7,277 research outputs found

    Machine Learning-based Predictive Maintenance for Optical Networks

    Get PDF
    Optical networks provide the backbone of modern telecommunications by connecting the world faster than ever before. However, such networks are susceptible to several failures (e.g., optical fiber cuts, malfunctioning optical devices), which might result in degradation in the network operation, massive data loss, and network disruption. It is challenging to accurately and quickly detect and localize such failures due to the complexity of such networks, the time required to identify the fault and pinpoint it using conventional approaches, and the lack of proactive efficient fault management mechanisms. Therefore, it is highly beneficial to perform fault management in optical communication systems in order to reduce the mean time to repair, to meet service level agreements more easily, and to enhance the network reliability. In this thesis, the aforementioned challenges and needs are tackled by investigating the use of machine learning (ML) techniques for implementing efficient proactive fault detection, diagnosis, and localization schemes for optical communication systems. In particular, the adoption of ML methods for solving the following problems is explored: - Degradation prediction of semiconductor lasers, - Lifetime (mean time to failure) prediction of semiconductor lasers, - Remaining useful life (the length of time a machine is likely to operate before it requires repair or replacement) prediction of semiconductor lasers, - Optical fiber fault detection, localization, characterization, and identification for different optical network architectures, - Anomaly detection in optical fiber monitoring. Such ML approaches outperform the conventionally employed methods for all the investigated use cases by achieving better prediction accuracy and earlier prediction or detection capability

    Scalable fault management architecture for dynamic optical networks : an information-theoretic approach

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.MIT Barker Engineering Library copy: printed in pages.Also issued printed in pages.Includes bibliographical references (leaves 255-262).All-optical switching, in place of electronic switching, of high data-rate lightpaths at intermediate nodes is one of the key enabling technologies for economically scalable future data networks. This replacement of electronic switching with optical switching at intermediate nodes, however, presents new challenges for fault detection and localization in reconfigurable all-optical networks. Presently, fault detection and localization techniques, as implemented in SONET/G.709 networks, rely on electronic processing of parity checks at intermediate nodes. If similar techniques are adapted to all-optical reconfigurable networks, optical signals need to be tapped out at intermediate nodes for parity checks. This additional electronic processing would break the all-optical transparency paradigm and thus significantly diminish the cost advantages of all-optical networks. In this thesis, we propose new fault-diagnosis approaches specifically tailored to all-optical networks, with an objective of keeping the diagnostic capital expenditure and the diagnostic operation effort low. Instead of the aforementioned passive monitoring paradigm based on parity checks, we propose a proactive lightpath probing paradigm: optical probing signals are sent along a set of lightpaths in the network, and network state (i.e., failure pattern) is then inferred from testing results of this set of end-to-end lightpath measurements. Moreover, we assume that a subset of network nodes (up to all the nodes) is equipped with diagnostic agents - including both transmitters/receivers for probe transmission/detection and software processes for probe management to perform fault detection and localization. The design objectives of this proposed proactive probing paradigm are two folded: i) to minimize the number of lightpath probes to keep the diagnostic operational effort low, and ii) to minimize the number of diagnostic hardware to keep the diagnostic capital expenditure low.(cont.) The network fault-diagnosis problem can be mathematically modeled with a group testing-over-graphs framework. In particular, the network is abstracted as a graph in which the failure status of each node/link is modeled with a random variable (e.g. Bernoulli distribution). A probe over any path in the graph results in a value, defined as the probe syndrome, which is a function of all the random variables associated in that path. A network failure pattern is inferred through a set of probe syndromes resulting from a set of optimally chosen probes. This framework enriches the traditional group-testing problem by introducing a topological structure, and can be extended to model many other network-monitoring problems (e.g., packet delay, packet drop ratio, noise and etc) by choosing appropriate state variables. Under the group-testing-over-graphs framework with a probabilistic failure model, we initiate an information-theoretic approach to minimizing the average number of lightpath probes to identify all possible network failure patterns. Specifically, we have established an isomorphic mapping between the fault-diagnosis problem in network management and the source-coding problem in Information Theory. This mapping suggests that the minimum average number of lightpath probes required is lower bounded by the information entropy of the network state and efficient source-coding algorithms (e.g. the run-length code) can be translated into scalable fault-diagnosis schemes under some additional probe feasibility constraint. Our analytical and numerical investigations yield a guideline for designing scalable fault-diagnosis algorithms: each probe should provide approximately 1-bit of state information, and thus the total number of probes required is approximately equal to the entropy of the network state.(cont.) To address the hardware cost of diagnosis, we also developed a probabilistic analysis framework to characterize the trade-off between hardware cost (i.e., the number of nodes equipped with Tx/Rx pairs) and diagnosis capability (i.e., the probability of successful failure detection and localization). Our results suggest that, for practical situations, the hardware cost can be reduced significantly by accepting a small amount of uncertainty about the failure status.by Yonggang Wen.Ph.D

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Inter-organizational fault management: Functional and organizational core aspects of management architectures

    Full text link
    Outsourcing -- successful, and sometimes painful -- has become one of the hottest topics in IT service management discussions over the past decade. IT services are outsourced to external service provider in order to reduce the effort required for and overhead of delivering these services within the own organization. More recently also IT services providers themselves started to either outsource service parts or to deliver those services in a non-hierarchical cooperation with other providers. Splitting a service into several service parts is a non-trivial task as they have to be implemented, operated, and maintained by different providers. One key aspect of such inter-organizational cooperation is fault management, because it is crucial to locate and solve problems, which reduce the quality of service, quickly and reliably. In this article we present the results of a thorough use case based requirements analysis for an architecture for inter-organizational fault management (ioFMA). Furthermore, a concept of the organizational respective functional model of the ioFMA is given.Comment: International Journal of Computer Networks & Communications (IJCNC

    Super monitor design for fast link failure localization in all-optical networks

    Get PDF
    Monitoring cycle (m-cycle) based design is cost efficient for fast link failure detection and localization in all-optical networks. An m-cycle is an optical loop-back pre-cross-connection of a supervisory wavelength with a dedicated monitor. Generally, a simple monitor is placed at an arbitrary node of an m-cycle for supervision. In this paper, we propose a novel monitor structure, called super monitor. A super monitor is used to supervise multiple intersecting cycles and placed at the intersection node. For a given set of m-cycles, we use super monitors to replace some (or all) simple monitors that originally locate in the set. Two major advantages of the super monitor are: 1) it has lower hardware cost; 2) the collocation of monitoring devices reduces the management cost simultaneously. Besides, the super monitor does not incur additional bandwidth cost. We formulate an integer linear program (ILP) to solve the problem of monitor placement. Numerical results show that our ILP can efficiently place the monitors with a significantly minimized monitoring cost. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Conference on Communications (ICC 2011), Kyoto, Japan, 5-9 June 2011. In Proceedings of the IEEE ICC, 2011, p. 1-

    Spatio-Temporal Action Detection with Cascade Proposal and Location Anticipation

    Full text link
    In this work, we address the problem of spatio-temporal action detection in temporally untrimmed videos. It is an important and challenging task as finding accurate human actions in both temporal and spatial space is important for analyzing large-scale video data. To tackle this problem, we propose a cascade proposal and location anticipation (CPLA) model for frame-level action detection. There are several salient points of our model: (1) a cascade region proposal network (casRPN) is adopted for action proposal generation and shows better localization accuracy compared with single region proposal network (RPN); (2) action spatio-temporal consistencies are exploited via a location anticipation network (LAN) and thus frame-level action detection is not conducted independently. Frame-level detections are then linked by solving an linking score maximization problem, and temporally trimmed into spatio-temporal action tubes. We demonstrate the effectiveness of our model on the challenging UCF101 and LIRIS-HARL datasets, both achieving state-of-the-art performance.Comment: Accepted at BMVC 2017 (oral
    • …
    corecore