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Abstract 

DL systems with bilinear structure recently became an 
important base for cryptographic protocols such as 
identity-based encryption (IBE). Since the main 
computational task is the evaluation of the bilinear 
pairings over elliptic curves, known to be prohibitively 
expensive, efficient implementations are required to 
render them applicable in real life scenarios. We 
present an efficient accelerator for computing the Tate 
Pairing in characteristic 3, using the Modified-
Duursma-Lee algorithm. Our accelerator shows that it 
is possible to improve the area-time product by 12 
times on FPGA, compared to estimated values from 
one of the best known hardware architecture [6] 
implemented on the same type of FPGA. Also the 
computation time is improved upto 16 times compared 
to software applications reported in [17].  In addition, 
we present the result of an ASIC implementation of 
the algorithm, which is the first hitherto.  
 Keywords: Bilinear pairings, Tate Pairing, Characteristic 
Three, FPGA Implementation, hardware accelerator. 
 
 

1   Introduction 
 
Identity-based encryption (IBE), is a public key 
cryptosystem that allows any arbitrary string to be used as 
a public key, such as recipients’ email address. This 
vastly reduces the amount of work, to set up an online 
lookup for public keys and presents novel functionalities 
especially useful in access control systems while 
maintaining privacy and anonymity.  Shamir introduced 
the concept of identity-based cryptography in 1984 [2].  
However, the concept became practical only with Boneh 
and Franklin in 2003 [3]. Tate Pairing, originally 
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developed by Frey and Rück [5], became popular, since it 
is efficiently computable and achieves its maximum 
security in characteristic three over supersingular elliptic 
curves [6]. Later, in [9,16] tower fields of GF(3m), 
GF(36m) was proposed. Duursma and Lee [11] further 
improved the implementation of Tate Pairing and 
proposed Duursma-Lee algorithm.  
The algorithm used here first appeared in [12] with 
further improvements and eliminating the cube root 
operation at the expense of two extra cubing operations. 
However, implementing pairing operations in software 
falls short of matching speed requirements of many 
pairing-based cryptography applications, especially in 
embedded systems. Therefore, despite the fact and 
necessity that designing dedicated hardware architectures 
gained significant importance, there is not much work on 
this subject in the literature. The modified Duursma-Lee 
algorithm was previously implemented partially as a 
dedicated hardware only in [6] on FPGA. Our aim is to 
design an accelerator that reduces the computation time 
and area of Tate pairing computation in characteristic 
three, to realize it on FPGA’s and build the first ASIC 
implementation of Tate pairing. 
 
2   Related Work 
 
One of the earliest work is by Page and Smart [13] which 
described GF(3m) arithmetic architectures for 
cryptographic applications. They, later, implemented Tate 
pairing with Duursma-Lee algorithm using an accelerator 
for arithmetic in GF(3m)[1].  
The work by Kerins et. al. proposes a Tate pairing 
implementation [6] based on the modified Duursma-Lee 
algorithm. With their approach, it is possible to multiply 
two polynomials in GF(36m) using the same number of 
clock cycles as multiplying two GF(3m) polynomials, at 
the expense of area overhead and reduced clock 
frequency.  
In our accelerator we use the parallel hardware 
architecture and optimize it in terms of area and speed 
especially working on sub-blocks. We optimize cubing 

Third International Conference on Systems

978-0-7695-3105-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ICONS.2008.27

23

Third International Conference on Systems

978-0-7695-3105-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ICONS.2008.27

23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11740468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

and multiplication units for specific irreducible 
polynomials used in the construction of ternary extension 
fields reducing the total area significantly. Additionally, 
we try to find an optimum algorithm and architecture to 
design a suitable Tate pairing accelerator for relatively 
constrained settings. 
Our contribution is three-fold: i) we present a full 
realization of the accelerator on both FPGA and ASIC for 
Duursma-Lee algorithm for the first time, and ii) we 
demonstrate that sub-blocks in the accelerator can be 
improved in terms of both area and time complexity by 
applying good design techniques, and iii) we show that 
our actual implementation of Duursma-Lee algorithm is 
in fact faster and smaller than the estimated values given 
in the previous work [6].   
 
3 Tate Pairing Calculation and Modified 
Duursma-Lee Algorithm 
 
The modified Tate pairing is basically a transformation 
that takes two points on an elliptic curve E± : y2 = x3 – x ± 
1 defined over GF(3m) and outputs a nonzero element of 
in tower extension field GF(36m).  
Arithmetic operations required to implement the modified 
Duusma-Lee Algorithm is addition, subtraction, cubing 
and multiplication in GF(3m) and cubing and 
multiplication in GF(36m).  

 
Algorithm 1: The Modified Duursma-Lee Algorithm 
(char 3) [6] 

 
input: P = (xp, yp), R = (xr, yr) ∈  E±[l](GF(3m)) 
output: t = e3

3m-1 (P, φ(R))) ∈  GF(36m)* 
01   initialize : t = 1 ∈  GF(36m),  
       α = xp, β = yp, x = xr

3,  y = yr
3, µ = 0 ∈ GF(3m) 

       d = (±m) mod 3 ∈ GF(3) 
02   for i in 0 to m-1 loop 
03     α = α9, β = β9 (* arithmetic in GF(3m) *) 
04     µ = α + x + d (* arithmetic in GF(3m) *) 
05    γ = (-µ2)ζ0 + (-βy)ζ1 + (-µ)ζ2 + (0)ζ3 + (-1)ζ4 + (0)ζ5 
          (*ζ = 3m*) 
06     t = t3 (* cubing in GF(36m) *) 
07     t = tγ (* multiplication in GF(36m) *) 
08     y = -y (* arithmetic in GF(3m) *) 
09     d = (d ± 1) mod 3  
10  end loop 
return: t 

 
Constructing the ternary extension field GF(36m) on the 
base field of GF(3m) is suggested in [16, 9] and described 
explicitly in [6]. Use of extension fields simplifies the 
arithmetic operations and allows parallelization for the 
cubing and multiplication operations. 

4 Arithmetic in Characteristic Three and 
Our Sub-Blocks 
 
In this section, we present hardware architectures for 
addition, subtraction, multiplication and cubing in 
GF(3m).  Characteristic three arithmetic is slightly more 
complicated than characteristic two arithmetic since 
coefficients can take three values; {0, 1, 2}. Hence two 
bits are needed to represent each digit in GF(3) using the 
encoding {0, 1, 2} = {00, 01, 10}. The negation in this 
representation is performed by swapping the most and the 
least significant bits (which is almost free in hardware 
implementations) since 2 ≡ -1 mod 3. Since negation 
operation is used very often especially in performing 
GF(36m) multiplication, this particular representation is 
very useful in our case. For arithmetic operations, m bit 
elements are expressed as 2m bit arrays as follows  

A =  ({aH
m-1, aL

m-1},. . . . . . . . , {aH
1, aL

1}, {aH
0, aL

0} ) 
  
4.1 Addition and Subtraction 
  
Addition and subtraction is performed digit-wise by using 
the Boolean expression in [1], i.e.   
  
Ci = Ai + Bi, for i = 0, 1, . . . , m-1 and 
t = (AL

i ∨ BH
i) ⊕ (AH

i ∨ BL
i) 

CH
i = (AL

i ∨ BL
i) ⊕ t   and  CL

i = (AH
i ∨ BH

i) ⊕ t 
 
where ∨ and ⊕ stands for logical OR and XOR 
operations, respectively. In the used representation, 
negation and multiplication of GF(3) element by two are 
equivalent operations and performed by swapping the 
most and least significant bits of the digit representing the 
element. Therefore, subtraction in GF(3m) is equally 
efficient as the addition in the same field and thus the 
same adder block is used for both operations. If 
subtraction is needed, bits in digits of subtrahend are 
individually swapped and connected to the adder block. 
Since this is achieved by only wiring no additional 
hardware resource is used.  
When implemented on FPGAs, for each GF(3) addition, 
two 4-input “look-up tables” (LUTs) are used. Since one 
slice is composed of two LUTs, for m-bit long GF(3m) 
additions m slices are used. This result is almost the same 
in all papers implementing characteristic three addition 
such as [10]. The delay of the addition operation is 5,061 
ns on Xilinx Virtex2p 100 device.  

 
 4.2 Cubing 
  
The modified Duursma-Lee algorithm requires cubing 
operation in GF(36m) and it is possible to build a parallel 
architecture by using GF(3m) cubing blocks as explained 
in the next section. Cubing is a linear operation in 
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characteristic three and we adopt the technique presented 
in [15]. For characteristic three, Frobenius map is written 
as follows: 

  A 3 ≡ (∑
−

=

1

0

m

i
aixi)3 mod p(x) = ∑

−

=

1

0

m

i

aix3i  mod p(x) 

 This formula can be represented as follows: 

A 3 ≡ ∑
−

≡
=

)(

mod

13

30
0

m

i
i

ai/3xi mod p(x) ≡ T+U+V mod p(x)≡ 

( ∑
−

≡
=

1

30
0

m

i
i

mod

ai/3xi)+( ∑
−

≡
=

12

30

m

i
mi
mod

ai/3xi)+( ∑
−

≡
=

)(

mod

13

30
2

m

i
mi

ai/3xi) mod p(x)  

 
 Here the degrees of the second U and the third terms V 
are bigger than m and need to be reduced. For p(x) = xm + 
ptxt + p0 and t < m/3, the terms can be represented as 
follows as also showed in [15]: 

U = ∑
−

≡
=

12

30

m

i
mi
mod

ai/3xi-m(-pt xt - p0)  mod p(x) 

V = ∑
−

≡
=

)(

mod

13

30
2

m

i
mi

ai/3xi-2m(a2t–ptp0at+1) mod p(x) 

 
Reduction is basically done by additions. For irreducible 
polynomial p(x) = xm + ptxt + p0, every occurances of xm 

and x2m are replaced with (-ptxt - p0) and (a2t–ptp0at+1)1, 
respectively.  
 
Table 1: Comparison of cubing circuits for GF(397) 
Cubing circuit Proposed circuit Circuit in [6] Circuit in [15] 

 

No. of Slices 116 514 - 

No. of LUTs 222 - 388* 

Max. Frequency 144MHz - - 
*Estimation by authors of [15]; not the result of an actual 
implementation. 
 
We optimize the reduction for the well known polynomial 
p(x) = x97 + x16 + 2 and calculate the terms to be added to 
achieve reduction in the same clock cycle. The 
optimization for a specific polynomial results in a very 
efficient implementation. We use 111 GF(3) adders to 
complete the cubing operation. And critical path of the 
system consists of three serially connected GF(3) adders. 
As seen from Table 1, our implementation is 2.5 times 
more efficient than the implementations in [6] and [15]. 
Although the implementation details of the cubing circuits 
are not clear in [6] and [15], the improvement in the slice 
and LUT numbers should be due to register free design 
and doing the reduction for a given polynomial.  

                                                
1 Note that x2m = (xm)2 = (-ptxt - p0)2 = a2t–ptp0at+1 in GF(3). 

 
4.3 Multiplication 
  
Multiplication is the most important operation for pairing 
implementations due to its complexity. Since the 
modified, as explained in the next section. Duursma Lee 
algorithm requires GF(36m) multiplications, we need 18 
parallel GF(3m) multipliers in parallel. Therefore, 
designing efficient multiplier architecture is the key for an 
efficient hardware accelerator.  
Hardware architectures proposed in the literature for 
GF(3m) multiplication can be treated in three major 
classes: parallel, serial and digit multipliers. Firstly, 
parallel multipliers are not appropriate on constrained 
devices. 
Secondly, serial multipliers process a single coefficient of 
the multiplier at each clock cycle. These types of 
multipliers require m clock cycles for each GF(3m) 
multiplication, while their area consumption and critical 
path delay are relatively small compared to other types of 
multipliers.  
Finally, digit multipliers are very similar to serial 
multipliers but they process w coefficients of the 
multiplier at each clock cycle rather than a single 
coefficient. Consequently, the operation is completed in 
m/w cycles. The area consumption is more than the 
serial multipliers and increases with w. Since the area and 
critical path delay also increase with w, choosing w is an 
important decision influenced by area and time 
constraints. We prefer to use serial multipliers in our 
implementation, which incur increased number of clock 
cycles, while providing a better solution in terms of area 
and frequency. Serial multipliers can also be treated in 
two classes: i) least-significant-element-first (LSE) and ii) 
most-significant-element-first (MSE). Although there is 
not much difference between the two types we implement 
the LSE Multiplier. As illustrated in Algorithm 2, the 
reduction is performed in interleaved fashion.  

 
  Algorithm 2: LSE�Multiplier [15] 

 

input: A = ∑
−

=

1

0

m

i
aiαi, B = ∑

−

=

1

0

m

i
biαi, ai, bi ∈GF(3) 

output: C ≡ A . B = ∑
−

=

1

0

m

i
ciαi, where ci ∈GF(3) 

     C ← 0 
     for i = 0 to m - 1 do 
          C ← biA + C 
          A ← A α mod p(α) 
     end for 
     return: C 
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For interleaved reduction, we subtract am(pm-1xm-1 + . . . + 
p1x + p0x) from the partial result C whenever am ≠ 0 since 
xm = - pm-1xm-1 - . . .  - p1x - p0. 
Two LSE multipliers are designed to examine the effects 
of fixed versus generic polynomials on time and space 
complexities. The advantage of the generic design is that 
it can be used with any polynomial in characteristic three 
which is flexible. In case of fixed polynomials, the 
coefficients of the polynomial can be hard-coded into the 
multiplier unit resulting in reduction of design 
complexity. For the fixed irreducible polynomial of x97 + 
x16 + 2, used in many IBE implementations in literature, 
only two GF(3) additions are needed in each iteration of 
interleaved reduction. As illustrated in Table 2, the 
multiplier with hard-coded irreducible polynomial is 30% 
better than the generic multiplier in terms of area.  
 
Table 2: Comparison of GF(397) multiplication circuits   

GF(397) 
 Multiplier 

Fixed  
LSE 

Generic  
LSE 

LSE  
in [6]2 

LSE  
in [15] 

 
# of Slices 389 599 1006  

# of LUTs 727 1166 - 
600* 

(LUT+FF) 

Frequency 161MHz 161MHz - - 
Total time (µs 0,61 0,61 - - 
*Estimation by paper’s author.  
 
The proposed GF(3m) LSE multiplier architecture is 
shown in Figure 1. The proposed multiplier is 
implemented for m = 97 on virtex2p-100 for comparison 
purposes since it is the same Xilinx device used in [6]. As 
observed in Table 2, the fixed multiplier is nearly 2.5 
times smaller than the architecture in [6] and the generic 
multiplier consumes around 60% of the area of the same 
architecture In Table 2. As a result our architecture is 
better than the architectures in the literature to the best of 
our knowledge. 
 

A  R e g is te r

O u tp u t
R e g is te r

R e d u c t io n

A d d e r

A * B ( i)

B  In p u t

C O N T R O L
U N IT

  
 

Figure 1: LSE multiplier architecture over GF(3m) 

                                                
2 1006 slices for digit size D = 1 is included for a fair 
comparison to our serial multiplier. Note that the clock count 
given in 4th column in Table 4 is for D = 4, whic consumes 
1821 slices.     

 
5 Hardware Implementation of Tate Pairing 
Based on Modified Duursma Lee 
         
GF(36m) can be considered as an extension field over 
GF(32m) with irreducible polynomial z3 – z ± 1 [6]. Also 
as suggested in [6], the multiplication in  GF(36m) can be 
done in two steps: i) Karatsuba multiplication for 
polynomials with coefficients from GF(32m), and ii) 
reduction with irreducible polynomial z3 – z ± 1. Reader 
can profitably refer to [6] for further details. 

+

a2 a1G F(32m ) elem ents

GF(32m) addition

GF(32 m) mu ltiplication

GF(3 2m) subtraction /
addition

GF(32m) elements

+

b2 b1

+ +

a2 a0

+

b2 b0

+ +

a0 a1

+

b0

+

b1

x x xx

b1a1

x

b0a 0

x

b2a2

---

- +
-

-

d4 d3 d2 d1 d0

  
Figure 2: GF(36m) multiplier unit from [6] 

 
In Figure 2, GF(36m) Karatsuba multiplier unit, as 
proposed in [6], is illustrated, where nodes represent the 
GF(32m) adders, subtracters, and multipliers. Similarly, 
GF(32m) can also be seen as an extension field over 
GF(3m) with irreducible polynomial y2 + 1. Since the 
adder/subtracter units operate on the corresponding 
coefficients of the operand polynomials, their structure is 
the same as GF(3m) adders. GF(32m) multiplier, on the 
other hand, consists of GF(3m) adders, subtracters, and 
multipliers as seen in Figure 3. 

+ +

x

-
-

a 0 a 1 b 0 b 1

x x

a 0 b 0 a 1 b 1

-
c 1 c 0

G F (3 m )  e le m e n ts

G F (3 m )  a d d it io n

G F (3 m )  m u lt ip lic a t io n

G F (3 m )  s u b tra c tio n

G F (3 m )  e le m e n ts
  

Figure 3: GF(32m) multiplier unit from [6] 
 
As seen in Figure 2, GF(36m) Karatsuba multiplier has 
five GF(32m) elements as output. The result of the 
Karatsuba multiplier has the form 

01
2

2
3

3
4

4 dzdzdzdzd
~~~~~ ++++ . Since z3 = z + 1 

from the irreducible polynomial, we have 
)

~~
()

~~~
()

~~
( 40341

2
42 ddzdddzdd ++++++ .  
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To summarize, 18 GF(3m) multipliers and 52 GF(3m) 
adders are used in one GF(36m) multiplier. The advantage 
of the proposed architecture is that multiplication is 
completed within m clock cycles as a GF(3m) 
multiplication3. In order to explore reduction strategies, 
we develop two implementations: i) all the blocks are 
parallel and ii) we limit the number of adders after the 
multipliers to four and the operations are scheduled. This 
approach increases the number of clock cycles by five 
(2.5% of all operations), but significantly reduces the 
amount space consumed by adders. Similarly, we try to 
use scheduling approach to decrease the number of 
multipliers. However, not only that scheduling does not 
give successful results on FPGA implementation but also 
increases the number of slices around by 5%. We leave 
the scheduling approach for ASIC implementations as the 
future work since it may save chip space in ASIC. Lastly, 
for additions and subtractions we used the same adder 
block by just rewiring the inputs to swap the bits of the 
subtrahend since it negates the GF(3) elements in the 
employed representation. 
The second GF(36m) block is for performing cubing 
operation and as in the case of the multiplier it is 
constructed using arithmetic units of the base field 
GF(32m) as proposed in [6]. As shown in Figure 4, 
GF(36m) cubing circuitry includes three adder/subtracter 
and three cubing blocks in GF(32m), while GF(32m) cubing 
circuit includes two GF(3m) cubing circuit without any 
additional overhead but negation. Recall that 

)() 3
0

33
1

63
2

3
0

2
2 aaaa(a 1 ++=++ zzazz  and z3 = z 

+ 1 and z6 = z2 – z – 1. Thanks to the efficient GF(3m) 
cubing blocks, implementing GF(36m) cubing block with 
parallel blocks does not consume much area and allows to 
finish the operation in one clock cycle.  
 

^ 3 ^ 3^ 3

-

+

+

ã 2 ã 1 ã 0

ñ 0ñ 1
ñ 2

G F ( 3 2 m )  e le m e n t s

G F ( 3 2 m )  c u b in g

G F ( 3 2 m )  s u b t r a c t i o n
/  a d d i t io n

G F ( 3 2 m )  e le m e n t s  
Figure 4: GF(36m) cubing unit from [6] 

 
5.1 Proposed Coprocessor Architecture 
 
After building the efficient blocks that are needed for our 
accelerator,  we design a control unit and a datapath for 
the Tate Pairing operation. The operation may be divided 

                                                
3 The adders before and after 18 GF(3m) multipliers are, in fact, 
in the critical path; therefore they do not add to the cycle count. 

into two big phases as initialization and loop. In Table 3 
operations are described in detail. 
 
Table 3: Number of clock cycles required for modified 
Duursma-Lee algorithm 

Step Operation 
Clock  
Cycles 

total cycle 
 for   m = 97 

Init. 1-4 α = xp, ß = yp x = xr
3 y = yr

3 4 4 

Loop 5 α = α 3, ß = ß 3 1 97 

Loop 6 α = α3, ß = ß3 1 97 

Loop 7 u = α + x + d 1 97 

Loop 8 ϒ = (-µ2)ζ0 + (-βy)ζ1      +   (-µ) 97 97*97 

Loop 9 t = t3 1 97 

Loop 10 
t = t*ϒ, y=-y, 
d=d-1mod3 97 97*97 

 19210 
 

When the initialization is completed, accelerator starts 
operating in a loop. For the entire operation, we use only 
one GF(36m) multiplier for step 10, one GF(36m) cubing 
circuit for step 9, two GF(3m) cubing circuits for steps 5 
and 6, two GF(3m) multipliers for step 8 and a number of 
adders. The main advantage of our accelerator is that most 
of the operations are completed in single clock cycle. If 
the adder and cubing circuits were implemented with 
registers, clock count would increase around by 400 and 
registers would increase the area of the accelerator.  
 
5.2 Implementation Aspects 

 
Table 4: Comparison of our work with previous 
calculations of Modified Duursma-Lee Algorithm. 

Tate Pairing
 with fixed  
multiplier 

Tate Pairing 
with generic 
multiplier 

Tate pairing 
 in [6]* 

Tate Pairing
in Software

14267 16955 534064 - 

Frequency 77,37 MHz 69,73 MHz 15 MHz - 

Clock Count 19210 19210 122225 - 

Total Time 250,72 µs 278,19 µs 0.815 ms 4,05 ms 

Area*Time 1 1,33 12.2 - 
*Estimation  by the authors. 
 
FPGA Implementation: In this work we mapped our 
blocks and the whole accelerator to Xilinx Virtex2Pro100 
device, since the previous works on the subject used the 
same device. Two different versions of our hardware 

                                                
4 55616-2210 = 53406 since the inverter circuit required for 
final exponentiation operation is not implemented. Total slice 
count of 55616 is taken from [18] since the estimation figures in 
[6] are not clear.  
5 12866 – 644 = 12222. We subtract the number of clock cycles 
spent on the final exponentiation (644) for a fair comparison. 
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pairing accelerator is synthesized as seen from the Table 4 
below. First accelerator uses the GF(3m) multiplier with 
fixed reduction polynomial of p(x) = x97 + x16 + 2. It 
occupies 14267 slices (32% of device) with an operating 
frequency of 77 MHz. In this case total calculation time is 
about 251 µs. Our second version of the accelerator is 
implemented with generic GF(3m) multiplier and results 
are presented in table 4. 
  
 
As seen from Table 4, our implementation of Modified 
Duursma-Lee algorithm is almost three times (2.93) better 
than the previous implementation in the literature in terms 
of execution time and consumes nearly one-fourth of the 
estimated area in other implementations(namely [6]). In 
terms of area-time product, our Tate pairing accelerator 
with fixed multiplier is 12 times better than the one in [6] 
and the one with generic multiplier is 9 times better than 
the same implementation. In addition to these, our 
hardware implementation shortens the calculation time 
nearly sixteen times compared to software 
implementation reported in [17]. 
ASIC Implementation: We also synthesized VHDL 
codes of the algorithm for 0.25 µm CMOS technology. 
The total cell area is 4.3mm2 excluding the buffers that 
are needed to satisfy the clock tree and static timing 
analysis specifications. The implementation consumes 
around 10 mm2 chip area after routing with 5 metal 
technology. Our ASIC implementation has reached the 
frequency of 78 MHz and completes the pairing in 250 
µs.  We should note here that Virtex-2 devices are based 
on 90 nm CMOS technology with 9 metal routing layers.  
 
6   Conclusion 
 
We first developed the sub-blocks for arithmetic in 
GF(3m) needed for the operations in characteristic three. 
After achieving good results in sub-blocks, we 
implemented GF(36m) arithmetic using them in parallel 
manner. Finally we developed our accelerator that 
computes the Tate Pairing in 250 µs by using commonly 
available FPGA. The implementation results showed that 
final area-time product of the design is 12 times better 
than the estimated values given in a previous 
implementation of the same algorithm in the literature and 
total computation time is 16 times better than the software 
applications. Another advantage of our accelerator is its 
suitability for ASIC implementation since no flip-flops 
are used in cubing and addition blocks and there is limited 
usage in the multiplier blocks. Based on these 
assumptions we build the first ASIC implementation of 
the modified Duursma Lee algorithm using 0.25 µm 
CMOS technology and presented the results of the area 
and operating frequency of the circuit. For future work, 

we plan to build a crypto coprocessor based on our Tate 
pairing implementation. 
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