

An Efficient Hardware Implementation of the Tate Pairing in
Characteristic Three*

Giray Kömürcü

Bogaziçi University, Faculty of Engineering,
Electrical and Electronics Engineering

Dept., Istanbul, Turkey
giraykomurcu@su.sabanciuniv.edu,

TUBITAK, National Institute for Electronics
and Cryptography, Gebze, Kocaeli, Turkey

Erkay Savas

Sabanci University, Faculty of
Engineering and Natural Sciences,

Computer Science Dept., Istanbul, Turkey
erkays@sabanciuniv.edu

Abstract

DL systems with bilinear structure recently became an
important base for cryptographic protocols such as
identity-based encryption (IBE). Since the main
computational task is the evaluation of the bilinear
pairings over elliptic curves, known to be prohibitively
expensive, efficient implementations are required to
render them applicable in real life scenarios. We
present an efficient accelerator for computing the Tate
Pairing in characteristic 3, using the Modified-
Duursma-Lee algorithm. Our accelerator shows that it
is possible to improve the area-time product by 12
times on FPGA, compared to estimated values from
one of the best known hardware architecture [6]
implemented on the same type of FPGA. Also the
computation time is improved upto 16 times compared
to software applications reported in [17]. In addition,
we present the result of an ASIC implementation of
the algorithm, which is the first hitherto.
 Keywords: Bilinear pairings, Tate Pairing, Characteristic
Three, FPGA Implementation, hardware accelerator.

1 Introduction

Identity-based encryption (IBE), is a public key
cryptosystem that allows any arbitrary string to be used as
a public key, such as recipients’ email address. This
vastly reduces the amount of work, to set up an online
lookup for public keys and presents novel functionalities
especially useful in access control systems while
maintaining privacy and anonymity. Shamir introduced
the concept of identity-based cryptography in 1984 [2].
However, the concept became practical only with Boneh
and Franklin in 2003 [3]. Tate Pairing, originally

* This research is partially supported by the Scientific and
Technological Research Council of Turkey under project number
105E089.

developed by Frey and Rück [5], became popular, since it
is efficiently computable and achieves its maximum
security in characteristic three over supersingular elliptic
curves [6]. Later, in [9,16] tower fields of GF(3m),
GF(36m) was proposed. Duursma and Lee [11] further
improved the implementation of Tate Pairing and
proposed Duursma-Lee algorithm.
The algorithm used here first appeared in [12] with
further improvements and eliminating the cube root
operation at the expense of two extra cubing operations.
However, implementing pairing operations in software
falls short of matching speed requirements of many
pairing-based cryptography applications, especially in
embedded systems. Therefore, despite the fact and
necessity that designing dedicated hardware architectures
gained significant importance, there is not much work on
this subject in the literature. The modified Duursma-Lee
algorithm was previously implemented partially as a
dedicated hardware only in [6] on FPGA. Our aim is to
design an accelerator that reduces the computation time
and area of Tate pairing computation in characteristic
three, to realize it on FPGA’s and build the first ASIC
implementation of Tate pairing.

2 Related Work

One of the earliest work is by Page and Smart [13] which
described GF(3m) arithmetic architectures for
cryptographic applications. They, later, implemented Tate
pairing with Duursma-Lee algorithm using an accelerator
for arithmetic in GF(3m)[1].
The work by Kerins et. al. proposes a Tate pairing
implementation [6] based on the modified Duursma-Lee
algorithm. With their approach, it is possible to multiply
two polynomials in GF(36m) using the same number of
clock cycles as multiplying two GF(3m) polynomials, at
the expense of area overhead and reduced clock
frequency.
In our accelerator we use the parallel hardware
architecture and optimize it in terms of area and speed
especially working on sub-blocks. We optimize cubing

Third International Conference on Systems

978-0-7695-3105-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ICONS.2008.27

23

Third International Conference on Systems

978-0-7695-3105-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ICONS.2008.27

23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11740468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and multiplication units for specific irreducible
polynomials used in the construction of ternary extension
fields reducing the total area significantly. Additionally,
we try to find an optimum algorithm and architecture to
design a suitable Tate pairing accelerator for relatively
constrained settings.
Our contribution is three-fold: i) we present a full
realization of the accelerator on both FPGA and ASIC for
Duursma-Lee algorithm for the first time, and ii) we
demonstrate that sub-blocks in the accelerator can be
improved in terms of both area and time complexity by
applying good design techniques, and iii) we show that
our actual implementation of Duursma-Lee algorithm is
in fact faster and smaller than the estimated values given
in the previous work [6].

3 Tate Pairing Calculation and Modified
Duursma-Lee Algorithm

The modified Tate pairing is basically a transformation
that takes two points on an elliptic curve E± : y2 = x3 – x ±
1 defined over GF(3m) and outputs a nonzero element of
in tower extension field GF(36m).
Arithmetic operations required to implement the modified
Duusma-Lee Algorithm is addition, subtraction, cubing
and multiplication in GF(3m) and cubing and
multiplication in GF(36m).

Algorithm 1: The Modified Duursma-Lee Algorithm
(char 3) [6]

input: P = (xp, yp), R = (xr, yr) ∈ E±[l](GF(3m))
output: t = e3

3m-1 (P, φ(R))) ∈ GF(36m)*
01 initialize : t = 1 ∈ GF(36m),
 α = xp, β = yp, x = xr

3, y = yr
3, µ = 0 ∈ GF(3m)

 d = (±m) mod 3 ∈ GF(3)
02 for i in 0 to m-1 loop
03 α = α9, β = β9 (* arithmetic in GF(3m) *)
04 µ = α + x + d (* arithmetic in GF(3m) *)
05 γ = (-µ2)ζ0 + (-βy)ζ1 + (-µ)ζ2 + (0)ζ3 + (-1)ζ4 + (0)ζ5
 (*ζ = 3m*)
06 t = t3 (* cubing in GF(36m) *)
07 t = tγ (* multiplication in GF(36m) *)
08 y = -y (* arithmetic in GF(3m) *)
09 d = (d ± 1) mod 3
10 end loop
return: t

Constructing the ternary extension field GF(36m) on the
base field of GF(3m) is suggested in [16, 9] and described
explicitly in [6]. Use of extension fields simplifies the
arithmetic operations and allows parallelization for the
cubing and multiplication operations.

4 Arithmetic in Characteristic Three and
Our Sub-Blocks

In this section, we present hardware architectures for
addition, subtraction, multiplication and cubing in
GF(3m). Characteristic three arithmetic is slightly more
complicated than characteristic two arithmetic since
coefficients can take three values; {0, 1, 2}. Hence two
bits are needed to represent each digit in GF(3) using the
encoding {0, 1, 2} = {00, 01, 10}. The negation in this
representation is performed by swapping the most and the
least significant bits (which is almost free in hardware
implementations) since 2 ≡ -1 mod 3. Since negation
operation is used very often especially in performing
GF(36m) multiplication, this particular representation is
very useful in our case. For arithmetic operations, m bit
elements are expressed as 2m bit arrays as follows

A = ({aH
m-1, aL

m-1},. , {aH
1, aL

1}, {aH
0, aL

0})

4.1 Addition and Subtraction

Addition and subtraction is performed digit-wise by using
the Boolean expression in [1], i.e.

Ci = Ai + Bi, for i = 0, 1, . . . , m-1 and
t = (AL

i ∨ BH
i) ⊕ (AH

i ∨ BL
i)

CH
i = (AL

i ∨ BL
i) ⊕ t and CL

i = (AH
i ∨ BH

i) ⊕ t

where ∨ and ⊕ stands for logical OR and XOR
operations, respectively. In the used representation,
negation and multiplication of GF(3) element by two are
equivalent operations and performed by swapping the
most and least significant bits of the digit representing the
element. Therefore, subtraction in GF(3m) is equally
efficient as the addition in the same field and thus the
same adder block is used for both operations. If
subtraction is needed, bits in digits of subtrahend are
individually swapped and connected to the adder block.
Since this is achieved by only wiring no additional
hardware resource is used.
When implemented on FPGAs, for each GF(3) addition,
two 4-input “look-up tables” (LUTs) are used. Since one
slice is composed of two LUTs, for m-bit long GF(3m)
additions m slices are used. This result is almost the same
in all papers implementing characteristic three addition
such as [10]. The delay of the addition operation is 5,061
ns on Xilinx Virtex2p 100 device.

 4.2 Cubing

The modified Duursma-Lee algorithm requires cubing
operation in GF(36m) and it is possible to build a parallel
architecture by using GF(3m) cubing blocks as explained
in the next section. Cubing is a linear operation in

2424

characteristic three and we adopt the technique presented
in [15]. For characteristic three, Frobenius map is written
as follows:

 A 3 ≡ (∑
−

=

1

0

m

i
aixi)3 mod p(x) = ∑

−

=

1

0

m

i

aix3i mod p(x)

 This formula can be represented as follows:

A 3 ≡ ∑
−

≡
=

)(

mod

13

30
0

m

i
i

ai/3xi mod p(x) ≡ T+U+V mod p(x)≡

(∑
−

≡
=

1

30
0

m

i
i

mod

ai/3xi)+(∑
−

≡
=

12

30

m

i
mi
mod

ai/3xi)+(∑
−

≡
=

)(

mod

13

30
2

m

i
mi

ai/3xi) mod p(x)

 Here the degrees of the second U and the third terms V
are bigger than m and need to be reduced. For p(x) = xm +
ptxt + p0 and t < m/3, the terms can be represented as
follows as also showed in [15]:

U = ∑
−

≡
=

12

30

m

i
mi
mod

ai/3xi-m(-pt xt - p0) mod p(x)

V = ∑
−

≡
=

)(

mod

13

30
2

m

i
mi

ai/3xi-2m(a2t–ptp0at+1) mod p(x)

Reduction is basically done by additions. For irreducible
polynomial p(x) = xm + ptxt + p0, every occurances of xm

and x2m are replaced with (-ptxt - p0) and (a2t–ptp0at+1)1,
respectively.

Table 1: Comparison of cubing circuits for GF(397)
Cubing circuit Proposed circuit Circuit in [6] Circuit in [15]

No. of Slices 116 514 -

No. of LUTs 222 - 388*

Max. Frequency 144MHz - -
*Estimation by authors of [15]; not the result of an actual
implementation.

We optimize the reduction for the well known polynomial
p(x) = x97 + x16 + 2 and calculate the terms to be added to
achieve reduction in the same clock cycle. The
optimization for a specific polynomial results in a very
efficient implementation. We use 111 GF(3) adders to
complete the cubing operation. And critical path of the
system consists of three serially connected GF(3) adders.
As seen from Table 1, our implementation is 2.5 times
more efficient than the implementations in [6] and [15].
Although the implementation details of the cubing circuits
are not clear in [6] and [15], the improvement in the slice
and LUT numbers should be due to register free design
and doing the reduction for a given polynomial.

1 Note that x2m = (xm)2 = (-ptxt - p0)2 = a2t–ptp0at+1 in GF(3).

4.3 Multiplication

Multiplication is the most important operation for pairing
implementations due to its complexity. Since the
modified, as explained in the next section. Duursma Lee
algorithm requires GF(36m) multiplications, we need 18
parallel GF(3m) multipliers in parallel. Therefore,
designing efficient multiplier architecture is the key for an
efficient hardware accelerator.
Hardware architectures proposed in the literature for
GF(3m) multiplication can be treated in three major
classes: parallel, serial and digit multipliers. Firstly,
parallel multipliers are not appropriate on constrained
devices.
Secondly, serial multipliers process a single coefficient of
the multiplier at each clock cycle. These types of
multipliers require m clock cycles for each GF(3m)
multiplication, while their area consumption and critical
path delay are relatively small compared to other types of
multipliers.
Finally, digit multipliers are very similar to serial
multipliers but they process w coefficients of the
multiplier at each clock cycle rather than a single
coefficient. Consequently, the operation is completed in
m/w cycles. The area consumption is more than the
serial multipliers and increases with w. Since the area and
critical path delay also increase with w, choosing w is an
important decision influenced by area and time
constraints. We prefer to use serial multipliers in our
implementation, which incur increased number of clock
cycles, while providing a better solution in terms of area
and frequency. Serial multipliers can also be treated in
two classes: i) least-significant-element-first (LSE) and ii)
most-significant-element-first (MSE). Although there is
not much difference between the two types we implement
the LSE Multiplier. As illustrated in Algorithm 2, the
reduction is performed in interleaved fashion.

 Algorithm 2: LSE�Multiplier [15]

input: A = ∑
−

=

1

0

m

i
aiαi, B = ∑

−

=

1

0

m

i
biαi, ai, bi ∈GF(3)

output: C ≡ A . B = ∑
−

=

1

0

m

i
ciαi, where ci ∈GF(3)

 C ← 0
 for i = 0 to m - 1 do
 C ← biA + C
 A ← A α mod p(α)
 end for
 return: C

2525

For interleaved reduction, we subtract am(pm-1xm-1 + . . . +
p1x + p0x) from the partial result C whenever am ≠ 0 since
xm = - pm-1xm-1 - . . . - p1x - p0.
Two LSE multipliers are designed to examine the effects
of fixed versus generic polynomials on time and space
complexities. The advantage of the generic design is that
it can be used with any polynomial in characteristic three
which is flexible. In case of fixed polynomials, the
coefficients of the polynomial can be hard-coded into the
multiplier unit resulting in reduction of design
complexity. For the fixed irreducible polynomial of x97 +
x16 + 2, used in many IBE implementations in literature,
only two GF(3) additions are needed in each iteration of
interleaved reduction. As illustrated in Table 2, the
multiplier with hard-coded irreducible polynomial is 30%
better than the generic multiplier in terms of area.

Table 2: Comparison of GF(397) multiplication circuits

GF(397)
 Multiplier

Fixed
LSE

Generic
LSE

LSE
in [6]2

LSE
in [15]

of Slices 389 599 1006

of LUTs 727 1166 -
600*

(LUT+FF)

Frequency 161MHz 161MHz - -
Total time (µs 0,61 0,61 - -
*Estimation by paper’s author.

The proposed GF(3m) LSE multiplier architecture is
shown in Figure 1. The proposed multiplier is
implemented for m = 97 on virtex2p-100 for comparison
purposes since it is the same Xilinx device used in [6]. As
observed in Table 2, the fixed multiplier is nearly 2.5
times smaller than the architecture in [6] and the generic
multiplier consumes around 60% of the area of the same
architecture In Table 2. As a result our architecture is
better than the architectures in the literature to the best of
our knowledge.

A R e g is te r

O u tp u t
R e g is te r

R e d u c t io n

A d d e r

A * B (i)

B In p u t

C O N T R O L
U N IT

Figure 1: LSE multiplier architecture over GF(3m)

2 1006 slices for digit size D = 1 is included for a fair
comparison to our serial multiplier. Note that the clock count
given in 4th column in Table 4 is for D = 4, whic consumes
1821 slices.

5 Hardware Implementation of Tate Pairing
Based on Modified Duursma Lee

GF(36m) can be considered as an extension field over
GF(32m) with irreducible polynomial z3 – z ± 1 [6]. Also
as suggested in [6], the multiplication in GF(36m) can be
done in two steps: i) Karatsuba multiplication for
polynomials with coefficients from GF(32m), and ii)
reduction with irreducible polynomial z3 – z ± 1. Reader
can profitably refer to [6] for further details.

+

a2 a1G F(32m) elem ents

GF(32m) addition

GF(32 m) mu ltiplication

GF(3 2m) subtraction /
addition

GF(32m) elements

+

b2 b1

+ +

a2 a0

+

b2 b0

+ +

a0 a1

+

b0

+

b1

x x xx

b1a1

x

b0a 0

x

b2a2

- +
-

-

d4 d3 d2 d1 d0

Figure 2: GF(36m) multiplier unit from [6]

In Figure 2, GF(36m) Karatsuba multiplier unit, as
proposed in [6], is illustrated, where nodes represent the
GF(32m) adders, subtracters, and multipliers. Similarly,
GF(32m) can also be seen as an extension field over
GF(3m) with irreducible polynomial y2 + 1. Since the
adder/subtracter units operate on the corresponding
coefficients of the operand polynomials, their structure is
the same as GF(3m) adders. GF(32m) multiplier, on the
other hand, consists of GF(3m) adders, subtracters, and
multipliers as seen in Figure 3.

+ +

x

-
-

a 0 a 1 b 0 b 1

x x

a 0 b 0 a 1 b 1

-
c 1 c 0

G F (3 m) e le m e n ts

G F (3 m) a d d it io n

G F (3 m) m u lt ip lic a t io n

G F (3 m) s u b tra c tio n

G F (3 m) e le m e n ts

Figure 3: GF(32m) multiplier unit from [6]

As seen in Figure 2, GF(36m) Karatsuba multiplier has
five GF(32m) elements as output. The result of the
Karatsuba multiplier has the form

01
2

2
3

3
4

4 dzdzdzdzd
~~~~~ ++++ . Since z3 = z + 1 

from the irreducible polynomial, we have 
)

~~
()

~~~
()

~~
(40341

2
42 ddzdddzdd ++++++ .

2626

To summarize, 18 GF(3m) multipliers and 52 GF(3m)
adders are used in one GF(36m) multiplier. The advantage
of the proposed architecture is that multiplication is
completed within m clock cycles as a GF(3m)
multiplication3. In order to explore reduction strategies,
we develop two implementations: i) all the blocks are
parallel and ii) we limit the number of adders after the
multipliers to four and the operations are scheduled. This
approach increases the number of clock cycles by five
(2.5% of all operations), but significantly reduces the
amount space consumed by adders. Similarly, we try to
use scheduling approach to decrease the number of
multipliers. However, not only that scheduling does not
give successful results on FPGA implementation but also
increases the number of slices around by 5%. We leave
the scheduling approach for ASIC implementations as the
future work since it may save chip space in ASIC. Lastly,
for additions and subtractions we used the same adder
block by just rewiring the inputs to swap the bits of the
subtrahend since it negates the GF(3) elements in the
employed representation.
The second GF(36m) block is for performing cubing
operation and as in the case of the multiplier it is
constructed using arithmetic units of the base field
GF(32m) as proposed in [6]. As shown in Figure 4,
GF(36m) cubing circuitry includes three adder/subtracter
and three cubing blocks in GF(32m), while GF(32m) cubing
circuit includes two GF(3m) cubing circuit without any
additional overhead but negation. Recall that

)() 3
0

33
1

63
2

3
0

2
2 aaaa(a 1 ++=++ zzazz and z3 = z

+ 1 and z6 = z2 – z – 1. Thanks to the efficient GF(3m)
cubing blocks, implementing GF(36m) cubing block with
parallel blocks does not consume much area and allows to
finish the operation in one clock cycle.

^ 3 ^ 3^ 3

-

+

+

ã 2 ã 1 ã 0

ñ 0ñ 1
ñ 2

G F (3 2 m) e le m e n t s

G F (3 2 m) c u b in g

G F (3 2 m) s u b t r a c t i o n
/ a d d i t io n

G F (3 2 m) e le m e n t s
Figure 4: GF(36m) cubing unit from [6]

5.1 Proposed Coprocessor Architecture

After building the efficient blocks that are needed for our
accelerator, we design a control unit and a datapath for
the Tate Pairing operation. The operation may be divided

3 The adders before and after 18 GF(3m) multipliers are, in fact,
in the critical path; therefore they do not add to the cycle count.

into two big phases as initialization and loop. In Table 3
operations are described in detail.

Table 3: Number of clock cycles required for modified
Duursma-Lee algorithm

Step Operation
Clock
Cycles

total cycle
 for m = 97

Init. 1-4 α = xp, ß = yp x = xr
3 y = yr

3 4 4

Loop 5 α = α 3, ß = ß 3 1 97

Loop 6 α = α3, ß = ß3 1 97

Loop 7 u = α + x + d 1 97

Loop 8 ϒ = (-µ2)ζ0 + (-βy)ζ1 + (-µ) 97 97*97

Loop 9 t = t3 1 97

Loop 10
t = t*ϒ, y=-y,
d=d-1mod3 97 97*97

 19210

When the initialization is completed, accelerator starts
operating in a loop. For the entire operation, we use only
one GF(36m) multiplier for step 10, one GF(36m) cubing
circuit for step 9, two GF(3m) cubing circuits for steps 5
and 6, two GF(3m) multipliers for step 8 and a number of
adders. The main advantage of our accelerator is that most
of the operations are completed in single clock cycle. If
the adder and cubing circuits were implemented with
registers, clock count would increase around by 400 and
registers would increase the area of the accelerator.

5.2 Implementation Aspects

Table 4: Comparison of our work with previous
calculations of Modified Duursma-Lee Algorithm.

Tate Pairing
 with fixed
multiplier

Tate Pairing
with generic
multiplier

Tate pairing
 in [6]*

Tate Pairing
in Software

14267 16955 534064 -

Frequency 77,37 MHz 69,73 MHz 15 MHz -

Clock Count 19210 19210 122225 -

Total Time 250,72 µs 278,19 µs 0.815 ms 4,05 ms

Area*Time 1 1,33 12.2 -
*Estimation by the authors.

FPGA Implementation: In this work we mapped our
blocks and the whole accelerator to Xilinx Virtex2Pro100
device, since the previous works on the subject used the
same device. Two different versions of our hardware

4 55616-2210 = 53406 since the inverter circuit required for
final exponentiation operation is not implemented. Total slice
count of 55616 is taken from [18] since the estimation figures in
[6] are not clear.
5 12866 – 644 = 12222. We subtract the number of clock cycles
spent on the final exponentiation (644) for a fair comparison.

2727

pairing accelerator is synthesized as seen from the Table 4
below. First accelerator uses the GF(3m) multiplier with
fixed reduction polynomial of p(x) = x97 + x16 + 2. It
occupies 14267 slices (32% of device) with an operating
frequency of 77 MHz. In this case total calculation time is
about 251 µs. Our second version of the accelerator is
implemented with generic GF(3m) multiplier and results
are presented in table 4.

As seen from Table 4, our implementation of Modified
Duursma-Lee algorithm is almost three times (2.93) better
than the previous implementation in the literature in terms
of execution time and consumes nearly one-fourth of the
estimated area in other implementations(namely [6]). In
terms of area-time product, our Tate pairing accelerator
with fixed multiplier is 12 times better than the one in [6]
and the one with generic multiplier is 9 times better than
the same implementation. In addition to these, our
hardware implementation shortens the calculation time
nearly sixteen times compared to software
implementation reported in [17].
ASIC Implementation: We also synthesized VHDL
codes of the algorithm for 0.25 µm CMOS technology.
The total cell area is 4.3mm2 excluding the buffers that
are needed to satisfy the clock tree and static timing
analysis specifications. The implementation consumes
around 10 mm2 chip area after routing with 5 metal
technology. Our ASIC implementation has reached the
frequency of 78 MHz and completes the pairing in 250
µs. We should note here that Virtex-2 devices are based
on 90 nm CMOS technology with 9 metal routing layers.

6 Conclusion

We first developed the sub-blocks for arithmetic in
GF(3m) needed for the operations in characteristic three.
After achieving good results in sub-blocks, we
implemented GF(36m) arithmetic using them in parallel
manner. Finally we developed our accelerator that
computes the Tate Pairing in 250 µs by using commonly
available FPGA. The implementation results showed that
final area-time product of the design is 12 times better
than the estimated values given in a previous
implementation of the same algorithm in the literature and
total computation time is 16 times better than the software
applications. Another advantage of our accelerator is its
suitability for ASIC implementation since no flip-flops
are used in cubing and addition blocks and there is limited
usage in the multiplier blocks. Based on these
assumptions we build the first ASIC implementation of
the modified Duursma Lee algorithm using 0.25 µm
CMOS technology and presented the results of the area
and operating frequency of the circuit. For future work,

we plan to build a crypto coprocessor based on our Tate
pairing implementation.

References

[1] P. Grabher and D. Page. Hardware Acceleration of the Tate Pairing

in Characteristic Three. CHES 2005, LNCS 3659, pp. 398–411,
2005. International Association for Cryptologic Research 2005

[2] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In
Advances in Cryptology (CRYPTO), Springer-Verlag LNCS 196,
47–53, 1985.

[3] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil
Pairing. In SIAM Journal on Computing, 32(3), 586–615, 2003.

[4] R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems Based on
Pairings. In Symposium on Cryptography and Information Security
(SCIS), 2000.

[5] G. Frey and H. Rück. A remark considering m-divisibility in the
divisor class group of curves. Mathematics of Computation, 62:865-
874, 1994.

[6] T. Kerins, W. P. Marnane, E. M. Popovici and P.S.L.M. Barreto.
Efficient Hardware for the Tate Pairing Calculation in
Characteristic Three. CHES 2005, LNCS 3659, pp. 412–426,
2005.International Association for Cryptologic Research 2005

[7] V. S. Miller. Short Programs for functions on curves. Unpublished
manuscript.1986. http://crypto.stanford.edu/miller/miller.pdf.

[8] P. S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient
Algorithms for Pairing-Based Cryptosystems. In M. Yung, editor,
Advances in Cryptology CRYPTO 2002, volume LNCS 2442, pages
354–368. Springer-Verlag, 2002.

[9] S. Galbraith, K. Harrison and D. Soldera. Implementing the Tate
pairing. In Algorithm Number Theory Symposium - ANTS V, vol
2369 of Lecture Notes in Computer Science, pages 324-337.
Springer-Verlag 2002.

[10] R. Ronan, C. Eigeartaigh, C. Murphy, T. Kerins and M. Barreto.
Hardware implementation of the ηT pairing in characteristic 3.

[11] I. Duursma and H.-S. Lee. Tate pairing implementation for
hyperelliptic curves y2 = xp - x + d. In Advances in Cryptology -
Asiacrypt 2003, volume 2894 of Lecture Notes in Computer
Science, pages 111-123. Springer-Verlag, 2003.

[12] S. Kwon. Efficient Tate pairing computation for supersingular
elliptic curves over binary fields. Cryptology ePrint Archive, Report
2004/303, 2004. http://eprint.iacr.org/2004/303.

[13] D. Page and N.P. Smart. Hardware implementation of finite fields
of characteristic three. In B. S. Kaliski, Jr., C¸ . K. Koc, and C.
Paar, editors, Cryptographic Hardware and Embedded Systems —
CHES 2002, volume LNCS. Springer-Verlag, 2002. 160, 161, 170,
172

[14] T. Kerins, E. Popovici, and W. Marnane. Algorithms and
Architectures for Use in FPGA Implementations of Identity Based
Encryption Schemes. FPL 2004, LNCS 3203, pp. 74–83,
2004.Springer-Verlag Berlin Heidelberg 2004

[15] G. Bertoni, J. Guajardo, S. Kumar, G. Orlando, C. Paar, and T.
Wollinger. Efficient GF(pm) Arithmetic Architectures for
Cryptographic Applications. CT-RSA 2003, LNCS 2612, pp. 158–
175, 2003. Springer-Verlag Berlin Heidelberg 2003

[16] P. S. L. M. Barreto, H.Y. Kim, B. Lynn and M. Scott. Efficient
implementation of pairing based cryptosystems. In Advances in
Cryptology - CRYPTO 2002 volume 2442 of Lecture Notes in
Computer Science, pages 354-368. Springer-Verlag 2002.

[17] P. S. L. M. Barreto. A note on efficient computation of cube roots
in characteristic 3. Cryptology ePrint Archieve, Report 035/2004
2004. http://eprint.iacr.org/2004/375

[18] J.-L. Beuchat, M. Shirase, T. Takagi and E. Okamoto, An Algorithm
for the ηT Pairing Calculation in Characteristic Three and its
Hardware Implementation, available at http://eprint.iacr.org/2006/.

2828

