within the domain boundary.

Resource management allows a user to add and remove resources dynamically with security checking.

For example, a new cloud service or a new computer can be added to a domain dynamically whether or not

there is an application running on the domain. In the case of removal, resources can be instantly removed if

there is no application that relies on a given resources. Also, resource management maintains the status of

all registered resources within the domain so that every application can utilize the necessary resources based

on their status.

The resource management manages all resources in a domain. Resource management maintains both

resources and virtual resources for applications’ inputs and outputs by adding, updating, and removing

operations. Resource management forms a domain resource network across machines, devices, and platforms

so that every resource can communicate with each other. Resources can be dynamically linked and replaced

in dynamic environments and demands because of their fine granularity and virtualization.

Task Management

The task management component is used to schedule applications that run on different devices and platforms

within a domain. Although it has some similarities to a traditional OS scheduler, the task management

component differs in a few ways. In a traditional OS scheduler, the tasks running on a machine are scheduled

by time slices and priorities, and it allows multiple users to share resources and can achieve certain goals like

maximizing throughput, reducing response time by minimizing latency or meeting time deadlines. However,

the task management component in domain computing behaves differently.

The task management component maintains a list of all of the applications running in a domain. While

resource management builds a virtual resource network, task management maintains path sets on the net-

work for each application so that an application’s data can flow between different resources. The running

application list is used for tracking purposes so that users are aware of which applications are running, what

resources are used and also how they connect. A domain is just a logic entity. The real data does not flow

in a domain but, instead, flows right into the next resource. The task management list is also used to adjust

applications’ runtime behaviors. A user or AI resource can change its data flow on the fly by connecting

to different resources available because of the knowledge of an application flow network from the list, . For

example, changing a video stream from a single-peer to multi-peers broadcast.

As described, the task management does not schedule applications as a traditional scheduler. Each

application has its priority as it does in a traditional application, and one task can have a higher priority than

the others. However, in the domain layer, the priority only represents a relative number among applications

within the same domain. The priority level information is used in the OS layer instead. So the priority
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Figure 4.2: Task Management
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is domain-bound. In the OS layer, the OS scheduler can schedule functions at a given priority locally.

Prioritizing is only required when two or more applications from the same domain run on the same OS

instance.

Task management needs a key function to make applications execute and collaborate with the OS layer.

Applications and their dynamic features are implemented by communicating and negotiating with OS layers.

The OS layer maintains local resources and functions and registers them into domains. Task management

can communicate with the OS layer and dynamically request modification to the data flows between re-

sources. This communication between the OS layer and task management makes function extension and

data redistribution happen at runtime when an application logic flow is changed.

4.2.3 Access Control

The access control component is responsible for maintaining the permissions for resources within a domain.

Within a domain, the resource management component builds a resource network, while the task management

component builds and maintains path networks for different applications. The access control, however,

provides the capability to control how a resource can be accessed. For example, access control determines

the owner of a particular resource or who has permissions to read, write or read/write and so on.

A resource belongs to the domain that physically owns it, and that domain has ownership of the resource.

For example, when an OS boots up, a default domain is automatically assigned to own all local resources.

As a service, a resource can be shared with other domains. Each resource maintains a list to check who

and how it can be accessed, and the shared domain registers the resource as its resource with permissions

and authentication information. In other words, a domain can own and share a resource. The basic access

unit is a domain. Access can be managed based on different functionalities that include reading, writing,

reading/writing, duplicating, and granting.

In previous computing models, like service-oriented computing, services are provided by processes or

applications. Whereas in domain computing services are provided in the function level. Due to services

being provided in the function level, the way in which domain computing manages the access to resources is

different. Unlike traditional access control, which is bound to users and passwords, domain access control is

based on the domain. Since applications run on domains, different users have their own instead of sharing

the same domain and the permissions are granted for those individual domains. In a traditional rule, a user is

bound to a system. Although we have the same username on different systems, logically we consider them to

be the same role. These usernames are actually considered different users with authentication. Domain-based

access control removes the physical bounds between users and systems. Domain computing allows a user to

have as many domains as needed so that they can build complex relationships between their domains instead

of their systems. For example, one of the user’s domains do not have access to a particular resource but

another one does. That domain, which has the access, can share the resource with the other one as a new

resource. The access control also requires that the OS layer identifies and registers the local resources to
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Figure 4.3: Access Control
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the domains so that the resources can be used and shared with all of the other domains. This detail of the

resource sharing will be discussed in the OS layer section.

4.2.4 OS Layer

The OS layer is the bottom layer of the domain computing architecture. The application and the domain layer

is on top of it. The application layer is a conceptual layer consisting of running applications, although they

are not traditional applications. Applications run on domains, and the domain layer provides the resources

that the applications require, maintains access to the resources, and schedules the applications. However, all

physical resources have to be provided by an underlying layer, OS layer.

The OS layer runs directly on physical computers. Like a traditional OS, the OS layer provides many

services that includes memory management, communication, and scheduling so that we can utilize the physical

devices attached to it and execute computation tasks. However, the OS layer behaves differently than a

traditional OS, which manages everything. The OS layer’s goal is to optimize local resources, share the local

resources at different domains, and to communicate with the domain layer for the purpose of relocating,

rescheduling or relinking the resources. The OS layer performs as an execution engine in domain computing

architecture instead of a manager. The OS layer can be assigned and run tasks from the domain layer

with the proper permissions. A domain is a logical entity, as such it requires physical execution engines in

order to run applications and produce results. The OS layer consists of multiple components in order to

provide computational resources to the domain layers. Each of the components is discussed in the following

subsections.

Communication Layer

The communication layer includes a physical communication device and its related device drivers. Any device

that can exchange information is considered a part of the communication apparatus. For example, Ethernet,

WIFI, Bluetooth, NFC, and even bus devices like USB and Thunderbolt are all a part of the communication

apparatus. These communication devices are considered data transportation facilities like cars and buses,

which are transportation tools for people.

The device driver controls the physical devices and ships data to the upper layers. All of the devices are

registered into domains and used for data transportation. These domains can be considered a communication

pool. The benefit of forming these domains into a single communication pool is that thae tasks can utilize

the best communication channels at runtime in terms of speed, scalability, and fault tolerance. Dynamic

routing between different communication devices makes tasks more efficient and effective. For example, ap-

plications can choose a faster communication device or parallel transport data via multiple communication

paths available in the communication pool at runtime. If the current communication devices crashes, the
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application can choose another available path in the pool.

As mentioned above, communication has been extended to a broader scope in this context. The com-

munication layer does not treat local, remote, logical and physical communication differently. This lack of

differentiation allows applications to focus on building logical data flows instead of binding to a particular

communication stack, for example TCP/IP. Virtual resources, as an important part of resources, makes this

possible and the details of virtual resources are discussed in the next section.

Resource Management

The resource management component was discussed in the domain layer. The resource management layer

is used to manage resources within a domain as a resource pool. Resources, including virtual resources, can

be dynamically added, updated and removed from the pool. The resources can then be distributed across

machines or networks, can communicate with each other and also form a resource network in order to run

computational tasks. However, the resource management stays on the domain level. In the OS layer, there

is also a resource management component. This component maintains and optimizes precisely local physical

resources. Compared to the domain resource management component, which performs global resource op-

timization and management, the OS resource management performs resource management for local resources.

The OS resource management maintains local resources as its primary goal. An OS must have a domain

and the domain can be either dependent or independent. A domain is independent if it does not own any

other resources from other machines or devices. This independent ownership of resources by a domain is sim-

ilar to that of a traditional OS and computer where the OS manages everything on the machine. However,

the domain can be be dependent if the registered resources are part of other domains.

The OS has a responsibility to register all of the identified local resources into the domain and the domain

then automatically becomes the owner of these resources. At registration, the capability of the resources is

registered in the domain inventory. For example, a keyboard has input capability, a screen has output capa-

bility, and a file system has both input and output capabilities. Since it has the ownership of the resources,

the domain can share the resources with the other domains. The OS ensures that all of the physical devices

are working, and maintains their status in the domain so that applications can utilize the devices based on

their status at runtime.

The resource management manages both physical and virtual resources, and virtual resources play a crit-

ical role in function extension at runtime. A virtual resource possesses certain functionality but no physical

device or mapping to a physical device with a different identity. Format transformation, protocol conversion

or data flow replication are examples of virtual resources. The virtual resource is extremely important because
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Figure 4.4: OS Resource Management
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it builds intermediate layers between inputs and outputs as they are needed. The inputs and outputs can be

either a physical or a virtual resource. A virtual resource is used a lot for data transformation including data,

file or protocol. For example, building a protocol within a protocol requires an application to send CoAP

data over a TCP/IP network. A CoAP virtual resource can then be built in such way that it transforms

user data as the CoAP payload and adds the proper CoAP header information to form a complete CoAP

package. The package can then be sent to a TCP/IP resource and communication driver and finally sent out.

The transformation is a general term and is not limited to a one-to-one relationship. For example, when an

application has a continuous data stream from a sensor as its input, a virtual data mining resource is applied

and its output is used for decision making. The data mining resource possibly requires more information to

draw a correct conclusion, so multiple sources of information might flow into the data mining resource in

order to produce a single precise output.

Additionally, a virtual resource can be built for data redistribution purposes. Data does not always flow

into a single resource. Fault tolerant and parallel computation, for example, duplicate data streams. A virtual

distribution resource can redistribute a single output to multiple resources like broadcasting or multicasting

at a local, remote or mixed machine. Also, a virtual distribution resource does not only forward output

but also loop output back to any resource. Another interesting example is smart virtual resources with AI

capabilities. An intellectual routing virtual resource can modify the data flow at runtime, and then select the

best communication path based on the status of multiple resources in terms of speed, bandwidth, efficiency,

and availability. Virtual resources give applications the flexibility to adapt to dynamic environments and

demands. Also, an application functionality, availability, and performance can be easily extended by these

virtual resources.

Scheduling is a standard component in an operating system, and it schedules multiple tasks running in a

preferable way in terms of priority and timing. Scheduling is also a part of resource management although

the resources and functions are scheduled instead of processes. In a traditional OS, a process or thread is

a basic unit to schedule while a function or resource is the basic unit in the domain computing. A loaded

resource is used to distinguish from the resources saved on disks and it runs in memory. The saved resources

can be invoked at any time and run in memory. As traditional processes, running resources in the domain

competes for CPU cycles and memory. All loaded resources have to be prioritized and run in such an order.

Particularly for those resources shared with domains, resources should be scheduled in such a fashion that

the resource is best utilized and isolated. Those resources saved on disks do not participate in the scheduling

because they are not yet running. The scheduling is based on priority, status, and other factors. Any OS

scheduling algorithm can be used for such scheduling but with some modifications.

Like any other resource, it is necessary to have a mechanism to control how a resource is accessed. Access
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control is included in this layer too. Access control allows the resource owner, usually the default domain,

to share this resource with the other domains and control who, when, and how they can be accessed. Not

all resources have to be shared but local resources can only be used for building local data flows. The access

granularity is based on the domain. As explained previously, a domain is a logic entity that run applications,

and it can represent a user, group, project or organization. A domain unifies different roles into one unlike

traditional user and group control. Users can create different domains to match different levels of accesses.

Once an OS is booted up, it identifies all local resources and registers them into a dependent or independent

domain. That domain automatically becomes the owner of those resources. The domain can share them with

the other domains by maintaining their access control lists. For those domains which are not the owner of

the resource, but share them from another domain, they still can share the resource with the other domains

as a resource proxy.

Runtime

Except for the communication and resource management components, the runtime component is another

important component in the OS layer. The communication component maintains local devices by drivers,

and registers them as resources into a domain while resource management maintains a resource pool in order

to schedule and share the resources. Along the time line, the resources could be changed, the applications

could require different resource paths in order to accomplish their tasks, or the resources could be shared

with more domains. A runtime component is required and is responsible for this management.

When resources or their status is changed, the runtime component can add, modify and remove any local

resources from the domain, including their status and metadata such as capability and ownership. Similar to a

traditional OS, maintaining all of the devices and resources is critical for all tasks and domains because avail-

ability determines if the tasks can continue running or if the domains have the capability to support the tasks.

Access control will keep changing as the resource are changed. Although there is an access control com-

ponent in the domain layer, it is a logic entity. Tasks like permission granting and authentication have to

be performed by the access control component in the OS layer. When a domain sends a request asking for

access to a resource, the runtime component can accept and deny the request, meanwhile, when the domain

has the permission and queries data, it checks if the request is valid with the proper credential.

The most dynamic changes are linkages, or flows, between local and remote resources. In fast paced

and rapidly changing environment, computational tasks are required to quickly respond to dynamic changes.

Each application has its paths to process data and accesses to different distributed resources. When domains

contain a greater variety of resources, and better resources become available, the application needs to adapt

to the new environment in order to gain better performance by relinking the resources at runtime. The
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access path in the domain resource network keeps changing not only because of different applications, but

also because of the same applications running and using different resources. A resource represents a node in

the resource network and a data flow represents a link between nodes. Once a new flow is required, a domain

sends the link request to all resources involved and the runtime components on corresponding OS layers

try to link to the other resources. The dynamic linkage feature is the key to adapt dynamic environments,

demands, and applications and, with this feature, all applications can run within the domains where all

required resources are available.

4.3 System Discussion

Domain computing introduces domains as a replacement to the traditional computer for running applica-

tions. Domain computing links different computational resources that are distributed over networks into

domains so that a user can significantly improve and optimize the resource utilization at a global level. By

negotiating with different layers, domain computing dynamically links different resources, shares resources,

and cooperates with domains at runtime so that the applications can adapt quickly to dynamic and chang-

ing environments as well as improve performance. Also, domain computing presents a new way to develop

applications, which are resource stateless based.

Domain computing is a computing system possessing various properties. In the previous sections, the

system architecture of domain computing and its core components have been discussed. In this section, some

important system properties are discussed, including scalability, availability, and security and the application

development model. Some user cases are also included in the following sections.

4.3.1 Scalability

Scalability is one of the most important properties of a system, and it measures the process capability when

a significant amount of work comes. Poor scalability of a system fails to support applications and business

opportunities. Also, it wastes investment into computational infrastructures. There are two major ways to

measure scalability: Horizontal scaling and Vertical scaling. Horizontal scaling, also known as scale in/out,

measures performance changes when additional independent computational nodes are added onto the system.

For example, a system can handle 50% more user requests by adding two servers into the file clusters. Another

scaling method is called vertical scaling, also known as scale up/down. Vertical scaling measures performance

changes after extra computational resources, like memory or CPU, are added into a single computational

node. For example, a system can handle 30% more user requests by adding 2GB memory and replacing the

old hard disks with faster SSDs.

Domain computing system can scale both horizontally and vertically. By adding local resources to a
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computational node, its domain has more resources to handle tasks. The added resources can be either

unique, duplicated or competitive. Any new unique resource added to a domain provides a new opportunity

to enable different applications. When a duplicated resource is added, it gives the ability to the node to

balance workloads from the original resource. For example, if an additional word counter resource is added,

a document can be calculated close to 50% faster, that is if the CPU is not a bottleneck because these two

tasks are running in parallel and each word counter only handles half the document. A faster resource, in

terms of speed and capability, will provide better performance if a competitive resource is added.

Domain computing systems scale horizontally similar to vertical scaling because of its decentralized ar-

chitecture. In general, a centralized system has limited scalability because the central point becomes a

bottleneck. A decentralized system has the advantage of scalability since the central point is removed, thus

removing the bottleneck domain computing treats all computational resources the same, regardless if they

are local or remote, and tries to utilize all the resources in the domain the best way possible in order to

get better performance, availability, and scalability. When a new node is added into a domain, the domain

can be extended by adding unique, duplicated or competitive resources on the new node, which is same as

vertical scaling. Since the domain sits across multiple machines, no matter where the resources are added,

the resources become part of the domain. The original workload can be distributed on the nodes, including

the new one.

Runtime system scalability is also important for many applications. Since some applications can not

be stopped, functionality extension is extremely challenging. For example, a large amount of sensor data

is needed for two different purposes and this data must be processed and analyzed. However, the current

system only handle one portion of the analytic work. The second portion of the analytic work can be done by

adding a new computational node. In the domain computing system, that sensor data stream can be easily

duplicated by adding a virtual distribution resource and forwarded to the new node. The new node can

completely handle the analytic work without an interruption to the original node and its flows. The domain

computing system is based on a distributed resource network. The domain computing system can easily

duplicate or relocate resources and dynamically build data flows at runtime so as to flexibly redistribute and

even redesign workload dynamically.

4.3.2 Availability and Reliability

Another important system property is availability, which measures the ratio of the total time that a system

continues to function. Availability can significantly improve user satisfaction, continue operations and com-

petitive advantage but at the same time can lead to less productivity, less revenue, increased operation cost,

bad profile, and even lawsuits. For example, a long system downtime of an eCommerce website can lead

to fewer customers interested in continuing to shop, and subsequently result in less revenue generated. The
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business’s reputation suffers because customers do not trust that the service can be delivered consistently.

High availability is critical, especially for applications such as banking, manufacturing, and utility produc-

tion and scientific research. Availability has various characteristics but reliability, continuous operation, error

detection and recoverability are the most important ones. To improve a system components’, reliability is

important because an increase in availability and reliability of each part within a system translates to a higher

availability of the system overall. The continuous operation ensures that a system has no, or a minimum,

downtime so that users can access the data and services at any time. Timely error detection helps to identify

system errors or potential problems in order to reduce system downtime. Once an unexpected event happens,

and results in a system failure, recoverability provides the ability to bring a system up and running in a short

period of time and minimize loss.

Domain computing provides the flexibility to manage the level of availability in a system. Each reliable

system component makes the entire system more reliable. Although software component reliability is about

improving the code’s structure and avoiding logic traps, like memory leaking or deadlocking, domain com-

puting makes these coding tasks simpler and easier because a resource only has a small functionality instead

of a highly complex functionality. Small functions require small pieces of code, which is easier to identify

and correct than larger pieces of code. In a domain, users can easily add duplicated or competitive resources

so that any resource failure can be quickly replaced by redundant resources, which will allow applications

to continue operating. Also, a domain computing system becomes fault tolerant because of its runtime flow

routing feature. All data flow can be rerouted at runtime if a resource failure is identified. Because the

rerouting is simple and easy to do, the applications do not need a complete stop and can be fixed at runtime,

which reduces the system maintenance cost. One such example is when an Ethernet connection is down: the

applications can still continue to work if there is a WIFI or BT connection. Alternatively, among all existing

connections, the best channel in term of bandwidth and speed is chosen. Timely error detection is important

to continuous operations. Problem identification that happens more quickly will enable a system to last

longer. However, error detection can sometimes be a costly operation sometimes. Domain computing allows

data redistribution online so that users can easily duplicate a data flow without interfering the current flow

for monitoring purposes. Even the monitoring can be relocated to a separate machine if the current machine

does not have enough CPU cycles. Once an error or failure has been detected, a user or a smart relocation

resource is notified. The smart relocation resource can resolve the problem automatically by relocating the

data flow to its duplicated or competitive resource without human interference. As discussed above, the

domain computing system can easily add and reroute data flows at runtime. A problematic system can be

quickly recovered by dynamic resource relocation, which enhances the recoverability of the system.
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4.3.3 Security

As more digital threats arise, security becomes a critical part of a system. Security issues are harmful to

users’ privacy and sensitive data, particularly in distributed systems. A secured system includes layers of

security components from communications to access controls.

Communication is a fundamental component for all network applications. Communication traffic is easily

exposed to 3rd parties. Although a wired network makes its traffic harder to be exposed, due to physical

accesses, a wireless network is much more vulnerable to this threat. Exposing a wireless network’s traffic

does not even require physical access. If a 3rd party user sits close enough to a wireless network, he can

pick up its signals and start listening. An easy and effective way to reduce such a threat is to encrypt

all communications from end to end. Domain computing can easily support communication encryption by

adding an encryption resource regardless of communication protocols underneath. The data is sent to the re-

source for encrypting before it flows to a protocol and communication resource so that all communications can

be encrypted. Users can add a variety of encryption resources like AES128 and AES256 for different purposes.

Local encryption is also critical because mobile devices and network accesses have become popular targets

of security breaches. Another big security problem for mobile devices is data breaching when mobile devices

are lost. Encryption of local data is necessary in many cases. Like communication encryption, the encryption

resource can be applied before any data is written to storage, which means that a system can share the

encryption resource that will prevent both communication as well as local breaching.

As network access becomes dominant, access control becomes a fundamental component to guard against

who, when and where with regards to access. In the domain and the OS layers, the access control component

has been discussed. A domain can own a resource and share it with the other domains. The resources can only

be accessed with proper permission like reading, writing, r/w or duplication. Although the permission is not

on the user level as in a traditional system, the domain rather than the user, optimize security management

globally across distributed resources over networks. Resources in domain computing are individual units so

that domain security has an even finer access control on each individual unit.

4.3.4 Development

Domain computing redefines applications and does not run like it does in a traditional system. A traditional

application has all of its functions and resources locally, though it is possible some resources are remote. The

results produced in remote have to be in local eventually because all of the functions are in local. Instead,

domain computing runs applications on a domain resource network where the computational resources are

available. The resources can be located on a single machine or multiple machines across networks.
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Because the application definition is changed, the application development is changed correspondingly.

The domain applications consist of a series of functions and resources to form data flows, so that the de-

velopment focuses on individual functions and connects them at runtime. Ideally, a resource performs a

single function. The single function can be simple like encryption or an unbreakable unit built by multiple

functions. More integrated functions in a single function are less flexible and efficient to share and utilize. A

single function is easy and fast to develop. A single function’s simplicity makes it easy to unit test, identify

logic defects, and to trap it quickly, which speeds up development cycles. Developers have less runtime

features that should be considered at coding time and these features can be shifted and built at runtime.

For example, fault-tolerant can be supported at runtime instead of development time by dynamically adding

and connecting resources via proper policies. A small and simple function is easy to deploy because of its

minimum requirement to environments.
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Chapter 5

Evaluation

In this chapter, the prototype system and its architecture are discussed. The feasibility and effectiveness

of the prototype system is examined by evaluating key system performance attributes including network

throughput, response time and their variability. Furthermore, this work has been published in papers and

journals Xue et. al [67] [68] [66]. The IoT brings millions of resources together via heterogeneous networks

and it is the future computing environment. It is interesting to examine how the domain computing system

performs in such an environment. That is to say, the performance of resource publishing and subscription

is one of the fundamental mechanisms in IoT, and is also examined. Security always plays a crucial role

in networks and protects users’ privacy and their sensitive data. Encrypted communication is necessary

in many applications because network communication is easily exploited,. Naturally, the prototype system

performance under secured communication becomes a part of its evaluation. This chapter is organized in the

following way. Following the system overview is evaluation motivation. Experiment design, design criteria

and evaluation metric are included. In the experiment setup subsection, the system’s setup hardware is

described. A description of a dedicated network and a public network is also included. Following that, the

performance data that was collected is discussed.

5.1 System Overview

The prototype system does not implement all components. Security related components, like access control,

are not implemented though an encryption mechanism is used. The prototype system consists of client, server

and network infrastructure. The client and server are the roles that initiate sending data and receiving the

data. A client application was built and used to collect select sensor data from a mobile device and then

sends this sensor data to a remote server over a wireless network. Basically what the server does receives

a resource observation request and returns a series of sensor data to the client until the client sends a RST

request to cancel the subscription. Both client and server run the same prototype application, one is in client

mode and the other is in server mode, so that they can communicate. Sensor data is generated via a special

hardware event. Once the application captures the event, it reads raw sensor data, puts it into a CoAP

package and sends it out. Regarding different test scenarios, all of the communications between client and

server are accomplished in both a dedicated wireless network as well as public wireless network. The details
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of hardware infrastructure is included in the experiment setup section.

Computational resources used in a domain computing could be widely distributed over networks. Further-

mores, as the Internet of Things grows exponentially, the portion of the resources distributed over networks

becomes dominant and their distribution is wider. Identifing a resource becomes more challenging. So, in the

prototype system, the CoAP protocol is implemented as the communication facility to transport the data.

The Constrained Application Protocol (RFC7252) was initially proposed by ARM and Universitaet Bremen

TZI at June 2014. CoAP is a specific transfer protocol for machine-to-machine communication and for use

with constrained nodes and constrained networks. The constrained nodes often have small microcontrollers

with small amounts of ROM and RAM, while constrained networks often have low power and high packet

error rates with a typical throughput of 10s of kbit/s. CoAP is based on UDP protocol and package size

varies from a minimum of 4 bytes to a maximum of 1024 bytes. CoAP provides a request/response interaction

model between application endpoints, supports built-in discovery of services and resources, and includes key

concepts of the Web such as URIs and Internet media types. CoAP can also easily interface with HTTP for

integration with the Web[55].

There are many application protocols but two emerging protocols are designed for high resource-constrained

environment, the Message Queuing Telemetry Transport (MQTT) and the Constrained Application Protocol

(CoAP). By applying these protocols on the resource-constrained environment, we can improve device and

application performance in terms of bandwidth consumption, battery lifetime and communication latency.

Although they both can achieve such goals, they have different application scenarios to adapt to [25]. MQTT

and CoAP have very different communication patterns. MQTT is a pub/sub protocol and CoAP is a REST-

ful protocol with built-in pub/sub mechanism. Since RESTful protocol uses HTTP verbs, CoAP can be

easily integrated with the web application through an HTTP-CoAP proxy, which is an extremely critical

feature for distributed applications running in the Cloud. From a transportation protocol perspective, both

MQTT and CoAP provide basic congestion control by retransmitting messages that are not acknowledged.

However, CoAP is based on UDP while MQTT is based on TCP. TCP provides a more reliable connection

but with a lot of extra overhead as compared to UDP so that the same thing can be expected on MQTT and

CoAP. The reliable connection provided by TCP is not necessarily an advantage in a sensor network. Sensor

application generally tolerates few missing data packages since a sensor can generate thousands data packages

in every second. Such a large data generation rate can degrade application performance by TCP due to extra

overhead in its protocol. A reduction in extra overhead can be easily amplified in such a high sending rate.

CoAP protocol uses UDP so it has more advantage on the extra overhead. Except for the above differences,

CoAP has unique advantages that MQTT does not support. Since CoAP is a RESTful protocol and can

be easily transformed into HTTP, a CoAP application can obtain a better response performance by HTTP

caching. CoAP also provides a mechanism called Blockwise, which is a solution for transfer of large set of

data in a block fashion. One of the most important features for a sensor network is resource publishing and
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subscribing. CoAP has a built-in mechanism called Observe to discover resources or services in the network.

5.2 Experiment Design

In Table 5.1, all evaluation goals are listed and followed by their corresponding experiments.

Evaluation Goal Experiment

I/O throughput, Response time,

and Their variance

1) Dedicated Network: Sensor Data Throughput, Response Time,

and Variance

2) Public Network: Sensor Data Throughput, Response Time,

and Variance

Resource Publishing and Sub-

scription

1) Dedicated Network: Subscription Throughput, Response Time,

and Variance

2) Public Network: Subscription Throughput, Response Time,

and Variance

Secured Communications 1) Dedicated Network: AES128, AES192 and AES256 Encryption

2) Public Network: AES128, AES192 and AES256 Encryption

Table 5.1: Summary of Experimental Design

The experimental aspects are first identified and will allow us to obtain wireless network I/O performance

data. The experiment aspects help us to obtain and understand consistent performance results. Here is a

list of the aspects identified:

• Resource discovery and I/O subscription

• CoAP payload size

• Packet sending Interval

• Type of wireless network

• Network protocol

• Data source

• Repeat packet sending times

• OS environment

All of the above aspects are divided into two major groups. The first five aspects help us to better un-

derstand wireless network I/O performance. The last three aspects help us to produce consistent experiment
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results. Every aspect is briefly introduced here. Resource discovery is an important mechanism in a sensor

network. CoAP has the built-in mechanism called Observe. The client sends out a GET request to a unique

URI (./well-known/core) on a server. The URI is part of the CoAP standard. The server receives such a

request and it knows that this is the request to obtain all resource available on this device. The server returns

a resource list to the client. Once the client makes a decision on which sensor (I/O resource) to subscribe,

it sends out an Observe request with the chosen sensor id to the server for receiving the sensor’s update.

The server adds the client to a subscription list on the chosen resource and once the sensor data is changed,

all subscribers on the list are updated. The update does not require any further requests from the client.

The server keeps sending sensor data to the client instead of the client pulling. If the client no longer has

interest in the sensor data, it sends out an RST request to the server to cancel the sensor I/O subscription.

No further sensor data will be sent to the client. CoAP payload size is used to investigate the relationship

between package size and performance. The maximum payload size in CoAP is 1024 bytes; multiple payload

sizes will be used in the experiments. Sending interval is used for measuring sensor I/O throughput. The

server sends sensor data to notify the client after a fixed time interval or anytime the sensor produces data.

We need to find out the upper and lower boundary of the throughput since these experiments are designed

for performance evaluation. The lower boundary is obviously 0 and the upper boundary depends on not

only network delay but also how fast a server can send out the data. So, sending intervals in all tests are

0, which means that once a sensor data is sent out from the server then the next sensor data is ready for

sending. Both dedicated network and public network will be tested in order to understand how different

types of wireless networks impact the I/O performance. A dedicated network, as its name indicates, has

no other network traffic except the experiment’s traffic. A public network will be used to simulate a real

world environment. UDP protocol is used in the experiments since the experiments are based on CoAP. As

mentioned above, the last three aspects were considered for getting consistent results. For data source, a

consistent and stable data generator should be chosen for every experiment. Otherwise, the result will not

be consistent. Also, a conclusion should not be made based on a strong bias from individual sampling, so

packets were repeatedly sent over multiple times to see if there was a variability of their response time and

throughput. The status of the current running OS impacts network and I/O performance as well. There was

no other applications running, especially background applications, that would impact the performance due

to the overhead of scheduling and competing network bandwidth.

Once these vital aspects for the experiments were identified, the experiment sets were designed as below.

For A Dedicated Network

Dedicated Network - an ideal environment for testing and simulating a home wireless network.

For each I/O payload size in the size list 16, 32, 64, 128, 256, 512 and 1024 bytes, the following experiments

were tested:

1. Sensor I/O subscription - sending a request to the server to subscribe specified sensor I/O data. The
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sensor I/O data transfer repeats 100 times. Data collected were:

• Subscription response time

• Throughput for I/O subscription

• Sensor I/O data transfer rate

• Service overhead for subscription

• Network overhead for subscription

2. Repeat above subscription - to see if there is variability between each I/O subscription. Subscription

repeats 30 times. Data collected were:

• Subscription response time

• Throughput for I/O subscription

• Overhead for cold subscription

• Overhead for warm subscription

For A Public Network

Public network - a real complex environment for testing and simulating a public WIFI network. The

public network experiment repeated the same set of experiments for the dedicated network.

To evaluate the performance result, measurement metrics were identified as:

• Subscription Throughput - maximum number I/O subscriptions per second

• Subscription Response time - I/O subscription response time in milliseconds

• Sensor Data Throughput - maximum sensor I/O data per second in KB

• Sensor Data Response time - I/O data transfer response time in milliseconds

• Subscription service time at cold server - time spent on server to handle the I/O subscription for the

very first time

• Subscription service time at warm server - time spent on server to handle the I/O subscription, not the

first time

• Variability - between each I/O data transfer and also between each I/O subscription

Throughput is measured by the number of bytes or number of subscriptions can be sent or made every

second and is based on different payload sizes. Response time is measured in milliseconds. It was interesting

to see if there was a big variance between repeated experiments. We may have found something else if a big

difference exists.
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Figure 5.1: System Setup

5.3 Hardware Setup

There are two major sets of experiments: a set tested on a dedicated network and another set tested on a

public network. The dedicated network consisted of a dedicated wireless router and two Android devices.

The wireless router was a TP-Link TL-WR841N wireless router with 802.11b/g/n support and a maximum

300Mbit/s bandwidth. Two Android devices both supported 802.1a/b/g/n protocol and with a 100Mbit/s

bandwidth. One device was a Google Nexus 7 that was running on Android 4.4.3, and another one was

Samsung GT-P7510 that ran on Android 4.0.4. The system diagram is listed in Figure 5.1. During the

experiments, there was no background applications running on either of the devices in order to eliminate

interference and possible delay of sending packets. And there were no other devices in the network, so there

was no interference in the network. Both devices and the router were within 3 meters, and wireless signals

on all devices were excellent and stable at all times, so we could assume that there was no delay due to a bad

signal or an unstable connection. For the public network, the wireless network in a Starbucks coffee shop

was chosen. All devices had an excellent wireless signal and the wireless router should have been within a

10-meter range. Both devices directly connected to these networks.
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The accelerometer sensor was chosen as a data source for the experiments because a consistent data

generator was needed. Otherwise, the performance measurement would be different due to the different

input rate, which was not an apples-to-apples comparison. For example, low throughput could have been

caused by a low input rate and network delay but we do not know which one, or if both was the root cause

until we removed one from the test. It was critical that all experiments used the same consistent and stable

data source. The accelerometer continuously generated more than 1000 events per second, and each time it

generated exactly 12 bytes of data.

5.4 Data Collection

In this section, how requests were sent and how performance data was collected are described. In the

experiment environment, there had two Android devices. One device played a client role and another one ran

as a server. A Samsung GT-P7510 was the client that sent all of the requests and all raw data was collected

on it as well. Before moving into the measurement phase of a test, the Samsung GT-P7510 connected to

a remote server, which was Nexus 7 and discovered all of its available sensors. A single sensor was chosen

and used in all of the experiments. I/O subscription and I/O transfer were repeated multiple times in order

to remove bias on individual sampling. The subscription was repeated 30 times and the I/O transfer was

repeated 100 times for each I/O subscription.

The type of data that was collected are listed below:

• I/O packet sequential number

• Payload size in bytes

• Response time for the subscription and data transfer, in milliseconds

• Throughput for data transfer KB/s and for subscription number per second

• Service time for cold and warm subscription, in milliseconds

In each experiment, all of the data collected was recorded in a log file. When an experiment finished,

mean response time was calculated from individual subscription or data transfer response time, and the

experiment’s throughput was calculated from the sum of the sent I/O data size divided by its total elapsed

transfer time.

5.5 Result Analysis

Following the experiment design set out above, all of the tests in different networks were run and all perfor-

mance data was collected for analysis. The collected raw data were imported and processed in Excel. The
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Figure 5.2: Dedicated Network - Average IO Data Transfer Response Time

following performance graphics were produced based on the raw data. For all graphics, except where indi-

cated, the horizontal axis represents the payload size from 16 up to 1024 bytes. The vertical axis represents

KB/s in throughput graphics and millisecond in response time graphics.

Dedicated Network

Figure 5.2 shows that there is no difference on data transfer response time. Data transfer response times

all fall within a small range, 1.08 to 1.45 ms. Since all of the response times are very fast, any network

interference or OS activity could have easily caused the response time to fluctuate. Although at 64 and 512

bytes payload the response time drops a bit, there is a general trend of response time increasing slowly as

the payload size increases. The data transfer rate increases along with payload size, and the throughput ends

up with 791 KB/s on payload size 1024 bytes (Figure 5.3). This result implies that bigger payload size has

a higher I/O throughput. Looking closely at the data, we can see that the I/O throughput approximately

doubles as the payload size doubles. For the subscription response time, until 128 bytes of payload size is

reached, the response time remains low and is less than 100ms (Figure 5.4). However, starting from a 256

bytes payload, the response time increased rapidly and ended up with 515ms at 1024 bytes payload. The

response time was subject to payload size because it measured the elapsed time, including the time that

the first sensor data was received. Before the 128 bytes payload, although the size doubles every time, the

payload sizes are still considered relatively small. After the 128 bytes payload, the doubled payload size
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Figure 5.3: Dedicated Network - Average IO Data Transfer Throughput

Figure 5.4: Dedicated Network - Average Subscription Response Time
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Figure 5.5: Dedicated Network - Average Subscription Throughput

Figure 5.6: Cold Subscription versus Warm Subscription on Response Time
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Figure 5.7: Subscription Response Time

Figure 5.8: Subscription Service Time
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Figure 5.9: Response Time Variability on Small Size Payloads

Figure 5.10: Response Time Variability on Big Size Payloads
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introduced some extra overhead required to finish the request. The extra overhead could have come from

memory allocation, network transfer, or their combination. If the application is sensitive to subscription

request time, we need to choose a payload size that was less than and equal to 128 bytes. Figure 5.5 tells the

same story as the subscription response time, although there is a bigger fluctuation. A 128 bytes payload

was found to still be a magic turning point, and the throughput decreased since then. Is there any difference

between first-time subscription (cold subscription) and a later subscription (warm subscription)? In the test,

it showed that there is a big difference on service time (Figure 5.6.) The service time for the first subscription

took 45ms but for a later subscription, service time was reduced to less than 0.5ms. The most interesting

information presented in Figure 5.6 is the request time. What we expected was that the request time would

be reduced when the service time was reduced. This reduction can be explained by individual sampling.

Since the cold subscription is the very first subscription, and it is one-time event, the response time could not

be accurate and it is lucky enough to run at a lower network delay. However, the service time was accurate

on both measurements because it did not depend on any network activity, but only measured the elapsed

time on the server. Figure 5.7 and 5.8 show the amount of time spent on network delays and how much time

was spent on the server for an I/O subscription. The service times were very short and all were less than

0.5ms. These figures also show that the major overhead for subscription response time on a large payload

size >128 bytes (Figure 5.4) came from the network delay. The last thing learned from the experiments was

the variability in the response time. Figures 5.9 and 5.10 show such variability on small and big payload

size, respectively. As we can see, a bigger payload size has more variability as compared to a small payload

size. All 256, 512 and 1024 bytes payload had big variation during their repeated runs. In contrast, the

small payload size (<256 bytes) kept the variability within 100 to 200ms. Only a few cases had an increased

response time. Since a bigger payload size had a much higher variability, it could explain why a payload

larger than 128 bytes had a noticeably increase in response time. Larger payloads can respond in faster time

but with a higher variability than the average response time.

Public Network

Figure 5.11 shows that there is no difference on data transfer response time. All tests responded very

fast and their range was from 1.15 to 1.3 ms. The maximum response time of 1.3ms still happened on a

maximum payload size of 1024 bytes. The data transfer rate grew along with payload size growth, and the

throughput ended up with 865.11 KB/s on a payload with a size 1024 bytes (Figure 5.12), which is a little bit

faster than the maximum throughput on the dedicated network. Again, we can see that the I/O throughput

approximately doubled as the payload size doubled. For the subscription response time, a 128 bytes payload

size was still the turning point where the response time with bigger payload sizes increased in time (Figure

5.13.) The response time with >128 bytes payload was increased rapidly and ended up with 307ms at a 1024

bytes payload. The maximum response time was much faster than what we saw in the experiment over the

dedicated network but the trend stayed the same except if the line shifted lower. Figure 5.14 shows a similar
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Figure 5.11: Public Network - Average IO Data Transfer Response Time

Figure 5.12: Public Network - Average IO Data Transfer Throughput
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Figure 5.13: Public Network - Average Subscription Response Time

Figure 5.14: Public Network - Average Subscription Throughput
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Figure 5.15: Cold Subscription versus Warm Subscription on Response Time

Figure 5.16: Subscription Response Time
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Figure 5.17: Subscription Service Time

story to the one that we saw in the subscription response time. The throughput increased a bit and this was

expected because the response time was improved from the experiment on the dedicated network. In Figure

5.15, the cold and warm subscription comparison, we see the same story with a minor difference. The same

result was on the service time. The service time in the cold subscription was 36ms and warm subscription

was 0.33ms. The big service time gap was still there. The difference was in the subscription response time.

This time we got 389ms for a cold subscription and 159ms for a warm subscription. This was the result

that we expected since the service time got much shorter. However, in the previous comparison (Figure 5.6)

on the dedicated network we saw an opposite result. As explained above, the comparison was based on the

one-time event and the previous test does not get faster with a network delay. In the comparison of Figure

5.16 and 5.17, the request time was still far more than the service time. The results were similar to the

previous comparison but had a faster request time. The maximum response time at a 1024 bytes payload

was around 300ms as compared to more than 500ms before (Figure 5.7.)

Dedicated Network vs. Public Network

In all of the same sets of experiments conducted on the dedicated and public network, we can see that

there was no significant behavior difference between the two types of networks. From an I/O performance

perspective, both networks were able to respond in less than 1.5ms and the maximum throughput reached

around 800KB/s at maximum 1024 bytes payload size. From a subscription perspective, all the results showed

61



a 128 bytes payload size was a turning point. That is to say, the bigger payload size requires a much longer

response time and lowers the throughput. No matter the network, we were able to achieve a minimum of

100 subscription requests per second, and a maximum of more than 330 requests per second. The only big

performance difference between the two networks was in the public network. In the public network we got a

slightly higher performance in terms of response time and throughput. It is suspected that the major factor

that contributed to these difference was the router. The router used in the dedicated network was a regular

home router. Although the exact model used in the Starbucks network is unknown, it should be a high-end

router because it serves many people. High-end routers always have a more powerful processor, more internal

memory, and more efficient scheduling algorithms in order to give a quicker response time to serve more

online users. The different routers might be the reason why we saw a better result in the public network

experiments. However, we did not see a big difference between the two, meaning that the performance was

more sensitive to the device and its OS rather than network infrastructure. This sensitivity to the device and

its OS rather than network infrastructure is why any maximum or boundary values were not emphasized,

but instead focused on the level that the device could reach.

In summary, wireless network I/O performance using CoAP on a dedicated and a public network were

examined. The prototype system can achieve quick I/O data response time of under 1.5ms regardless of

payload size. The maximum throughput is around 800KB/s at the maximum payload size of 1024 bytes.

The prototype system also achieves at least 330 subscriptions per second at its maximum performance. A

128 bytes payload size is the turning point on longer subscription response time and lower throughput. An

application that is sensitive to response time needs to choose a payload size that is less than 256 bytes. Bigger

payload size (≥256 bytes) has a dramatically higher variance on response time, so a longer response time is

sometimes expected.

Secured Communication

Security also plays a crucial role in networks. Compared to a traditional cloud computing environment,

where system administrators manage and guard the server infrastructure 24x7, the IoT environment is more

vulnerable because of its type of communication, operation locations, and management. In general, commu-

nication traffic is easily exposed to 3rd parties. Although a wired network makes its traffic harder to expose

due to physical accesses, a wireless network is vulnerable to this threat. Exposing a wireless network’s traffic

does not even require physical access. If a 3rd party user sits close enough to a wireless network, he/she

can pick up its signals and start listening. Security issues are critical to user privacy and sensitive data in a

network environment, particularly for resource sharing. An easy and effective way to reduce such a threat is

to encrypt all communications between both ends of the communication process. It is important for us to

understand how CoAP performs in encrypted communications.

Except for the above performance tests, I/O throughput data on various payload sizes along with different

encryption have also been measured. AES (Advanced Encryption Standard) was chosen as the encryption
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Figure 5.18: IO Throughput Comparison Between AES and non-AES

Figure 5.19: AES IO Throughput Comparison on Different Key Size
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algorithm in all tests. The AES standard allows different key sizes for different purposes. A larger key size

requires a longer time to encrypt and decrypt. This longer decryption time requires a 3rd party to spend

more time in order to expose data. However, we also need more processor power to encrypt and decrypt.

For a desktop computer system, more processor power is not a problem because it has a relatively powerful

processor and unlimited power supply. This is a different story for a mobile device and both its processor

power and battery life are limited. A part of the security tests was to identify a balance point between security

levels and energy levels consumed. The exact same tests were run as the previous regular performance tests,

except their communications were encrypted by AES. The tests with different AES key sizes from 128 bits

to 256 bits were run in order to examine different CoAP performance behavior. Figure 5.18 shows that

comparison of IO throughput on different payload sizes with and without AES 128-bit encryption. As the

payload size grew, we saw the encrypted IO throughput become lower than the regular throughput. The

largest gap appeared on the 512 bytes payload test. The regular throughput reached 462KB/s and the

encrypted one was 296KB/s. So, in all cases we expected that any difference should be less than 170KB/s.

If a smaller payload size was chosen, a closer throughput between the encrypted one and the regular one

was expected. In Figure 5.19, IO throughput on the encrypted payloads by AES 128, 192 and 256 bits were

measured. According to the diagram, there was not a big difference between the various key size tests. In

fact, the key size tests almost grow in the same fashion. Typically we expected that there would be an IO

throughput drop when a larger AES key size was applied. The reason why we did not see an I/O throughput

drop happen in the tests was that CoAP payload size was relatively small (max. payload was 1024 bytes.)

Thus, an encryption with a larger key size would not spend much more time to encrypt and decrypt as

compared to a smaller key size.

Based on the results, we saw that there was IO throughput degradation when communications were

encrypted by AES, especially on a larger payload size. However, the difference was less than 170KB/s.

Meanwhile, there was no significant performance difference between the different AES key size tests because

of CoAP small payload size. If an application was sensitive to data security, AES 256-bit was a better choice

because the 256-bit key size made our communication more secure and importantly it has almost the same

performance as the tests with the smaller key sizes. If we want a higher IO throughput for effective data, we

need to choose a bigger payload size like 512 or 1024 bytes. The AES encryption had less of a throughput

impact on a larger size payload in term of percentage of the encrypted communication throughput. However,

if energy consumption was an important factor for an application, and AES 128-bit was a better choice

because it protected our data at some levels, and produced the same performance as the larger key size

encryption yet consumed less power energy in the long run.
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5.6 Summary

The prototype system and its architecture were discussed in this chapter. Feasibility and effectiveness of the

system has been examined via a group of experiments conducted on both the dedicated as well as the public

network. This evaluation examined performance with regards to network I/O, resource subscription, and

secured communication. Some of the key system performance, which includes transfer rate, response time,

number of subscription and their variability, were examined. A summary of the results are shown in Table

5.2.

Experiment Results

I/O

Performance

1) Quick I/O data response time under 1.5ms regardless of payload size

2) The maximum throughput was around 800KB/s at the maximum payload size of 1024

bytes

3) For response sensitive applications, the payload size should be less than 256 bytes

4) A bigger payload size (≥256 bytes) has dramatically high variability on response time

Resource

Subscription

1) The system can achieve at least 330 subscriptions per second at maximum

2) 128 bytes of payload size was the turning point on longer subscription response time and

lower throughput

Secured

Communications

1) I/O throughput degrades when encrypted; Larger payload size leads to larger degradation

2) No significant performance difference between different AES key size

3) For security sensitive applications, AES 256-bit is a better choice

4) For transferring larger effective data, a bigger payload size such as 512 or 1024 bytes is

better

5) For energy consumption sensitive applications, AES 128-bit is a better choice

Table 5.2: Summary of Experimental Result
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Chapter 6

Summary

Computers are indispensable in most aspects of our daily lives. Since they were invented, there have

been many different generations of computing models that have been improved for better computation in

terms of efficiency, utility, and application. The first generation of computing started the era of human

automation computing. Due to various technology limitations at that time, all computational resources

were completely centralized in local machines. Because of the appearance of networks, second generation

computing significantly improved data availability and portability so that computing resources could be

efficiently shared among the networks. The network applications allocate, utilize and collaborate wider

distributed network resources in order to provide a single and compound service for users to consume. The

service-oriented third generation of computing provides functionality by breaking down applications into

services, on-demand computing through utility and cloud infrastructures and ubiquitous accesses from wide-

spread geographical networks. Services, as main computing resources, are far spread from local to worldwide.

Services loosely couple applications and servers which make services to easily scale up and with higher

availability.

As the computational resources become more available, fault-tolerant, scalable, better performance, par-

ticularly spatial distributed, the complexity of locating, utilizing and optimizing computational resources be-

comes even more challenging. How applications can dynamically utilize and optimize unique/duplicate/competitive

resources at runtime in the best efficient and effective way without code changes as well as providing high

available, scalable, secure and easy development services becomes a critical question. Current computing

models miss the capability of dynamically utilizing and redistributing I/O in distributed systems in a flexible

way. They are also very hard to extend, group and connect functionality at runtime without changing codes.

And current programming models are too complicated to develop and deploy new applications and evolve

along quickly with time. Because of these challenges and constantly changing environments, resources and

demands, a new flexible and dynamic computing model is needed to resolve these problems.

By solving such problems, this work contributes to the following items below:

1. Propose a new computational model, called Domain Computing

2. Build a prototype of the domain computing
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Figure 6.1: Domain Computing Architecture
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3. Examine its feasibility and effectiveness of the conceived concept via some key performance including

network throughput, response time, their variability, resource publishing and subscription and secured

communications

Furthermore, this work has been published in several papers and journals Xue et. al [67] [68] [66].

Domain computing proposes a new way to manage computational resources and applications (Figure 6.1).

It dynamically manages resources within logic entities, domains, and without bound to physical machines so

that application functionality can be extended at runtime. Domain computing introduces domains as a re-

placement of the traditional computer in order to run applications and link different computational resources

that are distributed over networks into domains so that users can significantly improve and optimize the

resource utilization at a global level. By negotiating with different layers, domain computing dynamically

links different resources, shares resources and cooperates with domains at runtime so that applications can

quickly adapt to changing and dynamic environments and gain better performance. Additionally, domain

computing presents a new way to develop applications that are resource stateless based.

An initial prototype system was built for evaluation. Some of the prototype’s key system performance

including network throughput, response time and their variance , were examined. The system can achieve

a quick I/O data response time under 1.5ms, regardless payload size. The maximum throughput is around

800KB/s at the maximum payload size 1024 bytes. The application sensitive to response time needs to

choose a payload size that is less than 256 bytes. Bigger payload size (≥256 bytes) was found to have a

dramatically high variance on response time, so a longer response time was sometimes expected. The IoT

brings millions of resources together via heterogeneous networks and it is the future computing environment.

Resource publishing and subscription as one of the fundamental mechanisms in IoT was also examined. The

system can achieve at least 330 subscriptions per second at a maximum. However, a 128 bytes payload size

is a turning point on a longer subscription response time and lower throughput.

Security always plays a crucial role in networks for users’ privacy and their sensitive data. Because network

communication is easily exploited, encrypted communication is necessary in many applications. There is IO

throughput degradation when communications were encrypted with AES, especially on a larger payload size.

However, the difference was less than 170KB/s and there was no significant performance difference between

the different AES key size tests because of a CoAP’s small payload size. If an application is sensitive to data

security, AES 256-bit is a better choice because the 256-bit key size makes our communication more secure

and, more importantly, it has almost the same performance as the tests with the smaller key sizes. If we want

a higher IO throughput for the effective data, we need to choose a bigger payload size like 512 or 1024 bytes.

The AES encryption has a less of an impact on throughput on a larger size payload in terms of percentage

of the encrypted communication throughput. However, if energy consumption is an important factor for an

68



application, AES 128-bit is a better choice because it protects our data in some levels and produces the same

performance as the larger key size encryption but consumes less power energy in the long run.
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Chapter 7

Future Work

The domain computing system architecture and its main components have been discussed. Multiple layers

of the components work together and enable it to be able to manage and optimize resources within logic

entities, domains dynamically, and without binding to physical machines so that application functionality

can be extended at runtime. Domain computing also offers a new way to develop applications that are

resource stateless based. Various aspects of performance have also been studied. However, the domain com-

puting system architecture still is in a very early phase and there still is a lot of improvement and evaluation

needed in order to release its full and potential functionality. In this chapter, some future works are discussed.

Domain computing involves changes on both system and network architectures. Although various network

performance tests have been done, there are some features that have not been implemented in the prototype

system. The security feature is one of them. The access control component is responsible for maintaining

permissions for resources within a domain, and it provides the capability to control how a resource can be

accessed. The following items in the security part need to be implemented.

• Ownership Management: maintain the ownership of each registered resource. A resource belongs to

the domain that physically owns it, and that domain has ownership of the resource.

• Permission Management: maintain a permission list for each resource. As a service, a resource can

be shared with other domains. Each resource maintains a list to check who and how the resource is

accessed. A shared domain registers the resource as its resource with permissions and authentication

information.

• Level Control: maintain a full list of control level for different accesses. Accesses can be managed based

on different purposes like reading, writing, reading/writing, duplicating, and granting.

• Domain-Based Unit: unlike user-based control, the basic unit of an access is based on the domain. Since

applications run on domains, different users have their domains instead of sharing the same domain.

The permissions are granted for those domains. Domain-Based access control removes the physical

bounds between users and systems. It allows users create as many domains as needed so that users can

build complex relationships between their domains for isolation purposes.
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• OS runtime: the access control also requires that OS layer identifies and registers the local resources to

domains so that the resources can be used and shared with other domains. Tasks like permission grant

and authentication are also done in the OS layer. When a domain sends a request to ask for access to

a resource, it can accept and deny the request. Meanwhile when the domain has the permission and

queries data, it checks if the request is valid with the proper credential.

Except for the security features, other features need to be implemented. In the OS layer, standard

protocols, like runtime rerouting and resource permission request/grant, need to be developed.

• Rerouting Protocol: the domain computing relies on the underlying OS platforms and the platforms can

be heterogeneous among Windows, Linux, and Unix. The rerouting protocol is used to reconnect data

flows as required among resources at runtime. The design of the protocol should take into consideration

the existing communication mechanisms and binary formats on various platforms so that it allows

switching of the resources on any platform.

• Resource Sharing Protocol: a communication protocol for resource availability and permission negotia-

tion. How to share a resource between domains needs to be designed. A security module should also be

developed so that the system can have the ability to control resource access under proper permissions.

How to authenticate a request, and access it in an efficient and effective way, needs to be examined and

designed.

• Resource Interface: due to the heterogeneous platforms underneath, a common resource interface should

be designed properly so that all the platforms can develop resources independently and hook them up

at runtime, which significantly improves the resources and their code utilization. For example, in the

resource management component, a standard resource interface including input and output format

should be clearly defined.

Some system optimization and performance re-evaluation are needed as well.

• Optimization: as domain computing is a network system, local compilation and global optimization

need to continue studying and improving based growing different applications.

• Performance: certainly, its overall system performance should be re-evaluated when any of the new

features is added into the system. In addition, some performance characteristics like the overhead of

linking resources in the local machine and also in remote will be interesting to study.
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