39 research outputs found

    An Efficient hardware implementation of the tate pairing in characteristic three

    Get PDF
    DL systems with bilinear structure recently became an important base for cryptographic protocols such as identity-based encryption (IBE). Since the main computational task is the evaluation of the bilinear pairings over elliptic curves, known to be prohibitively expensive, efficient implementations are required to render them applicable in real life scenarios. We present an efficient accelerator for computing the Tate Pairing in characteristic 3, using the Modified Duursma-Lee algorithm. Our accelerator shows that it is possible to improve the area-time product by 12 times on FPGA, compared to estimated values from one of the best known hardware architecture [6] implemented on the same type of FPGA. Also the computation time is improved upto 16 times compared to software applications reported in [17]. In addition, we present the result of an ASIC implementation of the algorithm, which is the first hitherto

    Arithmetic Operators for Pairing-Based Cryptography

    Get PDF
    Since their introduction in constructive cryptographic applications, pairings over (hyper)elliptic curves are at the heart of an ever increasing number of protocols. Software implementations being rather slow, the study of hardware architectures became an active research area. In this paper, we first study an accelerator for the ηT\eta_T pairing over F3[x]/(x97+x12+2)\mathbb{F}_3[x]/(x^{97}+x^{12}+2). Our architecture is based on a unified arithmetic operator which performs addition, multiplication, and cubing over F397\mathbb{F}_{3^{97}}. This design methodology allows us to design a compact coprocessor (18881888 slices on a Virtex-II Pro~44 FPGA) which compares favorably with other solutions described in the open literature. We then describe ways to extend our approach to any characteristic and any extension field

    FPGA and ASIC Implementations of the ηT\eta_T Pairing in Characteristic Three

    Get PDF
    Since their introduction in constructive cryptographic applications, pairings over (hyper)elliptic curves are at the heart of an ever increasing number of protocols. As they rely critically on efficient algorithms and implementations of pairing primitives, the study of hardware accelerators became an active research area. In this paper, we propose two coprocessors for the reduced ηT\eta_T pairing introduced by Barreto {\it et al.} as an alternative means of computing the Tate pairing on supersingular elliptic curves. We prototyped our architectures on FPGAs. According to our place-and-route results, our coprocessors compare favorably with other solutions described in the open literature. We also present the first ASIC implementation of the reduced ηT\eta_T pairing

    An Algorithm for the nt Pairing Calculation in Characteristic Three and its Hardware Implementation

    Full text link

    Algorithms and Arithmetic Operators for Computing the ηT\eta_T Pairing in Characteristic Three

    Get PDF
    Since their introduction in constructive cryptographic applications, pairings over (hyper)elliptic curves are at the heart of an ever increasing number of protocols. Software implementations being rather slow, the study of hardware architectures became an active research area. In this paper, we discuss several algorithms to compute the ηT\eta_T pairing in characteristic three and suggest further improvements. These algorithms involve addition, multiplication, cubing, inversion, and sometimes cube root extraction over F3m\mathbb{F}_{3^m}. We propose a hardware accelerator based on a unified arithmetic operator able to perform the operations required by a given algorithm. We describe the implementation of a compact coprocessor for the field F397\mathbb{F}_{3^{97}} given by F3[x]/(x97+x12+2)\mathbb{F}_3[x]/(x^{97}+x^{12}+2), which compares favorably with other solutions described in the open literature

    Cryptographic key distribution in wireless sensor networks: a hardware perspective

    Get PDF
    In this work the suitability of different methods of symmetric key distribution for application in wireless sensor networks are discussed. Each method is considered in terms of its security implications for the network. It is concluded that an asymmetric scheme is the optimum choice for key distribution. In particular, Identity-Based Cryptography (IBC) is proposed as the most suitable of the various asymmetric approaches. A protocol for key distribution using identity based Non-Interactive Key Distribution Scheme (NIKDS) and Identity-Based Signature (IBS) scheme is presented. The protocol is analysed on the ARM920T processor and measurements were taken for the run time and energy of its components parts. It was found that the Tate pairing component of the NIKDS consumes significants amounts of energy, and so it should be ported to hardware. An accelerator was implemented in 65nm Complementary Metal Oxide Silicon (CMOS) technology and area, timing and energy figures have been obtained for the design. Initial results indicate that a hardware implementation of IBC would meet the strict energy constraint of a wireless sensor network node

    Fast architectures for the ηT\eta_T pairing over small-characteristic supersingular elliptic curves

    Get PDF
    International audienceThis paper is devoted to the design of fast parallel accelerators for the cryptographic ηT\eta_T pairing on supersingular elliptic curves over finite fields of characteristics two and three. We propose here a novel hardware implementation of Miller's algorithm based on a parallel pipelined Karatsuba multiplier. After a short description of the strategies we considered to design our multiplier, we point out the intrinsic parallelism of Miller's loop and outline the architecture of coprocessors for the ηT\eta_T pairing over \F_{2^m} and \F_{3^m}. Thanks to a careful choice of algorithms for the tower field arithmetic associated with the ηT\eta_T pairing, we manage to keep the pipelined multiplier at the heart of each coprocessor busy. A final exponentiation is still required to obtain a unique value, which is desirable in most cryptographic protocols. We supplement our pairing accelerators with a coprocessor responsible for this task. An improved exponentiation algorithm allows us to save hardware resources. According to our place-and-route results on Xilinx FPGAs, our designs improve both the computation time and the area-time trade-off compared to previously published coprocessors

    Fast Architectures for the ηT\eta_T Pairing over Small-Characteristic Supersingular Elliptic Curves

    Get PDF
    This paper is devoted to the design of fast parallel accelerators for the cryptographic ηT\eta_T pairing on supersingular elliptic curves over finite fields of characteristics two and three. We propose here a novel hardware implementation of Miller\u27s algorithm based on a parallel pipelined Karatsuba multiplier. After a short description of the strategies we considered to design our multiplier, we point out the intrinsic parallelism of Miller\u27s loop and outline the architecture of coprocessors for the ηT\eta_T pairing over F2m\mathbb{F}_{2^m} and F3m\mathbb{F}_{3^m}. Thanks to a careful choice of algorithms for the tower field arithmetic associated with the ηT\eta_T pairing, we manage to keep the pipelined multiplier at the heart of each coprocessor busy. A final exponentiation is still required to obtain a unique value, which is desirable in most cryptographic protocols. We supplement our pairing accelerators with a coprocessor responsible for this task. An improved exponentiation algorithm allows us to save hardware resources. According to our place-and-route results on Xilinx FPGAs, our designs improve both the computation time and the area-time trade-off compared to previously published coprocessors

    Elliptic Curve Cryptography on Modern Processor Architectures

    Get PDF
    Abstract Elliptic Curve Cryptography (ECC) has been adopted by the US National Security Agency (NSA) in Suite "B" as part of its "Cryptographic Modernisation Program ". Additionally, it has been favoured by an entire host of mobile devices due to its superior performance characteristics. ECC is also the building block on which the exciting field of pairing/identity based cryptography is based. This widespread use means that there is potentially a lot to be gained by researching efficient implementations on modern processors such as IBM's Cell Broadband Engine and Philip's next generation smart card cores. ECC operations can be thought of as a pyramid of building blocks, from instructions on a core, modular operations on a finite field, point addition & doubling, elliptic curve scalar multiplication to application level protocols. In this thesis we examine an implementation of these components for ECC focusing on a range of optimising techniques for the Cell's SPU and the MIPS smart card. We show significant performance improvements that can be achieved through of adoption of EC

    Secure architectures for pairing based public key cryptography

    Get PDF
    Along with the growing demand for cryptosystems in systems ranging from large servers to mobile devices, suitable cryptogrophic protocols for use under certain constraints are becoming more and more important. Constraints such as calculation time, area, efficiency and security, must be considered by the designer. Elliptic curves, since their introduction to public key cryptography in 1985 have challenged established public key and signature generation schemes such as RSA, offering more security per bit. Amongst Elliptic curve based systems, pairing based cryptographies are thoroughly researched and can be used in many public key protocols such as identity based schemes. For hardware implementions of pairing based protocols, all components which calculate operations over Elliptic curves can be considered. Designers of the pairing algorithms must choose calculation blocks and arrange the basic operations carefully so that the implementation can meet the constraints of time and hardware resource area. This thesis deals with different hardware architectures to accelerate the pairing based cryptosystems in the field of characteristic two. Using different top-level architectures the hardware efficiency of operations that run at different times is first considered in this thesis. Security is another important aspect of pairing based cryptography to be considered in practically Side Channel Analysis (SCA) attacks. The naively implemented hardware accelerators for pairing based cryptographies can be vulnerable when taking the physical analysis attacks into consideration. This thesis considered the weaknesses in pairing based public key cryptography and addresses the particular calculations in the systems that are insecure. In this case, countermeasures should be applied to protect the weak link of the implementation to improve and perfect the pairing based algorithms. Some important rules that the designers must obey to improve the security of the cryptosystems are proposed. According to these rules, three countermeasures that protect the pairing based cryptosystems against SCA attacks are applied. The implementations of the countermeasures are presented and their performances are investigated
    corecore