1,246 research outputs found

    Performance evaluation and implementations of MFCC, SVM and MLP algorithms in the FPGA board

    Get PDF
    One of the most difficult speech recognition tasks is accurate recognition of human-to-human communication. Advances in deep learning over the last few years have produced major speech improvements in recognition on the representative Switch-board conversational corpus. Word error rates that just a few years ago were 14% have dropped to 8.0%, then 6.6% and most recently 5.8%, and are now believed to be within striking range of human performance. This raises two issues - what is human performance, and how far down can we still drive speech recognition error rates? The main objective of this article is the development of a comparative study of the performance of Automatic Speech Recognition (ASR) algorithms using a database made up of a set of signals created by female and male speakers of different ages. We will also develop techniques for the Software and Hardware implementation of these algorithms and test them in an embedded electronic card based on a reconfigurable circuit (Field Programmable Gate Array FPGA). We will present an analysis of the results of classifications for the best Support Vector Machine architectures (SVM) and Artificial Neural Networks of Multi-Layer Perceptron (MLP). Following our analysis, we created NIOSII processors and we tested their operations as well as their characteristics. The characteristics of each processor are specified in this article (cost, size, speed, power consumption and complexity). At the end of this work, we physically implemented the architecture of the Mel Frequency Cepstral Coefficients (MFCC) extraction algorithm as well as the classification algorithm that provided the best results

    Embedded Knowledge-based Speech Detectors for Real-Time Recognition Tasks

    Get PDF
    Speech recognition has become common in many application domains, from dictation systems for professional practices to vocal user interfaces for people with disabilities or hands-free system control. However, so far the performance of automatic speech recognition (ASR) systems are comparable to human speech recognition (HSR) only under very strict working conditions, and in general much lower. Incorporating acoustic-phonetic knowledge into ASR design has been proven a viable approach to raise ASR accuracy. Manner of articulation attributes such as vowel, stop, fricative, approximant, nasal, and silence are examples of such knowledge. Neural networks have already been used successfully as detectors for manner of articulation attributes starting from representations of speech signal frames. In this paper, the full system implementation is described. The system has a first stage for MFCC extraction followed by a second stage implementing a sinusoidal based multi-layer perceptron for speech event classification. Implementation details over a Celoxica RC203 board are give

    Learning to infer: RL-based search for DNN primitive selection on Heterogeneous Embedded Systems

    Full text link
    Deep Learning is increasingly being adopted by industry for computer vision applications running on embedded devices. While Convolutional Neural Networks' accuracy has achieved a mature and remarkable state, inference latency and throughput are a major concern especially when targeting low-cost and low-power embedded platforms. CNNs' inference latency may become a bottleneck for Deep Learning adoption by industry, as it is a crucial specification for many real-time processes. Furthermore, deployment of CNNs across heterogeneous platforms presents major compatibility issues due to vendor-specific technology and acceleration libraries. In this work, we present QS-DNN, a fully automatic search based on Reinforcement Learning which, combined with an inference engine optimizer, efficiently explores through the design space and empirically finds the optimal combinations of libraries and primitives to speed up the inference of CNNs on heterogeneous embedded devices. We show that, an optimized combination can achieve 45x speedup in inference latency on CPU compared to a dependency-free baseline and 2x on average on GPGPU compared to the best vendor library. Further, we demonstrate that, the quality of results and time "to-solution" is much better than with Random Search and achieves up to 15x better results for a short-time search

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    Hardware implementation of deception detection system classifier

    Get PDF
    Non-verbal features extracted from human face and body are considered as one of the most important indication for revealing the deception state. The Deception Detection System (DDS) is widely applied in different areas like: security, criminal investigation, terrorism detection …etc. In this study, fifteen features are extracted from each participant in the collected database. These features are related to three kinds of non-verbal features these are: facial expressions, head movements and eye gaze. The collected databased contain videos for 102 subjects and there are 888 clip related to both lie and truth response, these clips are used to train and test the system classifier. These fifteen features are placed in a single vector and applied to Support Vector Machine (SVM) classifier to classify input feature vectors into one of two classes either liar or truth-teller class. The detection accuracy of the proposed DDS based on SVM classifier was equal to 89.6396%. Finally, the hardware implementation for SVM classifier is done using the Xilinx block set. The design requires 136 slices and 263 of 4 input LUTs. Moreover, the designed classifier doesn’t require any use of both flip-flops and MULT18X18SIOs. The selected hardware platform (FPGA kit) for implementing the SVM classifier is Spartan-3A 700A

    The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization

    Full text link
    This paper focuses on an examination of an applicability of Recurrent Neural Network models for detecting anomalous behavior of the CERN superconducting magnets. In order to conduct the experiments, the authors designed and implemented an adaptive signal quantization algorithm and a custom GRU-based detector and developed a method for the detector parameters selection. Three different datasets were used for testing the detector. Two artificially generated datasets were used to assess the raw performance of the system whereas the 231 MB dataset composed of the signals acquired from HiLumi magnets was intended for real-life experiments and model training. Several different setups of the developed anomaly detection system were evaluated and compared with state-of-the-art OC-SVM reference model operating on the same data. The OC-SVM model was equipped with a rich set of feature extractors accounting for a range of the input signal properties. It was determined in the course of the experiments that the detector, along with its supporting design methodology, reaches F1 equal or very close to 1 for almost all test sets. Due to the profile of the data, the best_length setup of the detector turned out to perform the best among all five tested configuration schemes of the detection system. The quantization parameters have the biggest impact on the overall performance of the detector with the best values of input/output grid equal to 16 and 8, respectively. The proposed solution of the detection significantly outperformed OC-SVM-based detector in most of the cases, with much more stable performance across all the datasets.Comment: Related to arXiv:1702.0083

    Power Quality Management and Classification for Smart Grid Application using Machine Learning

    Get PDF
    The Efficient Wavelet-based Convolutional Transformer network (EWT-ConvT) is proposed to detect power quality disturbances in time-frequency domain using attention mechanism. The support of machine learning further improves the network accuracy with synthetic signal generation and less system complexity under practical environment. The proposed EWT-ConvT can achieve 94.42% accuracy which is superior than other deep learning models. The detection of disturbances using EWT-ConvT can also be implemented into smart grid applications for real-time embedded system development
    • …
    corecore