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Abstract

The advancement of the smart grid is crucial in optimizing renewable

energy resource utilization and power flow management with better power

quality disturbance (PQD) detection and control. The classification of PQD

detection can be divided into three types, i.e. knowledge-based method,

model-based method and hybrid method. The knowledge-based method re-

quires expert knowledge to manually extract PQD features using the math-

ematical form for classification. On the other hand, model-based methods

apply a deep learning approach to automatically select features based on

data representation to achieve better classification performance. The hy-

brid method integrates the advantage of knowledge-based signal processing

tools in providing semi-processed signals, and combines with model-based

methods for automatic feature extraction and selections.

A hybrid method using multi-level signal decomposition (MSD) with

wavelet transform (WT) is proposed to improve the poor magnitude sensi-

tivity on high-frequency signals. Our proposed model WT-SFA-LSTM com-

bines MSD with a spatial attention mechanism to achieve a classification

accuracy of 93.79%. This performance is better than the state-of-the-art

Deep CNN model with 90.56% accuracy. However, further improvement is

required to address the 32% larger model size of WT-SFA-LSTM compared

to the Deep CNN model. On the other hand, a transformer with a multi-

head attention mechanism, and faster computation via parallel processing on

sequential input is introduced to replace LSTM. A compact model wavelet-

based convolutional transformer (WT-ConvT) is proposed to address the

issue of insensitivity to small-magnitude changes. Results show that WT-

ConvT achieves a better classification accuracy of 94.11%. An efficient WT-

ConvT (EWT-ConvT) is proposed to compress the model size up to 60%

reduction via a weight superposition algorithm. EWT-ConvT achieves the



highest classification performance of 94.42% while having a 56% smaller

model size of 0.29MB as compared to the state-of-the-art Deep CNN model.

The real-time hardware implementation of the PQD classifier is impor-

tant, especially in terms of smart grid applications. A real-time PQD classi-

fier is realised using Raspberry Pi 4B microcontroller. Real-time implemen-

tation of the PQD classifier is verified with a complete setup in a laboratory

environment. Three case studies are performed to verify the system in de-

tecting three classes of PQD. The PQD waveforms are captured and classified

using the proposed embedded system. The proposed EWT-ConvT success-

fully classify a 200ms signal waveform within 75.51ms signifies real-time

classification capability. As a result, EWT-ConvT can achieve the highest

classification performance of 75% with the lowest computation resources. In

conclusion, the proposed EWT-ConvT can perform real-time classification

using the low-cost embedded system Raspberry Pi with high classification

performance.
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Chapter 1

Introduction

1.1 Project Overview

Technology advancement has increased the demand for clean and affordable en-

ergy [1]. A recent record-breaking report on energy-related carbon emissions has raised

awareness to focus on cleaner energy production [2]. Distributed energy resources (DER)

such as distributed generations, and renewable energy resources (RER) become the new

trend due to their lower cost of implementation while having less impact on the envi-

ronment [3]. The abundant nature of environment-friendly RERs plays a crucial role

in solving the increased local demand for electrical energy. However, due to the in-

termittency characteristics of RERs, energy storage systems (ESS) are introduced to

ensure stable supplies of electricity with the stored energy [4]. A good example would

be the continuous supply of electricity from solar-charged ESS at night time. These ESS

include supercapacitors, large-capacity batteries, flywheels, and thermochemical stor-

age systems. The wide adoption of electric vehicles allows the possibility of applying

the vehicle-to-home or vehicle-to-grid concepts. These concepts allow the dual use of

electrical vehicles’ battery packs as ESS [5]. The use of vehicle battery packs as ESS

enables the full use of car battery idling capacity to offload the grid at peak load hours

[6]. These advanced concepts can only be realised with advanced control mechanisms

with active monitoring and control mechanisms.

Microgrid controller is introduced for better integration of the DERs, RERs, and

ESS into a small-scale grid system [7]. Microgrid controller coordinates the operation

of the connected DERs, RERs, and ESS with flexible power management and control
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system [8]. On a bigger scale, a smart grid controller is used to ensure the stable oper-

ation of the power grid by active monitoring and control of the DERs and microgrids

connected to it [8]. A smart grid system increases the overall stability of the power

systems with centralised monitoring and active management on all the smaller systems

connected [9]. The advantage of using DERs evolves centralised energy providers to-

wards a decentralised and open energy market [10]. A new challenge has thus appeared

where increased penetration of DER has increased the fault level in the grid [11]. Besides

that, the increased number of grid-connected electric vehicles may lead to power quality

issues which brings a negative impact on the grid [12]. These issues are usually caused

by uncontrolled fast charging of electric vehicles which will eventually lead to decreased

power performance of the entire grid [13]. On the other hand, the increased penetration

of advanced industrial loads and increased type and amount of advanced electronics

such as energy-saving LED lamps, switching capacitor banks, and fast switching relays

can also degrade the performance of the power grid with the power quality disturbances

(PQD) produced [14].

PQD is defined as a disturbance occurring on the standard rating of voltage,

current and, frequency [15]. PQD includes voltage dips, harmonics, and oscillatory

transients which reduce the performance of electrical devices and shorten their life ex-

pectancy [16]. Prolonged downtime caused by disturbances can lead to a big impact

on financial loss. The ability to prevent or restore certain power quality events is thus

important for the proper functioning of the entire power system. To carry out proper

mitigation actions, power quality issues must be first identified. The detection and clas-

sification of the occurrence of PQDs are thus critical in ensuring the stable operation

of the power systems. Traditionally, history records of the power systems are logged

and analysed manually after the faults occurred. However, this process is complex and

requires a long analysis before the full restoration of the power system. Real-time mon-

itoring and management of power quality issues are thus important to carry out instant

mitigation steps to reduce the downtime of the power systems [17]. Global monitor-

ing systems are usually implemented via advanced metering infrastructure under the

smart grid controllers which allow bidirectional communication control over multiple

DERs and microgrids connected to it [18]. The bidirectional information acquired from

the metering infrastructure is used to analyse the power quality and network perfor-

mance of the entire grid. However, these systems are usually complex and less feasible

for small-scale monitoring. A smaller-scale dedicated hardware or embedded system is
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thus required to allow multiple nodes power quality monitoring with reduced cost and

increased feasibility [19].

In this chapter, the importance of PQD classification in power grids is discussed.

The challenges in the power systems lead to this research, focusing on power quality

monitoring systems by having a PQD detection and classification system. The un-

derlying research problems are covered briefly. Section 1.2 discuss briefly the research

problems for this research. The objectives and significance of this research are discussed

in Section 1.4 and Section 1.5 respectively. Finally, an overview of the contribution from

each chapter is summarised in Section 1.6.

1.2 Problems Statement

Classification of PQD occurring in a power system is crucial to identify sources

of abnormality or faults occurring within a power system. A general PQD classifica-

tion process involves two stages, feature extraction, and disturbance classification, as

shown in Fig. 1.1. The advancement of technology especially in the field of machine

learning and artificial intelligence enables automation in the PQD classification process.

However, the classification techniques using machine learning models have encountered

several challenges due to feature extraction methods, model generalization capabilities,

and increased complexity. Consequently, these model design issue affects the real-time

implementation of the classification model under real-world applications. The research

problems are outlined as follows:

Figure 1.1: Generalized PQD classification process.

1. Classification of PQD relies heavily on the feature set extracted during the fea-

ture extraction stage. Traditionally, the use and selection of specific features

depend heavily on professional knowledge. Manual statistical feature extraction

and selection were normally used to differentiate between PQDs. However, as the

complexity of the power grid increases, multiple combinations of PQD could occur
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within a single power waveform. The use of handcrafted features becomes imprac-

tical to extract distinct features between different PQD classes. The introduction

of machine learning to achieve automatic feature extraction and classification is

thus proposed by Wang et al. [20] for a more efficient and automated classifica-

tion process. However, the use of deep neural networks usually required a large

number of training samples to achieve better generalization. Most of the litera-

ture only focused on improving classification accuracy based on synthetic PQD

data without analyzing the generalization capability of the model toward new or

unseen conditions in real-world scenarios.

2. Signal processing tools are used to provide better signal representation for dis-

tinct feature extraction. Signal processing tools are used for noise suppression

to improve the quality of features extracted for better classification performance

[21, 22]. Besides that, signal transformations provide alternative insights into the

signal by representing the signal in different domain representations. However,

these domain feature representations are usually followed by manual statistical

feature extraction which set limits to the PQD analysis system in detecting a

limited number of PQD based on the professional and preliminary knowledge of

the disturbances. An automatic feature selection mechanism is proposed to mini-

mize feature input into a classifier with highly relevant features, but this process

increases the complexity of the model with the generation of redundant features

[23, 24]. There are very limited studies on the efficient use of signal processing

tools with machine learning algorithms to improve the classification performance

of PQD.

3. Real-world implementation is the ultimate goal of the research in the field of the

classification of PQD. The ability to achieve the highest classification accuracy in

detecting more disturbance classes from real-world signals is of top priority in this

field of research. Most of the studies in the literature can achieve high classifica-

tion accuracy using synthetic PQD data and real-world data. The classification

process is usually performed using high-power computing platforms such as work-

stations with high computing power. Most of the studies are performed based on

historical data without considering real-time classification performance and feasi-

bility. The fast-growing power grid systems with increasing complexity demand

better monitoring approaches with high feasibility and real-time decision-making
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capability. However, most studies did not consider real-time analysis, and there

is a lack of studies on the PQD classification system using embedded systems.

1.3 Research Questions

To address the current problem statements of PQD classification, several research

questions are generated to assist the development of the research. The research questions

are listed as follows,

1. The complexity of using hand-crafted features in PQD classification may result in

complex neural network model development. How can we generate a generalized

feature using a model-based method to detect PQD under a noiseless and noisy

environment?

2. How does the input resolution be increased to improve the classification accuracy?

3. How to optimize the neural network model for parallel processing in real-time

applications?

4. How to integrate the proposed models into real-time hardware implementation for

lab-scale verification?

1.4 Objectives

This research project aims to design and develop an automated PQD detection

and classification system using machine learning. The hybrid method with a combina-

tion use of signal processing and machine learning is proposed. The objectives of this

research can be sub-divided as follows:

1. To perform time-frequency domain analysis using a wavelet-based transformation

approach to improve power data resolution for discriminant feature extraction.

2. To design a machine learning model for automated feature extraction and classi-

fication, integrating with wavelet-based signal transformation.

3. To verify simulated PQD analysis with real-time hardware implementation in

terms of computational performance and feasibility.
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1.5 Significance and Contributions

The introduction of machine learning in the power system allows automated

PQD detection and classification without human intervention [20]. Signal processing

techniques [25] are frequently used in performing time and frequency component anal-

ysis due to the increase in data resolution. Besides extracting statistical features, the

transformed signals are used for noise removal before PQD classification [26]. In this

thesis, a hybrid method using signal processing with machine learning algorithms is

proposed. The proposed method mainly includes a signal transformation using multi-

level signal decomposition via wavelet transform, followed by classification using the

machine learning method. Detailed studies are conducted to demonstrate the perfor-

mance improvements and limitations of the proposed methods. The scope of work and

contribution of this research can be summarised as:

1. A model-based PQD classifier is proposed in Chapter 3 for automated classifi-

cation. Results show Long Short-Term Memory (LSTM) network has weaker

performance on high noise signals. This is due to the characteristics of LSTM

in memorizing signal sequences as a feature. Attention-based LSTM is proposed

to extract unique characteristics of the PQD signal before LSTM. The proposed

method can be summarized as shown in Fig. 1.2. The attention mechanism in-

troduced is proved to have better generalisation on the PQD signals. A more

generalised feature extraction is realised which is proven by achieving similar at-

tention score output on signal with and without noise.

Figure 1.2: Proposed attention mechanism.

2. A hybrid multi-resolution attention model is proposed in Chapter 4 to improve

classification performance by having time-frequency domain features. The gen-

eral diagram of the model is shown in Fig. 1.3. A multi-level signal decomposition

feature is introduced to increase input resolution by splitting the frequency com-

ponents. The split of frequency components allows a clear separation between high

and low-frequency signal components. The combined use of multi-level wavelet

transform and LSTM allows automatic feature extraction and classification by
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removing the manual extraction and selection process for the best statistical fea-

tures on each of the PQD classes. This is achieved with the proposed novel

feature-aligned layer which allows encoding of wavelet coefficients into latent fea-

tures instead of converting them into statistical features. This process is achieved

using a dense perceptron layer and it has the advantage of retaining most of the

information from an original signal input. A novel spatial feature extraction be-

tween frequency components is proposed in the network. The classification perfor-

mance of the proposed multi-resolution spatial attention LSTM network exceeded

state-of-the-art Deep CNN.

Figure 1.3: Multi-resolution attention model.

3. A novel wavelet-based convolutional transformer (EWT-ConvT) is proposed in

Chapter 5 to improve classification and optimize the computation performance of

LSTM models. As shown in Fig. 1.4, the convolutional transformer model is an

improved model which replaced the LSTM and attention layers. The transformer

model has better computation speed with its parallel computation architectural

design as compared to sequential LSTM. Besides that, the multi-head attention

mechanism within the transformer allows the highlighting of multiple features

from the input signal. A novel spatial-temporal embedding layer is proposed to

better extract salient features from the MSD coefficients. This embedding layer is

achieved by combining the feature-aligned layer with the 1D convolutional layer.

Higher-order feature extraction is achieved with the multi-head attention mech-

anism in the transformer. Besides that, a novel efficient embedding mechanism

is achieved using the weight superposition algorithm in the feature-aligned layer.

This allows a 61.32% reduction in the proposed model which gives the highest

classification performance in this research.

Figure 1.4: Generalized PQD classification process.
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4. The challenge in achieving real-time PQD classification using an embedded sys-

tem is addressed in Chapter 6 using Raspberry Pi model 4B (RPi). The proposed

system includes a current transformer for grabbing signal waveform, an analog-

to-digital converter for digital signal conversion, and RPi embedded system for

computation. The proposed model EWT-ConvT achieves the highest classifica-

tion performance by successfully classifying most of the real-world PQD simulated

from laboratory equipment. Besides, the proposed EWT-ConvT can achieve real-

time classification requirements on the RPi system. Comparison to literature

models on the proposed RPi system shows EWT-ConvT crowns the performance

in terms of classification accuracy, computation resources and computation time.

The feasibility of implementing real-time PQD classification on an embedded sys-

tem is verified.

1.6 Thesis Overview

This thesis provides a detailed study and development on power quality distur-

bance classification for real-time smart grid applications. The current stage of this

research thesis is outlined in six chapters as follows:

Chapter 2: Literature Review on Real-Time Power Quality Disturbance

Classification

The latest literature reviews on PQD classification and real-time classification

of PQD are aggregated in this chapter for comprehensive study and comparison. PQD

classification can be categorised into three types, i.e. knowledge-based, model-based,

and hybrid-based methods. The importance of having a real-time classification of PQD

using embedded systems is discussed in this chapter.

Chapter 3: Global Attention Mechanism with Long Short-Term Memory

Network

A model-based PQD classifier is implemented in this chapter to detect PQD

signals. LSTM is used for feature extraction while the global attention mechanism is

proposed to highlight and extract the distinctive features from the input signal before

feeding into the LSTM layer for classification. The classification performance of single
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disturbance classes and combined-disturbance classes are studied. Different window-

ing sizes for the pre-processing stage are compared. Additive white Gaussian noises

(AWGN) with 20-50 dB signal-to-noise ratio (SNR) are introduced to study the perfor-

mance of the proposed method under noisy conditions.

Chapter 4: Multi-resolution Global-attention Long Short-Term Memory

Network

Multi-level signal decomposition (MSD) is introduced in this chapter to increase

the resolution of the input signal from time-domain representation to time-frequency

representation. Discrete wavelet transform with Daubechies 4 (db4) wavelet, and 4 lev-

els of decomposition are used. The study is extended by evaluating the performance

using 10-period PQD signals to benchmark with literature models. A novel classifica-

tion model is proposed by embedding the wavelet coefficients into latent features and

performing feature extraction and classification via neural networks.

Chapter 5: Multi-resolution Convolutional Transformer Network

The use of transformer architecture is introduced to replace the LSTM model.

Further modification of the architecture is performed with the proposed hybrid PQD

classification model named EWT-ConvT. The modifications include the introduction of

a temporal-spatial embedding layer, efficient superposition embedding and novel archi-

tecture based on a transformer multi-head attention mechanism. The studies on the

batch normalization layer are also described in brief. The proposed EWT-ConvT model

achieves the highest classification performance with low computation resources required

compared to the literature models.

Chapter 6: Real-time Embedded System Implementation with Power Qual-

ity Classification

A real-world hardware implementation of PQD classification is proposed to tackle

the actual scenario of PQD detection. Three scenarios of signal disturbances are simu-

lated using laboratory equipment. The complete real-time implementation of the pro-

posed model is built to study the computation requirements and limitations of the

proposed models. The proposed hardware implementation process includes data ac-

quisition using a current transformer, conversion of analog signals into digital signals,

data pre-processing, and finally deployment of the proposed classification models on the
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embedded system, Raspberry Pi 4B. The proposed EWT-ConvT model shows the best

classification and computation performance with the highest classification accuracy and

a low requirement on computation resources.

Chapter 7: Conclusion and Future Work

A summary of every chapter is drawn in this chapter to highlight the research

contributions and significance of analyzing results. The advantages and limitations of

the proposed power quality disturbance classification are pinpointed with future im-

provements.
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Chapter 2

Literature Review on Real-Time

Power Quality Disturbance

Classification

2.1 Introduction

Distributed energy systems are characterised by local energy systems which in-

clude a complete set of energy generation, conversion, transmission, distribution, and

consumption [27]. Although distributed energy systems are beneficial from their flex-

ibility, reliability, and cost-effectiveness in terms of deployment coverage, there is a

drawback in the management and control of each of the components [27]. The pro-

liferation of distributed energy resources (DERs) such as distributed generation, and

renewable energy resources (RERs) increase the complexity of management and con-

trol. The integration of multiple DERs to form a microgrid (MG) is necessary due to

the intermittency nature of RERs and usually low capacity from distributed generation

[28]. MG integrates multiple DERs and energy storage systems. MG functions as cen-

tralised monitoring and control in the local small-scale grid [29]. MG can be perceived

as a single controllable entity by the main grid with its ability to work off-grid.

Smart grid systems are introduced to upgrade traditional power grid systems,

allowing bi-direction monitoring and control of all the connected systems with ease [30].

The main functionality of the smart grid is to integrate DERs which includes MG by

providing grid protection, automated energy distribution, and system optimization. MG
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on the other hand allows easy integration of local DERs and energy storage systems,

especially with RERs, while providing MG protection [31]. One of the main challenges in

the integration of smart grids or MG is the maintenance of the power quality [32]. Power

quality disturbance (PQD) issues arise in MG typically caused by intermittent supplies

of RERs and advanced power electronics control mechanisms [33]. The most common

PQD occurring in MG includes voltage sag, swell, and interruption [34]. Mitigation

actions must be taken on the power quality issues occurred. Therefore, the ability to

detect and identify types of PQD occurred is required.

Constant monitoring of power quality is important for utility providers, espe-

cially for industrial or commercial customers with sensitive equipment [35]. Frequent

occurrence of PQD in the networks increases the risk of electric shortage and reduces the

lifespan of electrical components. The use of advanced metering infrastructure allows

continuous monitoring is thus required. Different types of smart meters are introduced

for the monitoring of power parameters [17, 36, 37]. Further analysis of power data

recordings is required to specify and identify the fault or disturbance. Automatic detec-

tion and classification of PQD are thus introduced for real-time identification of faults

or disturbances [38, 39]. The detection and classification of PQD can be used as a

predictive maintenance tool. Real-time detection and classification of PQD are highly

needed for MG or smart grids to carry out instant mitigation steps. In this chapter, the

analysis methods for power quality disturbances are discussed. The structure of chap-

ter 2 is as follows: Section 2.2 reviews the general process of power quality disturbance

detection and classification methods. The classification techniques are classified into

three methods, knowledge-based, model-based, and hybrid methods described in Sec-

tion 2.2.1, Section 2.2.2, and Section 2.2.3 respectively. Literature of recent development

on the real-time classification of PQD is reviewed in Section 2.3. Finally, Section 2.4

summarises this chapter.

2.2 Power Quality Disturbance Classification

Power quality is characterised by steady supplies of voltage with its frequency

and waveform stays within the prescribed range. PQD is defined as the disturbance oc-

curred on the standard rating of voltage, current or frequency. Multiple types of PQDs

stated in the IEEE standard 1159-1995 [40] include transient (impulsive and oscilla-

tory), short duration variations (interruption, sag and swell), frequency variations, long
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duration variations (sustained under voltages and sustained overvoltages) and steady-

state variations (harmonics, notch and flicker). These PQDs are categorized into slow

disturbance and fast disturbance for simpler evaluation [41]. Fast disturbance refers

to transient-like disturbance (transient, spike, and notch) while slow disturbance refers

to a disturbance that spread through the entire period of a sinusoidal waveform (sag,

swell, interrupt). These PQDs can cause malfunction or breakdown of sensitive end-user

equipment. Classification of PQD is important to allow the identification of the root

cause for suitable mitigation actions. PQD affects the normal operation of the power

systems, causing financial losses due to equipment breakdown and loss of information.

Specific types of mitigation action are required to restore the normal operations of the

power system [42]. Accurate identification of the PQD helps in reducing the downtime

of the power systems. The PQD classification process can be generalised into two stages,

feature extraction and disturbance classification.

The feature extraction stage is used to extract distinct features from the in-

put signal. This process may include signal processing and feature selection. Signal

pre-processing can be carried out during signal processing and is usually performed

to normalise it into the appropriate phase and magnitude range. Pre-processing sig-

nal waveform before classification is an important step for accurate processing [43].

The importance of noise suppression is highlighted in [21, 22]. The use of noise sup-

pression with discrete wavelet transform (DWT) in noise reduction shows promising

performance over fast Fourier transform (FFT), Stockwell transforms or S-transform

(ST) and wavelet packet transform (WPT); while highlighting the need for denoising

for low-level harmonics [44]. A noise suppression algorithm is proposed to improve PQD

detection using Hilbert transform and slip-singular value decomposition method [45].

Liu et al. [46] proposed shrinkage thresholding over hard/soft thresholding in wavelet

denoising. The use of machine learning (ML) methods in signal processing denoising is

proposed using Long Short-Term Memory (LSTM) autoencoder [47]. The noise filter-

ing process can improve the classification rate, but it may also risk removing important

information from the signal.

Besides, converting signals into different domains using signal transformation can

be achieved during the signal processing stage. The signal transformation phase can

be categorized into two main groups, frequency-domain analysis, and time-frequency

analysis. The methods used for frequency-domain analysis include Fourier transform

(FT) [48], Discrete Fourier Transform (DFT), and FFT [49]. FT is limited towards
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Figure 2.1: A framework comparison of three PQDs classification methods.

analysing stationary signals. FFT is a method similar to DFT but takes less computa-

tion time. DFT and FFT are inadequate in analysing time-varying disturbances [50].

Short-time Fourier Transform (STFT) overcome the time-variance issue by introducing

time-frequency features [51]. Iterative Hilbert Huang transform (HHT) was introduced

in analysing PQD in [52] which solves the close frequencies components. The other time-

frequency analysis methods used are Wavelet Transform (WT) [53] and ST [54]. WT

includes both time and frequency localization properties which have better analysing

power compared to FT. ST evolved from WT by localizing the Gaussian window [54].

The properties of the wavelet transform allow multi-resolution signal decomposition

(MSD) which increases the resolution of the input signal into multi-level segments.

Signal transformations are usually followed by statistical feature extraction. Sta-

tistical feature extraction can be extracted from two main groups: time-domain statis-

tical features, and frequency-domain statistical features. The statistical features that

can be extracted include zero-crossing, amplitude, phase, frequency energy, mode ratio,

Energy, Entropy, Standard Deviation, Mean, Kurtosis, Skew, root mean square (RMS)

and Range [55]. The selection of specific features extracted normally involves profes-

sional knowledge. A recent research has enabled the entire feature extraction process

to be done using a machine learning approach [20]. The extracted features are then fed

into a classifier for PQD classification. Distinct features extracted from the feature ex-

traction process are used for the PQD classification. Classification of PQDs is studied

extensively in [56–58]. In Fig. 2.1, the process of PQD classification can be general-

ized into three main methods, i.e. knowledge-based method, model-based method, and

hybrid methods, which are discussed in-depth in the following subsections.
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2.2.1 Knowledge-based Method

The knowledge-based method has two stages in PQD analysis, i.e. feature ex-

traction and feature classification. The knowledge-based method usually involves signal

transformation and statistical feature extraction. Literature shows various applications

of signal transformations in the field of PQD classification. There is an early exam-

ple of applying windowed FFT, a version of DFT in detecting power quality problems

[49]. Other examples such as DFT [59], STFT [50], and WT [50, 60] are also applied

to extract features in the frequency domain. Using FFT and DWT [61] can perform

feature vector extraction for better PQD detection and characterization. The use of

FT is also explored for steady-state characterization [48]. However, these approaches

show inconsistent accuracy in time-varying conditions [48, 49]. The use of STFT us-

ing a time-frequency window is introduced with better performance in non-stationary

functions [51]. Further studies using WT are performed to solve the fixed resolution

of STFT. Zhu et al. [60] proposed wavelet-based fuzzy reasoning in recognizing PQD

by extracting energy distribution from MSD decomposition levels. Lopez et al. [62]

proposed the combination use of DWT, singular value decomposition and statistical

analysis in the classification of PQD. ST is an improved technique from wavelet and is

achieved via localizing Gaussian window [54]. Wavelet packet transform with fuzzy k-

nearest algorithm is used for optimal feature selection [63]. The embodiment of Slantlet

Transform (SLT) into a wavelet basis is proposed for PQD detection which improves

the effectiveness in detecting abrupt change [64]. However, having high-computational

costs in ST and WPT are not suitable for real-time applications [65, 66]. Iterative

HHT with a symbolic aggregate approximation algorithm [52] is proposed to analyze

non-stationary signals. However, HHT is limited to narrow-band signals [67].

Signal transformation is usually linked with statistical feature extraction [68].

Statistical features extracted include distribution energy, mean, kurtosis, entropy, RMS,

standard deviation, minimum, maximum, and skewness. The use of these statistical fea-

tures requires professional knowledge. Instead of relying on manual feature selection,

optimal feature selection is proposed to automatically select the relevant features from

all statistical features generated via machine learning [23, 24, 68]. However, this pro-

cess generates redundant features and increased the complexity of the network with the

optimal feature selection mechanism. Finally, the classification of PQD can be per-

formed from the statistical features extracted. Some of the most common statistical
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classification methods include the threshold-based method [69], decision tree (DT) [70–

72], k-nearest neighbour [73], pattern recognition using support vector machine (SVM)

[74, 75], and expert system [76]. The classification performance of SVM and DT are

greatly affected by the training samples used. Expert system has the disadvantage of its

high computing cost. The use of knowledge-based methods often requires professional

knowledge to maximise classification performance.

2.2.2 Model-based Method

The main issue encountered in the knowledge-based method is the over-reliance

of the classifier on the extracted feature. The classification performance of the network

is directly associated with the quality of the feature extracted during the feature extrac-

tion phase. Proper selection of the hand-crafted statistical features is required from the

professional, and the use of the features must be studied extensively before an applica-

tion. Recently, deep learning (DL) methods have shown marvellous achievement in the

field of audio [77], natural language processing[78, 79], and image processing [80]. The

use of deep neural networks are therefore implemented and studied in the field of PQD

classification. [81–83]. Machine learning and neural networks are used for the feature

extraction process, replacing statistical feature extractors. The model-based method

is characterised by the use of machine learning models in both feature extraction and

disturbance classification processes.

Model-based method uses multiple layers of neural networks to perform both

feature extraction and classification process. The use of a neural network as a feature

extractor allows automatic feature extraction [84, 85]. Automatic feature extraction and

classification without human intervention removed complex manual feature selection

stages [86]. The automatic feature extraction process allows the detection of unseen

characteristics or conditions that occurred in the signal. The ability to extract features

automatically is thus seen as the better approach with minimal information loss. The

importance of having a closed-loop feedback system between feature extraction and

classification stages is highlighted by Wang et al. [20]. This closed-loop feedback system

is seen as an essential element to achieve automatic feature extraction and classification.

The use of the DNN model allows the integration of real-time classification of

PQD [81, 87, 88]. Mohan et al. proposed a hybrid combination of convolutional neural

network (CNN) and LSTM, CNN-LSTM network for PQD classification [86]. CNN-

LSTM network architecture comprises two layers of CNN for spatial information learn-

16



ing and 1-2 layer of LSTM for temporal characteristic learning. The author achieved

the highest accuracy and precision compared to CNN, recurrent neural network, Iden-

tity Recurrent Neuro Network, LSTM and Gated Recurrent Units [86]. Balouji et al.

proposed an automatic classification model using a 4-layer of LSTM network [87]. PQD

classification using Deep LSTM with the number of LSTM layers increasing from 1 to 10

are studied in [86]. Good classification performance can be achieved with the combined

use of CNN and LSTM [83, 89, 90]. The Studies of automated feature extraction in

classifying voltage dip using deep-CNN is carried out by [91]. The deep convolutional

neural network (Deep CNN) proposed in [20] shows magnificent classification perfor-

mance as compared to ResNet50, LSTM, GRU, and stacked autoencoder. These works

of literature prove the capability of model-based methods in achieving high performance

in the automatic detection and classification of PQD without human intervention.

2.2.3 Hybrid Method

The combination of knowledge-based techniques and ML techniques leads to the

birth of a hybrid method in tackling the shortcomings of knowledge-based or model-

based methods. It involves several steps by applying signal transformation and subse-

quently inserting it into a machine learning model to learn better feature representa-

tion in the time or frequency domain. One of the first hybrid methods was presented

by Santoso et al. [92, 93], by combining the use of WT and ML for feature extrac-

tion and threshold voting for classification. The outputs of WT are squared to form

squared wavelet transform coefficients. The extracted features are passed into three

parallel artificial neural networks (ANN) layers and simple threshold-ed voting is used

as decision-making for the classification. A single-stage multiple power quality event

detection using a combination of HHT and PNN is presented in [94]. Another hybrid

method of statistical feature extraction with PNN classification was proposed in [95].

Teager-energy operator and mathematical morphology are used to extract statistical

features from time-domain PQD signals before passing them into PNN for classification

[95]. Optimized ST is used to improve time-frequency resolution using maximum energy

concentration with kernel support vector machine functions as a classifier [96]. Com-

pressed Deep Learning (CDL) was proposed by Liu et al. [82] in classifying multiple

power quality events. CDL is used to reduce the sampling and computation power. Fea-

ture extraction is then carried out on the compressed signal with a sparse autoencoder

and deep neural network.
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The classification performance of the feed-forward neural network is compared

against LSTM [97]. Feature extraction comparisons were performed using STFT, DWT,

and ST in finding the best feature extraction methods. The use of WT to extract sta-

tistical features and classify using wavelet network and radial basis neural network are

presented by Masoum et al. [98] and Kanirajan et al. [99] respectively. The charac-

teristics of WT in transforming signals into multi-level time-frequency representations

enable multi-resolution projection of the signals. Khokhar et al. [68] use DWT to

extract multi-resolution signal features, and the extracted features are classified using

Probabilistic Neural Network (PNN). They also performed optimal feature selection to

optimally select the most relevant features for the classification by using Artificial Bee

Colony (ABC) optimal feature selection method. The proposed PNN-ABC classification

system is proven to have the capability to discriminate single or multiple PQDs with

the highest accuracy compared to PNN alone without an optimal selection algorithm

[68]. On the other hand, a hybrid classifier using WPT as a feature extractor and ANN

as a classifier was proposed in [66]. WPT-ANN is proven to perform better results as

compared to FFT-ANN in terms of computation time and accuracy.

2.2.4 Summary of Power Quality Disturbance Classification

PQD can be broadly classified into three categories, knowledge-based, model-

based and hybrid methods. Knowledge-based methods are the classical method in de-

tecting and classifying PQDs. This method relies mainly on the use of signal-processing

techniques. Usually, statistical features are extracted from the transformed signals. The

classification is done by comparing the extracted features via the thresholding method,

decision tree, or other mathematical morphological processes. The use of signal pro-

cessing tools depends heavily on the design of the classifier. The commonly used signal

transformation with respective advantages and disadvantages are listed in Table 2.1.

The maturity of machine learning resulted in better approaches in the field of

PQD classification. Model-based methods are introduced to allow automatic feature ex-

traction without human intervention. The Feature extraction process is done by simply

passing the input signals through multiple layers of neural network. The feedforward

and backpropagation mechanism in NN allows feature extraction via learning on the

distribution of weights. multiple layers of neural network (NN) in DNN are required for

complex feature extraction. Hybrid methods on the other hand are proposed to opti-

mize the computation requirement and computation time. The combined usage of signal
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Table 2.1: Comparisons of signal processing techniques used for classification of PQD.

Methods Advantage Disadvantage

FT [48, 49, 59]

Low information loss, maintain most

of the information on amplitude, har-

monics, and phase.

Low resolution in either time or fre-

quency domain.

STFT [50, 51, 97]
Simple implementation, good result

for non-varying signals.

Not suitable for time varying signals.

Fixed window width, limited time-

frequency resolution.

WT [50, 60, 98, 99]

Time and frequency localization. Im-

proved resolution. Improved non-

stationary performance.

More sensitive to noise.

WPT [63, 65, 66]
Better control of decomposed signal

compared to WT.
More susceptible to noise.

DWT [61, 62, 68, 100]
Reduced filter length, more suitable

for real-time implementation

Shift sensitive and lack of phase in-

formation.

ST [54, 96]
Frequency-domain analysis, good for

time localizing.

Not good for real-time application

with false harmonics estimations

HHT [52, 67, 94]
Good feature extraction on highly

distorted signals.

Ineffective in constructing frequency

spectrum, narrow bandwidth.

processing tools with NN allows automatic feature extraction, feature selections, and

classification with minimal human intervention. The combination of statistical meth-

ods in feature extraction with NN in classification resulted in increased classification

performance. Table 2.2 summarizes the literature model designs of model-based meth-

ods and hybrid methods with their respective performances. Besides automatic feature

selection, the ability to classify more types of disturbances is a focus of the research

trend. The classification accuracy is evaluated by the true positive, TPn over the total

test samples for m classes of PQD denoted in Sj as follows,

OverallAccuracy =

∑m
n=0

TPn∑m
j=0 Sj

m
. (2.1)

The focus of training methods and efforts lies primarily on ensuring the practical-

ity of application to achieve real-time analysis. The combination of statistical methods

with ML methods was researched for performance comparison. Statistical method is
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Table 2.2: Comparison of Model-based and Hybrid Models Classification Methodologies.

Model/

Hybrid

(M/H)

Classification method

Number

of feature

selected

Number of

PQD

Accuracy

(%)

M DEEP CNN [91] AUTO 1(voltage dip) 97.72

M DEEP LSTM [87] ‘ AUTO 1(voltage dip) 93.40

M DEEP CNN [86] AUTO 11 98.00

M HYBRID-DEEP CNN-LSTM [86] AUTO 11 98.40

M DEEP LSTM [20, 101] AUTO 16 99.94

M DEEP CNN [20] AUTO 16 99.96

M DEEP CNN [88] AUTO 13 99.97

H FFT+DWT-MLP [61] 4 7 97.10

H PNN-ABC [68] 9 16 99.87

H HHT-PNN [94] 15 17 91.60

H WPT-ANN [66] 8 each 4 99.99

H CDL [82] AUTO 31 99.33

used to simplify the NN input which helps in reducing the complexity of the NN. The

conventional method PNN-ABC [68] in Table 2.2 achieved high classification accuracy.

This is due to the highly optimized feature selected from the feature set using ABC

optimization method. In CDL [82], the raw data is compressed statistically before out-

putting for feature extraction and classification via DNN. Statistical pre-processing is

proven in increasing the performance of PQD analysis. Wang et al. [20] highlighted

the need for a closed-loop feedback system to link the feature extraction process with

the classifier. The research challenge on the design of the classification model thus in-

cludes automatic feature extraction, numbers of PQD classes, classification accuracy,

the complexity of the network, and real-time performance.

2.3 Implementation Studies in Real-time PQD Classifica-

tion

Real-time classification of PQD has become an important factor to be considered

for implementation feasibility. Massive improvements in technology, especially in the

field of processing units allow the exploration of various methods, typically in the field
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of machine learning. Real-time classification has a growing interest with the increasing

complexity of the power grid. The introduction of smart meters allows big data collec-

tion. The benefits of analysing big data are obvious. Real-time PQD analysis allows

real-time monitoring and protection of the network by providing instant warning of pos-

sible faults occurring on the network. This feature allows automated cut-off or raising

awareness to the operator for possible maintenance required. Real-world classification

of PQD involves the signal acquisition, analog to digital signal conversion, and finally

classification using different types of classifiers. Real-time classification is achieved when

the time required to classify a sample is less than the time of the sampling itself.

Real-time automatic PQD classification in the context of smart grids should be

made available for better automation control. The implementation of real-time classi-

fication of PQD requires the integration of both software and hardware. For instance,

an appropriate sensor and analog-to-digital converter are required to convert real-world

analog signals into digital format for digital processing. A processor is then required

to perform the classification algorithm. The processors are referred to the use of logic

gates, digital signal processors (DSP), micro-controller, field programmable gate arrays

(FPGA), personal computers, workstations, and cloud computing. The implementation

platforms can be categorised into two main groups, i.e. high-performance computing

and embedded systems as described in Section 2.3.1 and Section 2.3.2 respectively.

2.3.1 High-Performance Computing

The high-performance computing category includes the use of high computing

power such as workstations, personal computers, and cloud computing. The use of mas-

sive computing power is an advantage but it’s not feasible in terms of scalability and

cost-effectiveness. However, most of the studies in the classification of PQD are using

PC or workstations. Higher computing power gives the advantage of minimizing the

research time. However, these studies need to consider the implementation feasibility

with a proper implementation plan to realise their research into real-world applications.

The motivation to push the studies of PQD classification to real-world implementation

is started by highlighting the computation resources required [20, 102–106]. However,

the introduction of higher computation power processors outperforms the computation

parameters recorded such as model training time, testing run time, CPU and RAM

usage. Besides, information on the generation of synthetic PQD signals using math-

ematical equations shall be standardised for comparisons. A replicable model design
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and validation are important for future comparisons. A good example from [101] study

is by replicating the model of Wang et al. [20] on its classification model, and PQD

generations using mathematical equations.

2.3.2 Embedded Systems

A limited number of studies can be found on real-time PQD classification on

embedded systems (EMB). The application of EMB allows better integration of the

real-time PQD classification systems onto the smart grid or microgrid platform. This is

especially important with the increasing trend of microgrid applications. A household-

based microgrid with a combined use of solar and wind energy has recently become

popular due to the maturity of technologies with affordable prices. Table 2.3 shows

studies performing real-time PQD classification using EMB. It is worth highlighting

that most of the previous studies focusing on knowledge-based methods [107–111]. This

is due to the limited processing power from EMB available during the period of studies

made. DSPs are mainly used in knowledge-based methods. The use of FPGA can be

found using a decision tree as a classifier [109, 110]. The use of a hybrid method on

EMB is found to be started by Borges et al. [112] with the use of FFT by converting

time domain (TD) input to frequency domain, and the combination use of DT and

NN as a classifier. Borges et al. uses µC (TM4C1294NCPDT) and achieved real-time

single-period PQD classification with excellent results. Besides, Riberio et al. [113] and

Table 2.3: Analysis studies of embedded classifier in dedicated hardware.

Modelsa Featuresb Classificationb Datasetc Hardwared PQD Acc Real-time analysis Ref

K TD, MM MM, threshold Real DSP 10 - 3s 50kHz sampling of data using 121.6ms [107]

K Filter, MM MM, threshold Real DSP - - 3s 50kHz sampling of data using 121.6ms [108]

K TD, DFT DT Synth FPGA 9 99.00 120ms (10 period) [109]

K ST, FFT DT Synth, Real FPGA 11 99.27 80ms (10 period) [110]

K ST SVM Synth DSP 9 99.50 13.4ms (10 period @ 5 kHz) [111]

H TD FFT DT, DNN Synth, Real µC 8 99.30 1ms (1 period @ 1.28 kHz) [112]

H Filter, TD DNN, bayesian Lab FPGA 20 97.80 unspecified [113]

H HHT DNN Synth/lab FPGA 16 99.81 14ms (6 period @ 3.2kHz) [114]

M DNN DNN Synth/Lab FPGA 16 99.40 23.3ms (6 period @ 10kHz) [115]
a Methods of classification: K (Knowledge-based), M (Model-based), H (Hybrid).

b TD (Time-Domain), MM (Mathematical Morphological operations), DT (Decision-tree), SVM (State-Vector-

Machine), DNN (Deep Neural Network).

c Synth (Synthetic), Lab (Laboratory Setup).

d DSP (Digital Signal Processor), FPGA (Field-Programmable Gate Array), µC (Micro-controller).
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Sahani et al. [114] demonstrate good performance with a hybrid real-time classification

model on FPGA with more disturbances. Recently, Wang et al. [20] highlighted the

importance of having closed-loop feedback systems on the feature extraction stage and

classifier. In addition, Sahani et al. [115] proposed a model-based method in the PQD

classifier to speed up the real-time processing with less involvement in feature extraction.

2.3.3 Summary of Implementation of Real-time PQD Classifier

The studies on real-time PQD classification are important with the increasing

complexity of power systems. Microgrid applications are widely applied due to the

proliferation application of renewable energy. The introduction of advanced electronics

such as energy-saving LEDs, and advanced charging mechanisms of electric vehicles in-

crease the complexity of the power systems. The applications of edge protection systems

are thus essential to meet the demand for the decentralised production of electricity.

Most of the previous studies focused on real-time PQD classification systems based on

computer systems. However, there is a need to improve the feasibility of the study on

PQD classification by reducing the complexity of embedded system deployment. The

study on PQD classification should take into consideration the embeddability of the

proposed system on the embedded system. Besides, the proposed method shall focus

on the ability to replicate the systems onto different platforms for easy comparisons.

2.4 Chapter Summary

The implementation of PQD classification can improve the reliability of the smart

grid by monitoring power signals continuously in a real-time manner. It can be cat-

egorised into three types, i.e. knowledge-based method, model-based method and hy-

brid method. The literature review shows that knowledge-based methods rely mostly

on signal-processing techniques. Statistical features are usually extracted after signal

transformation and then followed by classification using mathematical morphology and

decision, or threshold-based methods. Recently, the increased maturity of machine

learning algorithms especially the deep learning approach has provided a great impact

in the field of PQD classification. The model-based method applies a deep learning

approach to automate feature extraction directly from data learning. Automatic fea-

ture extraction avoids complex feature extraction processes and the need to generate a

large number of statistical features. The hybrid method on the other hand combines
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both advantages of the knowledge-based method and the model-based method. Signal

processing steps are carried out to guide the learning of the ML models.

The current studies mainly focus on developing a PQD classifier to achieve high

accuracy in various disturbances scenarios. However, there is a challenge to achieve a

real-time PQD classifier due to limited computing power and algorithm complexity. The

computation performance such as the computation resources and run time of the models

are the critical parameters to measure the feasibility of the PQD monitoring system.

As a result, the implementation using an embedded system can provide a solution with

higher scalability and cost-effectiveness in tackling the booming integration of renewable

energy resources with the power grid. In conclusion, this research explores different

model-based methods and hybrid-based PQD classification models to achieve fast and

accurate classifier models on real-world applications.
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Chapter 3

Global Attention Mechanism

with Long Short-Term Memory

Network

3.1 Introduction

Attention mechanism is first introduced in the field of machine translation by

Bahdanau et al. [116]. Attention mechanism has grown in popularity among the artifi-

cial intelligence community with diverse applications such as natural language processing

[117], computer vision [118], and speech recognition [119]. The attention mechanism is

inspired by human biological systems, particularly human selective concentration on

inputs such as visuals or sounds in perceiving things. For example, humans tend to

focus visually only on certain parts of the image while perceiving things, ignoring less

important information in the image. Highly relevant information was highlighted using

limited processing resources available. Human attention can be categorised into un-

conscious salient-based attention and consciously focused attention [120]. Salient-based

attentions are triggered based on external stimuli such as loud voices and can be related

to the max-pooling mechanism. Focused attention on the other hand has a predefined

purpose such as focusing on keywords while reading articles. Focused attention is the

most applied attention mechanism in machine learning especially on task-specific appli-

cations [120]. Generally, the attention mechanism improves the efficiency and accuracy

in extracting distinct information for further processing.
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Figure 3.1: The proposed global attention-based LSTM network.

Detection and classification of power quality disturbance (PQD) typically in-

volves two stages, i.e. feature extraction, and classification stage. Deep neural networks

are used in [20, 81] for both feature extraction and classification. The automatic feature

extraction process eliminates the need for hand-crafted features and avoids complex fea-

ture selection processes from the list of statistical features generated. In this chapter,

Global attention-based Long Short-Term Memory (LSTM) is proposed for time-series

PQD classification. The proposed method consists of a global attention mechanism for

highlighting salient features, a layer of LSTM architecture for feature extraction and

a fully connected layer with a softmax activation function for classification. A global

attention mechanism is added between the input signal and the LSTM layer to highlight

the characteristics of input signals. The feature vector output from the attention layer is

used by LSTM to extract higher-order representation from the sequence of the signal’s

magnitude. The entire automatic detection and classification process is demonstrated in

Fig. 3.1. This chapter includes multiple analyses of the proposed global attention-based

LSTM network on PQD classification. Section 3.2 includes the theory and design of

the proposed model. Section 3.3 describes the experiment setups for Section 3.4 and

Section 3.5, and data generation with pre-processing stages to train and evaluate the

proposed model. Finally, Section 3.6 summarises the finding in this chapter.

3.2 Global Attention-based Long Short-TermMemory Net-

work

LSTM is used with an attention layer to improve classification accuracy under

noisy conditions. This proposed method includes an attention layer between input data

and the LSTM layer. The attention layer is used to highlight the abnormalities presented

in single-windowed power signal input (global attention) before feeding into the LSTM

layer. The important features in the raw signal are first valued in the attention layer and

then passed into LSTM for higher dimensional feature extraction. The proposed model

is summarised in Fig. 3.2. Pre-processed data were passed into the self-attention layer
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Figure 3.2: Global attention-based LSTM model with signal windowing.

before feeding into LSTM for feature extraction. The term ”global attention” is used

instead of ”self-attention” as the attention is applied over the entire input time-series

signals. The details of the attention mechanism are described in the next subsection.

A fully connected (FC) layer is used to classify the output of the higher dimensional

features from the LSTM layer into different classes of PQDs. The network input vector

X retrieves the shifting signal as follows,

X = [bi, ..., bi+T ], (3.1)

where bi contains the value of the original signal at the i-th position up to i+T timestep,

where T is the window size defined by the period of signal t− 1.

3.2.1 Global Attention Mechanism

The self-attention mechanism is proposed to highlight specific features in the

signal before feeding into LSTM for the feature extraction process. The attention is

applied to all data points present in each input sample, thus forming a global attention

mechanism. This global attention mechanism is achieved using a dense layer with

softmax activation function as shown in Fig. 3.3. Input signal xt with T window size or

time-steps is first passed into a dense layer to obtain the attention score, yd as follows,

yd =
T∑
t=0

wd,t · xt, (3.2)

where xt represents the input signal, wd,t is the trainable weights kernel vectors of the

dense layer. A softmax layer is used to normalise the attention score calculated into a

27



Figure 3.3: Self-Attention mechanism.

range between (0, 1) as follows,

ad = softmax(yd) =
eyd∑T

j=0 e
ydj
. (3.3)

The attention weights, at is multiplied element-wise with the input signal to

highlight the signal. This highlighted feature vector, adxt can be expressed as,

axt = ad ⊙ xt. (3.4)

Attention score represents the important features through a dense layer. The attention

weights are multiplied with the input signal which highlights the original signals with

trained weight distribution. The highlighted feature vector has higher noise immunity

compared to raw signal without attention mechanism.

3.2.2 Long Short-Term Memory

Feature vector output from the attention layer is passed into the LSTM layer for

feature extraction. An LSTM architecture [121] can be depicted in Fig. 3.4. Inputs to

the LSTM cell consist of previous memory or cell state, Ct−1, previous hidden state,

ht−1, and the current input, xt. Sequential input passed into the LSTM is processed

via multiple gates which control the information flow. There are three ”gates” present

in the LSTM cell: forget gate, ft, input gate, it, and output gate, ot. The information

is first passed through forget gate, where unwanted information is erased, where a value

of 1 means to keep all previous memory. The input gate decides which information

to retain. The output of the input gate is filtered by the tanh activation function,
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Figure 3.4: LSTM architecture.

producing a new candidate, c̃ for the cell state, while W represents trainable weights

and b is the bias. 
ft
it
ot
c̃t

 =


σ
σ
σ

tanh

W · [ht−1, xt] + b. (3.5)

A new cell state, ct is produced at every time step. The new cell state, ct

is achieved by forgetting irrelevant information while learning new information. The

equation below shows the cell state updating mechanism. Previous cell state, ct−1 is

multiplied element-wise with the forget gate to remove the unwanted information. At

the same time, the candidate cell state, c̃t is multiplied element-wise with the input gate

control.

ct = ft ⊙ ct−1 + it ⊙ c̃t. (3.6)

The third gate in an LSTM cell is the output gate, ot. This output gate controls

the output information from an LSTM cell. The information output or LSTM hidden

state output, ht is based on the cell state. A tanh activation function is used to squeeze

the cell state information into a range of (-1, 1). Then, a sigmoid activation function is

used in the output gate, ot to decide the output content of the cell states. The output

gate and hidden state output can be calculated as follows,

ot = σ(Woxt + Uoht−1 + bo), (3.7)

ht = ot ⊙ tanh(ct). (3.8)

The temporal features of the input are extracted in the LSTM layer. These temporal

features representing the specific feature of the PQDs are encoded into higher dimension
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representation for the classification process via dense layers. In our experiment, the pre-

processed, 1-dimension single-period windowed power waveform which consists of 200

time-steps is used as input. The important characteristics of different classes of PQD

are first highlighted in the attention layer. The outputs from the attention layer are fed

parallel into 200 units of LSTM. The final hidden state output from LSTM representing

extracted features are passed into the FC layer for the classification process.

3.3 Experiment Setup

The classification was implemented using Keras with the Tensorflow backend.

The formatted input vector is partitioned into 70% training data, 15% validation data

and 15% testing data. The list of PQD signals for analysis is tabulated in Table 3.1.

The signals are generated using the mathematical model as listed in Table 3.2, where 10

classes of single-disturbance PQD including normal signal, and 8 classes of combined-

disturbance PQD are trained for automatic PQD classification. Each PQD class has 200

samples of the three-period waveform generated with a 10kHz sampling frequency. Point

labelling is used where the magnitude difference with more than ±0.005% compared

to pure sine wave was labelled as a specific disturbance class. The generated PQDs

are displayed in Fig. 3.5 for single-disturbance and Fig. 3.6 for combined-disturbance

PQD. The sliding window technique is used to segment the voltage signal as shown in

Fig. 3.7. Three different window sizes were used, full-period, half-period, and quarter-

period windows, with 200, 100, and 50 data points respectively at 10kHz sampling. A

Table 3.1: Disturbance classes and respective labelling.

Label Class Description Label Class Description

P0 Normal P9 Flicker

P1 Sag P10 Sag+Harmonics

P2 Swell P11 Swell+Harmonics

P3 Interrupt P12 Interrupt+Harmonics

P4 Impulse Transient P13 Harmonics+Notch

P5 Spike P14 Sag+Transient

P6 Harmonics P15 Swell+Transient

P7 Oscillatory Transient P16 Sag+Oscillatory Transient

P8 Notch P17 Swell+Oscillatory Transient
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Table 3.2: PQD Data Generation [82, 96].

Labels Mathematical Equations and Parameters

P0

y(t) = A[1 ± α(u(t− t1) − u(t− t2))] sin(ωt)

Parameters: α ≤ 0.1;T ≤ t2 − t1 ≤ 3T

P1

y(t) = A[1 − α(u(t− t1) − u(t− t2))] sin(ωt)

Parameters: 0.1 < α ≤ 0.9;T ≤ t2 − t1 ≤ 3T

P2

y(t) = A[1 + α(u(t− t1) − u(t− t2))] sin(ωt)

Parameters: 0.1 < α ≤ 0.9;T ≤ t2 − t1 ≤ 3T

P3

y(t) = A[1 − α(u(t− t1) − u(t− t2))] sin(ωt)

Parameters: 0.9 < α ≤ 1;T ≤ t2 − t1 ≤ 3T

P4

y(t) = A[1 − α(u(t− t1) − u(t− t2))] sin(ωt)

Parameters: 0 ≤ α ≤ 0.414;T/20 ≤ t2 − t1 ≤ T/10

P5

y(t) = sin(ωt) + sign(sin(ωt)) × [
∑8

n=0K × [u(t− (t1 − 0.02n)) − u(t− (t2 − 0.02n))]]

Parameters: 0 ≤ t1, t2 ≤ 0.5T ; 0.01T ≤ t2 − t1 ≤ 0.05T ; 0.1 ≤ K ≤ 0.4

P6

y(t) = A[α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

Parameters: 0.05 ≤ {α3, α5, α7} ≤ 0.15;
∑
αi

2 = 1

P7

y(t) = A[sin(ωt) + αe
−(t−T/2)

τ sinωπ(t− t1)(u(t2) − u(t1))]

Parameters: 0.1 ≤ α ≤ 0.8; 0.5T ≤ t2 − t1 ≤ 3T ; 8ms ≤ τ ≤ 40ms; 300 ≤ fn ≤ 900Hz

P8

y(t) = sin(ωt) − sign(sin(ωt)) × [
∑8

n=0K × [u(t− (t1 − 0.02n)) − u(t− (t2 − 0.02n))]]

Parameters: 0 ≤ t1, t2 ≤ 0.5T ; 0.01T ≤ t2 − t1 ≤ 0.05T ; 0.1 ≤ K ≤ 0.4

P9

y(t) = [1 + αf sin(βωt)] sin(ωt)

Parameters: 0.1 ≤ αf ≤ 0.2; 5Hz ≤ β ≤ 20Hz

P10

y(t) = A[1 − α(u(t− t1) − u(t− t2))][α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

Parameters: 0.1 < α ≤ 0.9;T ≤ t2 − t1 ≤ 3T ; 0.05 ≤ {α3, α5, α7} ≤ 0.15;
∑
αi

2 = 1

P11

y(t) = A[1 + α(u(t− t1) − u(t− t2))][α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

Parameters: 0.1 < α ≤ 0.9;T ≤ t2 − t1 ≤ 3T ; 0.05 ≤ {α3, α5, α7} ≤ 0.15;
∑
αi

2 = 1

P12

y(t) = A[1 − α(u(t− t1) − u(t− t2))][α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

Parameters: 0.9 < α ≤ 1;T ≤ t2 − t1 ≤ 3T ; 0.05 ≤ {α3, α5, α7} ≤ 0.15;
∑
αi

2 = 1

P13

y(t) = A[[sin(ωt) − sign(sin(ωt)) × [
∑8

n=0K × [u(t− (t1 − 0.02n)) − u(t− (t2 − 0.02n))]]] + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

Parameters: 0.05 ≤ {α3, α5, α7} ≤ 0.15;
∑
αi

2 = 1; 0 ≤ t1, t2 ≤ 0.5T ; 0.01T ≤ t2 − t1 ≤ 0.05T ; 0.1 ≤ K ≤ 0.4

P14

y(t) = A[1 − α(u(t− t1) − u(t− t2))][1 − α(u(t− t1) − u(t− t2))] sin(ωt) sin(ωt)

Parameters: 0.1 < α ≤ 0.9;T ≤ t2 − t1 ≤ 3T ; 0 ≤ α ≤ 0.414;T/20 ≤ t2 − t1 ≤ T/10

P15

y(t) = A[1 + α(u(t− t1) − u(t− t2))][1 − α(u(t− t1) − u(t− t2))] sin(ωt) sin(ωt)

Parameters: 0.1 < α ≤ 0.9;T ≤ t2 − t1 ≤ 3T ; 0 ≤ α ≤ 0.414;T/20 ≤ t2 − t1 ≤ T/10

P16

y(t) = A[1 − α(u(t2) − u(t1))] sin(ωt) + αe
−(t−T/2)

τ sinωπ(t− t1)(u(t2) − u(t1))

Parameters: 0.1 < α ≤ 0.9;T ≤ t2 − t1 ≤ 3T ; 0.1 ≤ α ≤ 0.8; 0.5T ≤ t2 − t1 ≤ 3T ; 8ms ≤ τ ≤ 40ms; 300 ≤ fn ≤ 900Hz

P17

y(t) = A[1 + α(u(t2) − u(t1))] sin(ωt) + αe
−(t−T/2)

τ sinωπ(t− t1)(u(t2) − u(t1))

Parameters: 0.1 < α ≤ 0.9;T ≤ t2 − t1 ≤ 3T ; 0.1 ≤ α ≤ 0.8; 0.5T ≤ t2 − t1 ≤ 3T ; 8ms ≤ τ ≤ 40ms; 300 ≤ fn ≤ 900Hz

full period window is equivalent to 0.02 seconds of the 50Hz voltage waveform. The

time-step of the sliding window or ”stride” used is kept at one. Window labelling is

labelled according to the occurrence of the point labelling. Each windowed data consists

of two pieces of information, the magnitude of the signal and a one-hot-encoded window

labelling with 9 or 18 categories for single-disturbance PQD classification and combined-

disturbance PQD classification respectively. Data formatting is done before the input
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: Waveform and labelling for single disturbance PQDs. (a) D0: Normal, (b)

D1: Sag, (c) D2: Swell, (d) D3: Interrupt, (e) D4: Impulse Transient, (f) D5: Spike, (g)

D6: Harmonics, (h) D7: Oscillatory Transient, (i) D8: Notch.

(a) (b) (c) (d)

Figure 3.6: Waveform and labelling for combined-disturbance PQD. (a) P9: Sag with

Harmonics, (b) P10: Swell with Harmonics, (c) P11: Interrupt with Harmonics, (d) P12:

Oscillatory Transient with Harmonics.

of windowed data into the LSTM layer by normalising the signal magnitude into ranges

of −1 to 1. Normalization is done by dividing the signal magnitude by the maximum

absolute amplitude which can be expressed as,

V (t) =
v(t)

max
t∈n

|v(t)|
, (3.9)

where n represents the number of windows and t represents window size. The formatted

input, V (t) is the normalization of magnitude v(t) over the maximum absolute amplitude

present in the entire data sample. The number of hidden units of the LSTM layer is
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Figure 3.7: PQD windowing and labelling process.

equal to the sizes of windowing. The main evaluation matrix used in these experiments

is classification accuracy. The classification accuracy of individual class Accn is the true

positive, TPn over the total test samples for m classes of PQD, Sj as,

Accn =
TPn∑m
j=0 Sj

. (3.10)

Weighted accuracy is used to overcome the imbalanced data sample issue. The weights

of each class are calculated by dividing the total number of samples of an individual

class by the total number of samples. Weighted accuracy, (WAcc) can be calculated by

multiplying the individual class accuracy with its weight, which can be depicted as,

WAcc =
m∑
j=0

Wj ×Accj . (3.11)

Two experiments are set up to test the performance of the proposed network in PQD

classification. Experiment #1 involves classification performance analysis of the LSTM

network and proposed global attention LSTM network (GA-LSTM) on single distur-

bance PQDs. Three window sizes, i.e. full-period, half-period, and quarter-period of

voltage signal waveform having 200, 100, and 50 data points respectively are used to

test the single-disturbance classification performance of the LSTM network. The sec-

ond part of this section compared the classification performance proposed GA-LSTM

network against LSTM under noisy conditions. 20-40 dB Signal-to-noise (SNR) levels

of additive white Gaussian noise (AWGN) are added to test the network performance.

On the other hand, experiment #2 introduces the 8 classes of combined disturbance
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into the network for training. The performance of the proposed global attention-based

LSTM was discussed. The second part of the experiment focused on noisy condition

analysis, where random levels of 20-40 dB SNR AWGN are introduced randomly into

the training samples. Three unseen noises were introduced to test the generalization

capability of the models.

3.4 Experiment #1 - Single Disturbance Analysis

In this experiment, the single disturbance PQDs classification performance of the

proposed GA-LSTM network is analysed and compared to the LSTM network without

the attention mechanism. The first part of this experiment analyses the effect of different

windowing sizes on the classification performance for the LSTM model. The second part

of this section compared the classification performance proposed GA-LSTM network

against LSTM under noisy conditions. 20-40dB SNR AWGN are added to test the

network performance.

3.4.1 Analysis on Signal Windowing

Three different window sizes were used to study the performance of the network.

The experiment is first carried out using a window size of one period, followed by half-

period and quarter-period. The training is carried out for 30 epochs and the performance

of the network under noiseless conditions is summarized in Table 3.3. The highest WAcc

as shown in Table 3.3 is 99.31% for Test B with a half-window size, followed by Test

C then Test A. In comparison to Test A, Test B exhibited an overall enhancement in

classification accuracy. However, the individual classification accuracy of classes D4

and D5 dropped from Test A to Test B and drops further from Test B to Test C. From

the result, a larger window size has better performance in short-period high-frequency

disturbance classes such as D4 and D5 and D8. Decreasing window size reduces the

accuracy of these classes.

3.4.2 Performance Comparison With Noisy Data

Time Series power signal features can be extracted using LSTM based on the

sequential characteristics of the signal. The features for the classification process can

be extracted automatically using LSTM. Time series PQD classification using machine

learning depends heavily on class labelling for training. When a sliding window is
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Table 3.3: Performance of Windowing + LSTM under noiseless conditions.

Test Label A B C

Window Size 1 1/2 1/4

No. of LSTM hidden state 200 100 50

Training Loss 0.0145 0.0145 0.0216

Training Accuracy(%) 99.51 99.49 99.29

Validation Loss 0.0273 0.0198 0.0227

Validation Accuracy(%) 99.21 99.32 99.21

Testing Categorical classification

A
c
c
u
ra

c
y
(%

)

D0 Normal 99.97 99.92 99.84

D1 Sag 97.84 98.16 96.99

D2 Swell 97.62 98.01 98.79

D3 Interrupt 99.68 99.51 99.54

D4 Impulse Transient 94.21 92.17 87.54

D5 Spike 98.12 96.13 85.67

D6 Harmonics 99.94 99.93 99.52

D7 Oscillatory Transient 99.01 98.84 97.86

D8 Notch 99.91 99.38 97.95

WAcc(%) 98.95 99.31 99.19

used, the appropriate window size determines the classification accuracy. In Table 3.4,

two sizes of the windows are fed into two LSTM models with and without attention

mechanism to evaluate its data representation. As a result, the full-period window has

a significantly better performance compared to the half-period window. The proposed

model without attention mechanism is drastically affected by the added AWGN in the

original signal. Although the proposed GA-LSTM is also affected by the noise, it is still

able to maintain the WAcc above 50%. This shows that the attention mechanism has

successfully highlighted the important features under noisy conditions. The attention

mechanism can perform in highlighting the important features in each disturbance class

even under 20dB AWGN.
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Table 3.4: Noise-level Performance Comparison.

Noise
Without attention With attention

1/2 period Full period 1/2 period Full period

noiseless 99.31 98.95 94.22 95.15

40 dB 59.81 49.62 91.39 92.63

30 dB 30.08 34.36 63.89 77.58

20 dB 15.86 20.52 27.02 52.53

Table 3.5: Single-class PQD classification performance comparison between the LSTM

network and Global Attention LSTM network.

Network LSTM Global Attention LSTM

Class

SNR
20dB 30dB 40dB

noise-

less
20dB 30dB 40dB

noise-

less

D0 0.00 0.00 0.09 99.98 15.76 55.61 92.35 99.11

D1 7.97 54.14 85.20 97.84 87.75 95.18 96.80 96.89

D2 6.17 42.61 69.96 97.62 65.27 93.27 97.96 98.62

D3 48.06 74.17 90.84 99.69 79.64 93.30 98.53 98.84

D4 0.00 4.96 36.55 94.21 32.57 61.48 71.90 72.84

D5 0.00 4.73 34.98 98.13 41.17 68.91 77.67 79.46

D6 57.10 63.40 77.91 99.94 88.18 98.89 99.78 99.80

D7 99.12 99.81 99.79 99.02 62.85 81.53 88.39 89.25

D8 0.55 10.29 44.31 99.92 58.62 82.05 90.36 91.08

WAcc 20.53 34.37 49.63 98.96 52.53 77.58 92.63 95.15

In Table 3.5, it shows an accuracy matrix of detailed noise performance using

the LSTM model with and without attention mechanism in a single full period window.

The introduction of a minor 20-40dB SNR AWGN has a substantial impact on the clas-

sification performance of the LSTM model. LSTM model can only obtain 20.53% WAcc

under 20dB SNR AWGN with the observed information during the training process. It

can be noticed that the proposed attention mechanism significantly improved the clas-
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Table 3.6: Confusion Matrix of LSTM on PQD with 20dB AWGN.

D0 D1 D2 D3 D4 D5 D6 D7 D8

D0 0 0 0 0 0 0 0 0 0

D1 14 961 0 0 0 0 7 0 1

D2 0 0 731 0 0 0 0 0 0

D3 0 915 0 5671 0 0 0 0 0

D4 0 0 521 0 0 0 0 0 0

D5 0 0 6 0 0 0 0 0 0

D6 982 735 1402 101 151 96 6920 64 126

D7 33136 9017 9183 6017 5626 6088 5163 7853 5836

D8 145 425 12 12 10 5 21 6 33

Acc(%) 0 7.973 6.166 48.05 0 0 57.10 99.11 0.5547

WAcc (%) 20.53

sification performance under noisy conditions, especially in 20dB conditions. Table 3.6

shows that the confusion matrix of the LSTM model can classify most of the samples as

class D7, Oscillatory Transient. This is due to the high similarities between noisy sig-

nals and the nature of Oscillatory Transient. The proposed model without the attention

mechanism is thus prone to noise and only perform better under noiseless condition.

When the 20dB SNR is introduced, the attention mechanism successfully high-

lights the feature of different disturbance classes under noisy conditions, thus improving

the classification accuracy to 52.53%, and more than 50% for most of the classes. The

global attention mechanism proposed successfully highlighted the input signal. The in-

put signal and output attention vector can be depicted in Fig. 3.8. Fig. 3.8 shows the

highlighted feature vector for Oscillatory transient and Interrupt under 20dB SNR and

noiseless condition. Specific feature vectors are highlighted for each of the disturbance

classes. This shows that the attention layer successfully learns how to highlight the

specific feature for each of the disturbance waveforms. From 20dB SNR to no-noise

condition, there are only slight changes in the magnitude of the highlighted features.

This slight change indicates that the attention mechanism has good immunity against

noisy conditions.

Nonetheless, the global attention mechanism still has an existing drawback. Class
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: (a) Oscillatory Transient time-series signal and its attention output at (b) no-

noise level and (c) 20dB level; and (d) Interrupt time-series signal and its attention output

at (e) no-noise level and (f) 20dB level.

D0, D4 and D5 obtain a classification accuracy of less than 50%. The classification

accuracy of Class D0 or normal class dropped drastically with the increase in SNR.

Table 3.7: Confusion Matrix of LSTM with attention mechanism on PQD with 20dB

AWGN.

D0 D1 D2 D3 D4 D5 D6 D7 D8

D0 5403 167 312 6 347 434 11 190 287

D1 1537 10576 2632 2125 169 111 173 101 156

D2 275 104 7738 2 84 45 135 14 18

D3 102 482 11 9398 23 16 3 44 18

D4 4138 66 256 7 1885 769 212 420 653

D5 5684 103 200 35 1329 2548 254 620 301

D6 1248 82 188 7 280 408 10686 257 195

D7 6302 164 217 110 626 1180 407 4980 853

D8 9588 309 301 111 1044 678 238 1297 3515

Acc(%) 15.76 87.75 65.27 79.63 32.57 41.17 88.18 62.85 58.62

WAcc (%) 52.53
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This drop in accuracy can be visualised from the confusion matrix Table 3.7. Most of

the wrongly classified ”normal” are related to the D4, D5 D7 and D8 classes. Class D0

is ”Normal waveform”. When a higher level of noise is added, the waveform is distorted

to other similar disturbance classes. This happens especially in those classes with higher

disturbance frequency, such as class D4, D5, D7 and D8. Disturbance classes D4 and

D5 are very similar in nature, except the duration of a spike is much smaller compared

to impulse transient. Class D4 Impulsive Transient, class D5 Spike and class D8 Notch

are all having shorter disturbance periods over time. This indicates the imperfect focus

of the attention mechanism on ”impulse-like” or higher detailed signal.

Since both models are trained with noiseless data, the result shows that the global

attention mechanism is more generalised to different noise levels. The noise impact on

the attention model is much smaller compared to the LSTM model. The global attention

model can achieve better overall classification performance on single disturbance PQD

signals polluted with noise. In the next section, combined disturbances are added to

the analysis, mimicking real-world scenarios of multiple disturbances occurring within

the same timeframe.

3.5 Experiment #2 - Combined-disturbance Analysis

This experiment can be further subdivided into two parts. In the first part

of this experiment, combined disturbances are added to the network analysis. The

classification performance of the LSTM and GA-LSTM on combined disturbances are

discussed. The second part of the experiment is carried out by training the LSTM

network and GA-LSTM network using noisy data input. For instance, random levels of

20-50dB SNR AWGN are added randomly into the training samples. Besides that, the

analysis proceeds with testing on unseen noises condition, where three unseen noises

were introduced. The generalization capability of the model towards different noise

conditions is analysed.

3.5.1 Experiment #2 Noiseless Training Analysis

In this experiment, multiple disturbances are added to the training and testing

datasets. Similar to Experiment #1, The LSTM model and global attention LSTM

models are trained using noiseless datasets and tested with 20-40dB SNR AWGN and

noiseless data. Results tabulated in Table 3.8 show overall better classification accuracy
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Table 3.8: Classification performance of LSTM model trained with noiseless synthetic

PQD data and tested with 20-40dB AWGN and noiseless conditions.

Attention Without Attention With Attention

Class

SNR
20dB 30dB 40dB noiseless 20dB 30dB 40dB noiseless

P0 0.00 0.00 6.25 99.86 14.78 71.46 97.67 99.31

P1 0.67 36.04 55.29 96.34 57.23 84.88 91.75 92.50

P2 4.58 44.18 62.92 98.61 67.65 89.91 96.58 97.67

P3 9.30 22.72 45.58 99.15 44.91 69.58 83.01 87.20

P4 0.37 28.67 96.68 98.47 40.90 77.18 85.48 86.66

P5 0.15 25.69 72.79 98.92 49.58 77.57 83.63 84.39

P6 0.00 4.86 91.07 99.36 61.75 89.86 94.84 95.63

P7 99.33 98.74 90.74 96.82 72.23 78.73 79.47 79.37

P8 0.62 30.74 68.68 97.72 43.06 66.16 72.60 73.91

P9 0.01 3.65 51.83 99.28 58.21 95.98 99.02 99.17

P10 8.98 57.87 89.87 96.45 79.62 90.99 92.34 92.53

P11 82.04 94.38 97.11 98.51 92.99 97.52 98.14 98.22

P12 57.41 86.48 93.35 94.96 47.26 59.83 65.20 66.82

P13 41.71 97.76 99.09 99.27 67.85 78.29 81.17 81.15

P14 18.23 80.24 98.37 97.45 66.17 81.44 84.80 85.04

P15 25.87 56.59 97.60 98.73 76.32 86.16 88.11 88.21

P16 71.93 78.48 83.47 88.14 54.59 55.30 54.98 55.03

P17 58.38 65.44 71.55 87.07 35.14 35.40 35.45 35.52

WAcc 18.99 38.54 62.53 97.69 51.33 78.37 87.54 88.54

on the global attention model compared to the LSTM model. The classification perfor-

mance of the LSTM model decreases drastically with the increase in noise levels to 20dB

SNR. PQD classification using the LSTM model tested under 20dB SNR AWGN gives

the WAcc of 18.99%. LSTM model classifiers are biased towards class P7-Oscillatory

Transient and class P11-Swell+Harmonics, in which both classes have high similarities

with the nature of the noisy signal. The LSTM model without the attention mechanism
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is thus prone to noise and only perform better under noiseless condition.

On the other hand, the classification performance of the proposed global attention-

based LSTM model tested under 20-40dB SNR AWGN increased significantly to 51.33%,

78.37%, and 87.54% respectively, as shown in Table 3.8. The proposed global attention-

based model is affected by the 20dB noise but still maintains the WAcc above 50%. This

result proves that the attention mechanism has successfully highlighted the important

features under noisy conditions. The added attention mechanism generalised the model

by highlighting the signal with an attention vector.

Although the proposed attention mechanism shows better overall results, it is not

deniable that it comes with some weaknesses. In Table 3.8, it can be noticed that class

P16-Sag+Oscillatory Transient and P17-Swell+Oscillatory Transient encounter some dif-

ficulty in classification. It can be noticed that these two classes are very similar in nature,

except for only magnitude differences. Class P12-Interrupt+Harmonics has Harmonics

event occurred with the interrupt period. The Harmonics magnitude level is relatively

small compared to the normal signal condition before or after the P12 event. The pro-

posed attention mechanism is good at highlighting the overall picture of the input signal,

but insensitive to high frequencies and small magnitude changes.

3.5.2 Noisy Training Analysis

In this experiment, the models are trained with a dataset consisting of noiseless

and 20-50dB SNR AWGN. The AWGN added into the training samples are learnt

as a new type of feature posed on the samples. Temporal features of the targeted

signal polluted with noise can still be learnt by the model during the training process.

Subsequently, this trained model is tested with added 20-40dB AWGN, and three types

of unseen noises, which are labelled as Noise #A, Noise #B, and Noise #C. Data with

noise #A is generated randomly with 15dB AWGN to evaluate the model performance

on samples that are not exposed during the training process. Data inserting with noise

type #B assimilates the situation where an unknown uniform positive noise has offset

into the DC level of the signal. On the other hand, data added with noise type #C has

the unknown uniformly randomised noise with the magnitude ranging from [-0.3, 0.3].

This is to simulate a scenario where some parasitic components occurred in the system

that cannot be picked up easily.

The classification performance of both models with and without attention mech-

anism are compared in Table 3.9. Both models are set up using 100 units of hidden
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Table 3.9: Classification performance of LSTM model trained with noisy synthetic PQD

data and tested with 20-40dB AWGN and noiseless conditions.

Attention Without Attention With Attention

Class

SNR
20dB 30dB 40dB noiseless 20dB 30dB 40dB noiseless

P0 92.14 98.85 99.64 99.75 55.05 97.46 99.32 99.41

P1 84.94 94.35 96.77 97.26 71.85 87.06 89.00 88.99

P2 89.59 95.62 97.13 97.45 82.08 94.60 96.35 96.47

P3 67.09 83.48 91.16 94.21 37.54 40.24 41.29 41.55

P4 66.77 88.25 94.04 94.79 52.19 75.05 78.06 78.44

P5 78.98 97.74 98.47 98.42 51.47 65.20 67.45 67.79

P6 88.99 98.29 99.08 99.25 75.67 89.60 91.51 91.87

P7 93.96 96.07 96.22 96.18 74.11 77.48 77.90 77.94

P8 76.22 97.02 97.80 97.80 47.70 61.80 63.10 63.67

P9 94.10 99.41 99.82 99.81 87.05 97.77 98.55 98.69

P10 87.56 94.10 95.42 95.59 84.76 90.85 91.58 91.64

P11 96.69 98.01 98.13 98.07 95.04 97.20 97.44 97.47

P12 67.64 82.81 91.55 95.06 67.28 78.64 81.63 82.15

P13 86.82 97.11 98.17 98.16 71.56 77.31 78.06 78.07

P14 66.54 84.47 92.14 93.49 62.60 69.94 70.06 69.94

P15 72.75 89.54 95.02 95.49 76.64 81.51 81.83 81.54

P16 81.17 86.46 86.54 86.46 44.03 44.22 44.43 44.53

P17 82.64 88.30 89.57 89.73 50.64 51.60 51.79 51.83

WAcc 84.87 94.22 96.43 96.97 66.67 82.89 84.30 84.45

units and trained for 30 epochs. Both models are showing better classification per-

formance compared to models trained under noiseless conditions. The classification

accuracy of the LSTM model without attention improved from the previous 18.99% to

84.87% WAcc under 20dB SNR AWGN. However, the classification performance of The

global attention-based LSTM model does not show drastic improvement when trained

under noisy conditions, from 51.33% to 66.67%. From Table 3.9, it can be noticed that
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Table 3.10: Unseen noise performance comparison.

Train Without noise With noise

Attention

Noise
A B C A B C

Without 14.75 47.07 20.06 47.86 52.09 53.94

With 36.01 59.09 43.06 48.07 59.10 54.09

class P16-Sag+Oscillatory Transient and P17-Swell+Oscillatory Transient are still hav-

ing similar difficulty in classification. By comparing to the previous train with noiseless

experiment, it can also be noticed that class P12-Interrupt+Harmonics shows improved

performance but reduced performance in class P3-Interrupt. Training with added noise

changes the nature of the signal being trained, especially on the magnitude of the sig-

nal. The proposed global attention mechanism is proved to be good in picturing global

features, but is insensitive to slight magnitude changes.

Three unknown noises were used to test the trained model. The comparison

result is tabulated in Table 3.10. Unknown Noise #A is an AWGN with 15dB SNR.

Although the trained model can achieve good accuracy when training with SNR 20-

50dB, it does not perform well when unknown noise #A having lower SNR level noise

is used to test the model. The classification accuracy for noise #A achieve 14.75% in

the model trained without noise and without attention mechanism. Training with a

mixture of noiseless and 20-50dB noise without attention only improves the accuracy to

47.86%, which is still far from the expected 84.87%. Comparatively, despite affecting by

a higher level of noise, the model with an attention mechanism can still achieve 36.01%

and 48.07% under training without and with noise respectively.

Noise #B contains positive uniform random noise ranging within 20-25 dB SNR.

This positive uniform random noise simulates the DC level drift or offsets when in the

real-life application. It is presented as a new variant of noise to test the trained model.

The model without attention achieved 47.07% and 52.09% under training without and

with noise conditions respectively. The proposed global attention-based LSTM model

however achieved stable classification performances of 59.09% and 59.10% for training

without and with noise respectively. These classification performances are close to the

average classification performance of testing with 20dB SNR AWGN condition. This
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result shows that the proposed attention model is still reliable with different variants of

noise, as long as the noise level is constant.

In addition, noise type #C with uniform random amplitude from [-0.3, 0.3] is

added to the original signal to further test the model’s performance. This signal pre-

sented a uniformly distributed noise with an 11-30 dB SNR range. LSTM model with-

out attention mechanism achieves 20.06% and 53.94% under noiseless training and noisy

training respectively. The classification performance of the proposed global attention-

based model achieves a consistent performance of 43.06% and 54.09% respectively. Over-

all, the proposed global attention mechanism has comparatively consistent, and better

classification performance for unseen noise conditions.

3.6 Chapter Summary

A global attention-based LSTM model (GA-LSTM) is proposed in this chapter

for more generalised PQD classification. A global attention mechanism is used in the

presented method to highlight the important features present within the input signal.

Temporal features of the highlighted signal are extracted using a single layer of LSTM.

Two experiments were carried out to analyse the performance of the proposed GA-

LSTM model. Three window sizes, i.e. quarter-period, half-period, and full-period,

were performed to study the effect of sequence length in single disturbance PQD. As

a result, window size having a full-period waveform with a higher number of sampling

points can achieve better performance as compared to others under noisy conditions.

With attention, it can obtain better feature selection even if the signal is in a noisy

environment. On the other hand, the proposed GA-LSTM network was compared with

LSTM using a single full-period PQD waveform. The proposed network is insuscep-

tible to noise with 95.15% and 52.53% of classification rate under noiseless and noisy

conditions respectively. As for the LSTM model, it is prone to noise with a significant

dropping rate from 98.96% on the noiseless test to 20.52% under 20dB SNR AWGN.

The proposed GA-LSTM is also tested under noiseless and noisy conditions using

combined-disturbance PQDs. As a result, GA-LSTM can achieve 66.67% and 51.33%

accuracy when the network is trained with and without noise respectively. It shows that

GA-LSTM has better noise immunity as compared to the LSTM model with 84.87%

under noisy training data and 18.99% under noiseless training data. In addition, three
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unseen noises are tested on GA-LSTM and LSTM models. Results show that the pro-

posed GA-LSTM model has more generalised classification performance, where it can

achieve averagely better classification accuracy on signals polluted with unknown noise.

The presence of noise in training data can significantly affect the performance LSTM

model because it requires observed data to be learned by the network. The introduc-

tion of the attention mechanism can highlight salient patterns occurred inside a PQD

as a feature representation. However, the proposed GA-LSTM might be insensitive to

conditions with short-time impulse and small magnitude changes. In the next chap-

ter, multi-resolution global attention LSTM network is introduced to decompose time-

domain signal into multiple levels of frequency bands to increase the signal resolution

for salient feature extraction.
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Chapter 4

Multi-resolution Global-attention

Long Short-Term Memory

Network

4.1 Introduction

Power quality [122, 123] is always the concern in the integration of high precision

and sensitive equipment inside the power utility network. Power quality disturbance

(PQD) is defined as a series of disruptions on the magnitude or frequency of the power

supply sinusoidal waveform [124]. A PQD occurring in the power grid might cause

problems such as reducing the lifespan of electrical devices, causing malfunctioning

in sensitive electronic devices, causing unwanted power tripping, and financial losses.

PQDs are among the major concerns in improving the functionality and efficiency of a

microgrid [125]. PQD detection and classification is thus an important tool for moni-

toring the power quality of the power systems. The ability to identify the presence of

PQDs in a system helps in guiding the energy management operation.

Detection and classification of PQDs can be categorised into three categories,

knowledge-based method, model-based method, and hybrid method. The knowledge-

based method relies heavily on professional knowledge in finding the most suitable

statistical features for the classification process. Model-based method on the other hand

involves the use of machine learning to perform feature extraction and classification

automatically. Hybrid method extract features using the knowledge-based method,
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while classifying the PQDs with the model-based method or machine learning. Hybrid-

based PQD classification methods are studied in [66, 68, 82, 126, 127]. Most of these

methods extract specific statistical features from the input signal before passing it into

a machine learning algorithm for the classification process.

A time-series model-based method, global attention (GA) mechanism is proposed

and discussed in Chapter 3, to improve the generalisation capability of the model-based

Long Short-term Memory (LSTM) classifier. However, the result shows that the pro-

posed time-series attention-based LSTM method is weaker in classifying high-frequency

signals. Wavelet transform (WT) is used extensively in the field of noise suppression

due to its properties in detecting discontinuity in the signal [128]. The properties of WT

which allows multi-level signal decomposition (MSD) helps in increasing the resolution

of the input signal into multi-level segments with different frequency components. In this

chapter, WT is proposed to increase the input signal resolution by extracting the signal’s

features at different frequency bands. Multi-resolution Global-attention LSTM network

is proposed to further improve the classification performance of the global attention

LSTM (GA-LSTM). This chapter covers the analysis of the proposed multi-resolution

global-attention LSTM network. Section 4.2 explains the theory of WT and MSD. Sec-

tion 4.3 describes the approach used for the proposed methods. Section 4.4 presents

the results of the proposed methods. Finally, Section 4.5 summarizes the findings and

performance from the experiments.

4.2 Multi-level Signal Decomposition

Wavelet transforms [129] is proven to be efficient in detecting discontinuity in

signals. The characteristics of varying window sizes in WT allow it to achieve an optimal

time-frequency resolution. The varying window sizes also allow wavelets to detect non-

stationary signals, which are posed by most of the PQDs. Wavelet transform can be

expressed as [129],

f(x) =
∑
i,j

ai,jψi,j(x), (4.1)

where ai,j representing DWT expansion coefficients of input f(x), with scaling and

shifting parameters, i and j respectively. While ψi,j represents the wavelet expansion

function. The DWT coefficients can be expressed as,

ai,j =

∫ ∞

−∞
f(x)ψ(i,j)(x). (4.2)
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Wavelet basis function can be generated from mother wavelet, ψi,j by tuning the scaling

and shifting parameters, i and j as follows,

ψ(i,j)(x) = 2−i/2ψ(2−ix− j), (4.3)

MSD can be achieved by providing two-scaled equation, ψi,j and ϕi,j

ψi,j(x) = 2−i/2h(j)ψ(2−ix− j), (4.4)

ϕi,j(x) = 2−i/2g(j)ϕ(2−ix− j), (4.5)

where g(j) = (−1)jh(1−j). h(j) and g(j) can be viewed as high pass and loss pass filter

coefficients. MSD is achieved with different Ith level decomposition as follows [129],

fi(x) =
I∑

i=1

ai,jψi,j(x) +
I∑

i=1

ai,jϕi,j(x), (4.6)

The function of MSD allows the signal to be band-filtered into multiple levels

of frequencies. The original signal is filtered using a high pass filter (HPF) for high-

frequency components while a low pass filter (LPF) is used to extract low-frequency

components. The band LPF from each level are used as input to the next level de-

composition until the desired decomposition level. Fig. 4.1 shows MSD with 4-levels

of decomposition. The detailed coefficients, D1 to D4 are outputs from the high pass

filter from respective decomposition levels, while A4 is the low pass filter output from

the last decomposition level.

Figure 4.1: MSD with 4-levels of decomposition.
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Figure 4.2: Single stage reconstruction.

Single-stage reconstruction performed on each of the detail and approximate

coefficients allows retrieval of the original time-series signal composition at respective

decomposition levels. The wavelet signal reconstruction is shown in Fig. 4.2, where the

detailed coefficient and approximation coefficient of MSD in every decomposition level

are reconstructed into 5 signal waveforms at different frequency bands, SD1 to SD4,

and SA4.

4.3 Multi-resolution Attention Models

Automatic feature extraction is a crucial component in achieving automatic PQD

detection and classification. Global attention is introduced to better generalize the net-

work towards detecting multiple classes of disturbances [130]. Although the GA-LSTM

network is proven to have better noise immunity, the network faces difficulty in detect-

ing high-frequency disturbances with small-magnitude changes. Multi-resolution signal

decomposition (MSD) is used to transform the time-series input signals into multiple

frequency components or time-frequency components [131]. MSD is proposed along with

an attention mechanism to achieve better classification performance. In this chapter,

two different approaches using either inverse wavelet transform or wavelet coefficients
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Figure 4.3: Multi-resolution Attention LSTM.

are conducted as shown in Fig. 4.3. The first approach or Model #A uses inverse wavelet

transform (IWT) on the wavelet coefficients to reconstruct every frequency band output

signal into time-series signals on their respective frequency band. Two types of atten-

tion mechanisms are studied, global attention and band attention. The details of the

model are explained in Section 4.3.1. The second approach or Model #B remove the

need for IWT. The output of MSD is first aligned using a feature align layer, where

the unequal-length MSD outputs are converted into equal-length latent representations.

Spatial and temporal feature attention are applied to the latent representation to im-

prove the generalisation capability of the network. Model #B is discussed in detail in

Section 4.3.2.

4.3.1 Model #A: Single-period Multi-Resolution Attention LSTM

The attention mechanism highlights important characteristics present in the sig-

nal. Self-attention is achieved by multiplying attention weight with the input signals.

LSTM is good at extracting sequential information from the input data. In [130], it is

Figure 4.4: Multi-resolution attention LSTM model using (a) Global attention, (b) Band

attention.
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found that the GA-LSTM network improved the generalization capability compared to

the pure LSTM network. However, the decreased performance in noiseless conditions

shows that the GA-LSTM network is weak in identifying higher-frequency disturbances.

In this model, multi-resolution attention LSTM PQD classifier is proposed as

shown in Fig. 4.4. Daubechies 4 (db4) wavelet filter function is used for the decomposi-

tion. Mother wavelet db4 is used as it provides good performance with low computation

cost [132]. Besides, db4 provides good time resolution and accurate transient faults anal-

ysis. Literature shows that db4 with 4 levels of decomposition is a good starting point

for the research model’s design [48, 63, 68, 133]. A total of five decomposed wavelet coef-

ficients with unique frequency ranges are yielded for further processing. IWT is applied

on the yielded wavelet coefficients to reconstruct the input signal into five time-series

signals at different frequency bands.

To achieve the best feature extraction and classification performance, a series

of feature manipulation are tested. Two different attention mechanisms are proposed

for analysis, global attention (GA) and band attention (BA) as shown in path (a) and

path (b) in Fig. 4.4. GA is applied in path (a), where the attention score is harvested

from the input signal and then multiplied in element-wise operation for each of the five

reconstructed band signals. Path (b) on the other hand applies BA, where self-attention

is applied to each of the five reconstructed band signals. The attention feature outputs

are then stacked into temporal (T,F) or spatial (F,T) matrices. The matrices are fed

into the LSTM layer for higher dimensional feature extraction. The output of the

LSTM layer is the representation of the encoded sequence features according to the

input pattern.

4.3.2 Model #B: Multi-period Multi-resolution Attention LSTM

As for Model #B, instead of using reconstructed signals at different frequency

bands as shown in Model #A, a feature align layer is proposed to embed and align

Figure 4.5: Multi-resolution Attention LSTM model with attention mechanism.
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the wavelet transformation coefficients using a perceptron layer. An overview of the

proposed method is depicted in Fig. 4.5. The output coefficients of MSD are first

passed through a feature align layer which embeds different bands into similar dimen-

sions. Feature attention, or the attention mechanism applied on the embedded features

is used to improve the generalization capability of the network. Two different attention

mechanisms are tested, temporal feature attention (TFA) and Spatial feature attention

(SFA). TFA is multiplied element-wise with the temporally aligned features from fea-

ture align layer outputs to get the temporal attention vector. While spatial attention

vector is acquired by multiplying the spatially aligned features with the SFA attention

weights. The highlighted features are then passed into LSTM layers for feature extrac-

tion. Finally, two fully connected layers and a softmax activation function are used to

classify the features into respective disturbance classes.

4.4 Experiment Setup

All experiments are carried out using AMD Ryzen 7 3800X 8-Core Processor

with Nvidia P6000 graphic processing unit. Pytorch framework is used for the ex-

periments. The MSD used in both experiments are based on the db4 wavelet for the

wavelet decomposition process. Additive white Gaussian noise (AWGN) is introduced

to test the network classification performance. Experiment #1 is trained with noiseless

datasets, while Experiment #2 is trained with a random 20-50dB SNR of AWGN. The

testing performance on the other hand is tested AWGN with SNR of 20dB, 30dB, 40dB,

50dB, and noiseless conditions. The main evaluation matrix used in the experiments

is classification accuracy.The classification accuracy of individual class Accn is the true

positive, TPn over the total test samples for m classes of PQD, Sj as,

Accn =
TPn∑m
j=0 Sj

. (4.7)

Two different models are proposed in this chapter. While both models shared the

same concept of multi-resolution attention LSTM, there are slight differences within the

experiment’s setup. Each model’s experiment setup will be discussed in its respective

section.
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4.4.1 Experiment #1 Single-period Multi-Resolution Attention LSTM

Experiment #1 is set up with the generation of 3-period PQD signals, and the

single-period windowing method is used to pre-process the input data into a single-

period signal waveform. A total of 200 randomized parameter samples of the three-

period waveform are generated for each of the 18 PQD classes listed in Table 4.1. The

sampling frequency used is 10kHz. 70% of the total generated samples are used as

training data, while the remaining 30% are used as validation samples. The use of the

train-to-test ratio of 70:30 follows best practices in machine learning process to prevent

overfitting. As this sampling method caused an imbalance in the counts of class, where

weight balancing has to be done in the training process, and weighted accuracy is used

to accurately projects the classification performance. Weighted accuracy (WAcc) can

be calculated by multiplying the individual class accuracy with its weight, which can

be depicted as,

WAcc =
m∑
j=0

Wj ×Accj . (4.8)

In Table 4.2, a total of six different configurations are analysed to obtain the

best classification performance. GA network highlights the important feature presented

in the raw input signal, while the BA network highlights the frequency bands output

of MSD. The performances of four different BA networks are also compared in the

Table 4.1: Class of power quality disturbances (Experiment #1).

Label Class Description Label Class Description

P0 Normal P9 Flicker

P1 Sag P10 Sag+Harmonics

P2 Swell P11 Swell+Harmonics

P3 Interrupt P12 Interrupt+Harmonics

P4 Impulse Transient P13 Harmonics+Notch

P5 Spike P14 Sag+Transient

P6 Harmonics P15 Swell+Transient

P7 Oscillatory Transient P16 Sag+Oscillatory Transient

P8 Notch P17 Swell+Oscillatory Transient
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Table 4.2: Proposed model under setups with global (GA) and band attention (BA), with

spatial (S) and temporal (T) features settings.

Model Attention Attention input LSTM input

#A1 GA T S

#A2 GA T T

#A3 BA S S

#A4 BA S T

#A5 BA T S

#A6 BA T T

experiment. In the proposed method, LSTM is used to extract spatial and temporal

features by feeding different input orientations into the LSTM layer. Specifically, the

attended MSD frequency bands or attention vector in this context is aligned into (T,F)

and (F,T) shapes for temporal sequence feature extraction and spatial sequence feature

extraction respectively.

4.4.2 Experiment #2 Multi-period Multi-resolution Attention LSTM

In Experiment #2, 10-period PQD signals are generated and used as input data.

The classification and generalization capability of the proposed method is tested with 16

synthetic PQD models which can be benchmarked with [20, 101]. The generated PQDs

include normal signal waveform, single disturbance waveform, and multiple disturbance

waveform as listed in Table 4.3. A total of 76800 10-period PQD samples are randomly

generated, where each disturbance class has 4800 samples. The sampling frequency

used is 3200 Hz. As noise is always present during real-world data collection, 20-50dB

SNR AWGN are added randomly into the generated training samples. 10-fold cross-

validation is used, which consists of 90% training samples and 10% of total samples

are used as validation samples. A total of 5 sets of testing data sets are generated for

model benchmarking purposes. The 5 sets of the testing data include a set of noiseless

samples, and 20dB, 30dB, 40dB, and 50dB SNR AWGN added samples. Each set of

testing data consists of 1000 samples per PQD class. This experimental setup is aligned

with Machlev et al. [101] and Wang et al. [20] to carry out the benchmarking process
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Table 4.3: Class of power quality disturbances (Experiment #2).

Label Class Description Label Class Description

P0 Normal P8 Notch

P1 Sag P9 Flicker

P2 Swell P10 Sag+Harmonics

P3 Interrupt P11 Swell+Harmonics

P4 Impulse Transient P12 Interrupt+Harmonics

P5 Spike P13 Flicker+Harmonics

P6 Harmonics P14 Flicker+Sag

P7 Oscillatory Transient P15 Flicker+Swell

Table 4.4: Details of different bench-marking models.

Model name Model details

Deep CNN (DNN) [20] 1D CNN layer: 6; Dense: 3 layers: 256, 128, 16

Deep LSTM (DNN) [101] 3 layers, unit: 32; Dense: 2 layers: 256, 16

WT-LSTM MSD: 4 level db4; Dense layer temporal embedding;

(Hybrid) LSTM: 3 layers, unit:32; Dense: 2 layers: 256, 16

WT-TFA-LSTM MSD: 4 level db4; Dense layer temporal embedding;

(Hybrid) Attention mechanism; LSTM: 3 layers, unit:32;

Dense: 2 layers: 256, 16

WT-SFA-LSTM MSD: 4 level db4; Dense layer spatial embedding;

(Hybrid) Attention mechanism; LSTM: 3 layers, unit: 32;

Dense: 2 layers: 256, 16

fairly. In this experiment, two types of input arrangement are used to evaluate the

proposed multi-resolution attention LSTM model. The features are arranged in either

TFA or SFA as described in Section 4.3.2. Bench-marking of the proposed method has

also be done with multi-resolution LSTM model without attention mechanism, deep

LSTM model[101], and deep convolution neural network (Deep CNN) model[20, 101].

The details of each model’s comparison are summarised in Table 4.4.
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4.5 Experiment #1: Performance Analysis of Single-period

Multi-resolution Attention LSTM

The classification performance of the proposed multi-resolution attention LSTM

model is analysed for evaluation. There are a total of six different setups tested on this

model as shown in Table 4.2. In the GA models, the attention mechanism is applied

to the input signal directly. The attention output is then multiplied element-wise with

the input signal. The output attention vector is shaped into (F, T) for spatial sequence

extraction in Model #A1 and (T, F) for temporal sequence extraction in Model #A2.

In BA models, the attention mechanism is applied to the MSD output vector, in either

(F, T) shape for spatial band attention, or (T, F) shape for temporal band attention.

The output attention vector is then passed into the LSTM layer for spatial sequence or

temporal sequence feature extraction.

4.5.1 Overall Classification Accuracy Comparison

The classification performance of the proposed method is tabulated in Table 4.5.

As for an overall comparison, Model #A1 and Model #A2 using the GA mechanism

show better performance with > 40%. The GA layer highlights an important part of the

raw input signal before passing the attention vector to the MSD layer. The main differ-

ence between Model #A1 and #A2 is in the LSTM layer which takes in MSD output

Table 4.5: Weighted accuracy of the proposed model under setups with global and band

attention, with spatial and temporal features settings and compare with Model #A7 ([134]).

Model 20dB 30dB 40dB 50dB No-noise

#A1 50.71 80.31 90.62 91.40 91.43

#A2 55.31 80.44 89.28 89.91 89.99

#A3 35.44 68.32 90.00 93.93 93.53

#A4 21.21 49.29 73.00 92.32 93.12

#A5 42.42 75.33 86.95 87.83 87.68

#A6 43.54 78.23 89.66 90.83 90.94

#A7[134] 18.99 38.54 62.53 81.07 97.69
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with different orientations as explained in the setup section. The LSTM in Model #A1

takes in MRA output which is shaped into a spatial orientation of (F, T), thus produc-

ing spatial sequence feature. On the other hand, LSTM in Model #A2 takes in MSD

output which is shaped into a temporal orientation of (T, F), thus giving temporal se-

quence as the output feature. As a result, both models can achieve similar classification

accuracy with Model #A2 having slightly better classification on the 20dB AWGN test-

ing data, 55.31% versus 50.71%. However, it is also worth mentioning that the LSTM

layer in Model #A1 requires less computation, or performs only (1/(T/F ))× recurrent

steps compared to Model #A2. The recurrent steps in Model #A1 is depending on the

spatial dimension, F of the attention vector (F, T), while in Model #A2 recurrent steps

occur in the temporal dimension of the attention vector (T, F). The T and F used in

this experiment is 200 and 5 respectively, thus Model #A1 has (1/40)× recurrent steps

compared to Model #A2. Time-series LSTM model [134] is also compared as Model

#A7 in Table 4.5. The time-series LSTM model without attention mechanism is highly

affected by noise, which gives only 18.99% under the 20dB AWGN test.

BA models are models containing attention mechanisms on the output bands of

the MSD. Band spatial attention and band temporal attention are applied to the spatial

(F,T) and temporal (T,F) orientation of the MSD output. Comparatively, band spatial

attention (Model #A3 and #A4) resulted in lower classification accuracy on high noise

data, but the classification accuracy on lower noise data is slightly better than all other

models. On the other hand, band temporal attention models (Model #A5 and #A6)

have better classification accuracy > 40% on high noise signal with 20dB SNR AWGN.

However, the use of GA is proven to be having better classification performance in this

multiple bands time-series classification.

4.5.2 Individual Class Analysis

A direct comparison of Model #A1 in Table 4.6a and Model #A2 in Table 4.6b

demonstrate distinctive performance in classification, where Model #A1 has weaker

classification performance on class P12, P16 and P17, while Model #A2 has weaker

classification performance on more classes, P8, P12, P13, P16, and P17. Both Model #A1

and #A2 perform weaker classification result on class P12, P16, and P17. This shows

that these two models have deficiencies in classifying these classes. Referring to the P12-

Interrupt+Harmonics confusion matrix, it is noticed that the model is confused between

class interrupt. The harmonics present in the P12 class has significantly lower magnitude
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Table 4.6: Classification performance of Model #A1 and Model #A2 with additive white

Gaussian noise from 20dB-50dB and noiseless conditions.

(a) Model #A1.

Class

SNR
20dB 30dB 40dB 50dB noiseless

P0 10.80 67.49 98.53 99.74 99.75

P1 46.18 81.14 91.09 91.58 91.40

P2 58.61 86.04 94.94 96.25 96.57

P3 49.77 77.88 89.87 92.84 93.10

P4 30.72 75.49 85.50 86.17 85.94

P5 33.85 85.06 91.71 92.46 92.39

P6 65.80 93.19 97.63 98.17 98.08

P7 78.79 87.29 88.05 87.96 87.96

P8 52.28 80.00 84.05 84.66 84.58

P9 57.00 99.04 99.90 99.92 99.91

P10 80.14 91.96 93.54 93.72 93.80

P11 92.18 97.73 98.27 98.31 98.31

P12 59.61 70.23 75.67 77.06 77.26

P13 69.16 85.81 87.20 87.20 87.20

P14 73.96 85.04 86.60 86.83 87.19

P15 79.97 92.15 94.24 94.63 94.79

P16 62.05 62.57 62.92 62.91 62.80

P17 44.92 44.61 44.80 45.01 44.89

WAcc 50.71 80.31 90.62 91.4 91.43

(b) Model #A2.

Class

SNR
20dB 30dB 40dB 50dB noiseless

P0 12.89 69.35 97.98 99.45 99.50

P1 59.06 86.85 93.53 93.97 94.18

P2 66.29 89.70 96.13 96.79 96.97

P3 58.71 79.57 89.53 91.53 91.71

P4 54.87 83.91 90.32 90.50 90.66

P5 50.70 83.51 87.57 87.76 87.90

P6 77.79 94.35 96.57 96.54 96.52

P7 78.11 84.34 85.29 85.38 85.38

P8 61.34 74.53 76.52 76.94 76.86

P9 63.05 97.06 99.50 99.64 99.66

P10 83.58 92.01 92.62 92.67 92.67

P11 89.54 97.06 97.72 97.86 97.89

P12 59.52 67.46 72.07 72.99 73.27

P13 53.21 71.23 74.69 75.56 75.75

P14 72.15 83.22 85.25 85.71 85.69

P15 79.19 87.98 89.42 89.42 89.34

P16 72.86 72.15 72.06 71.90 72.01

P17 25.82 25.59 25.38 25.38 25.32

WAcc 55.31 80.44 89.28 89.91 89.99

changes compared to the magnitude changes of interrupt signal to normal signal. P16-

Sag+Oscillatory Transient and P17-Swell+Oscillatory Transient respectively. Referring

to the confusion matrix, it is noticed that the model is confused among P16 and P17.

This can be explained by the nature of an oscillatory transient with varying changes of

the magnitude to the original signal. These two findings show that the latent feature

learnt by GA models is not sensitive towards small changes of magnitude within similar

signals.

Compared to Model #A1, Model #A2 has poor classification performance for

class P8-Notch and P13-Harmonics+Notch, which are disturbance class notch and har-

monics with notch. Referring to the confusion matrix, it is noticed that the weak

performance for class P8 is mainly caused by confusion with class P4-Impulsive Tran-
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sient. The main difference between these two disturbance classes is that P8 has a shorter

disturbance period. The performance impact of Class P4 on class P8 is less in Model

#A1 indicating that LSTM spatial sequence feature is better at locating sharp changes

in the signal magnitude as compared to temporal sequence features. Referring to the

confusion matrix for class P13, it can be noticed that both Model #A1 and Model #A2

are confused between P13 with P6-Harmonics, with slightly better accuracy on Model

#A1. This can be explained similarly with the case of P8, where Model #A1 with spa-

tial sequence feature extraction performs better at recognizing sharper gradient change

of notch signal compared to harmonics signal.

4.6 Experiment #2: Performance Analysis of Multi-period

Multi-resolution Attention LSTM

In this experiment #2, 10-period PQD signals sampled with a 3200kHz sampling

rate are used as input into the classification models. A total of 16 classes of PQDs

are trained and analysed. Wavelet-based attention LSTM model is proposed. Two

model arrangements are analysed, i.e. Model #B1: wavelet-based temporal-aligned

feature attention LSTM (WT-TFA-LSTM), and Model #B2: wavelet-based spatial-

aligned feature attention LSTM (WT-SFA-LSTM). The feature aligns layer in the WT-

TFA-LSTM model aligns the feature into a temporal arrangement, where the attention

mechanism is applied across the data sequence. On the other hand, WT-SFA-LSTM

has spatial feature attention. Spatial feature attention applies attention over different

frequency bands.

4.6.1 Overall Classification Accuracy Analysis

The classification performance of the proposed methods are tabulated in Ta-

ble 4.7. The performance comparison of Deep LSTM and WT-LSTM shows WT im-

proved the performance across different noise levels. It demonstrates that using WT

MSD without attention mechanism may lead to a positive increment in classification

performance. There are two types of attention mechanism alignment introduced, tem-

poral feature alignment attention in WT-TFA-LSTM and spatial feature alignment

attention in WT-SFA-LSTM. The introduction of the attention mechanism into the

WT-LSTM model decreases the classification performance significantly across different
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Table 4.7: Classification performance comparisons.

Model 20dB 30dB 40dB 50dB 0dB

Deep CNN [20] 90.56 97.69 98.97 99.01 99.57

Deep LSTM [101] 88.48 96.64 97.83 98.16 98.54

WT-LSTM 89.77 97.40 98.32 98.79 99.21

WT-TFA-LSTM 79.49 92.28 94.48 94.87 95.09

WT-SFA-LSTM 93.79 97.49 98.34 98.51 99.09

noise levels. Self-attention mechanism applied across the temporal feature encoding of

the feature align layer. An attention mechanism that is focusing on a single time frame

might have caused the information to diminish in other time frames. The introduction

of single attention might not sufficient to represent various types of disturbance (fast

disturbance and slow disturbance). On the other hand, when spatial feature attention

is introduced in WT-SFA-LSTM, The classification shows promising improvement and

achieved a classification accuracy of 93.79% on high noise 20dB SNR. Spatial attention

applied across different frequency feature bands successfully highlighted the differences

of differences disturbances and helps improve the classification performance even under

high noise conditions.

4.6.2 Classification Accuracy Analysis

Individual class accuracy of the proposed WT-TFA-LSTM and WT-SFA-LSTM

models are tabulated in Table 4.8a and Table 4.8b respectively. WT-TFA-LSTM in

Table 4.8a shows significant weaker classification on P2-Swell, P10-Sag+Harmonics,

P14-Flicker+Sag , and P15-Flicker+Swell. It can be noticed that all these classes are of

slow disturbance class. By employing the temporal attention mechanism, the emphasis

is placed on smaller segments of the signal, thereby diminishing its capability to classify

slow disturbances that can only be detected across a wider region of the signal. In

contrast, it can be noticed that WT-SFA-LSTM performed significantly better over all

classes and noise levels. 20dB SNR individual accuracy shows that class P0-Normal,

P9-flicker, P10-Sag+Harmonics have individual accuracy less than 90%. This shows

that the model is still being affected by noise on the slow disturbance class, but only
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Table 4.8: Performance of the proposed WT-SFA-LSTM model tested with 20-50dB

AWGN and noiseless conditions.

(a) Model #B1: WT-TFA-LSTM.

Class

SNR
20dB 30dB 40dB 50dB noiseless

P0 40.80 81.90 91.80 94.40 93.44

P1 73.30 90.00 94.00 94.30 94.70

P2 64.30 76.40 84.10 87.10 86.50

P3 93.60 95.30 96.10 95.50 96.10

P4 96.90 100.0 100.0 100.0 100.0

P5 89.00 94.10 94.90 95.20 95.00

P6 92.90 98.50 98.10 98.30 98.00

P7 95.80 97.30 96.90 96.30 96.90

P8 59.80 89.20 99.30 100.0 100.0

P9 87.30 97.10 99.50 99.60 99.50

P10 58.10 89.30 89.40 89.10 91.45

P11 83.80 96.90 98.10 97.20 100.0

P12 86.50 97.00 96.80 97.40 100.0

P13 79.60 99.20 100.0 100.0 100.0

P14 80.30 83.40 81.40 80.50 81.10

P15 89.80 90.90 91.20 93.00 89.00

Acc 79.49 92.28 94.48 94.87 95.09

(b) Model #B2: WT-SFA-LSTM.

Class

SNR
20dB 30dB 40dB 50dB noiseless

P0 69.40 84.80 92.30 96.20 97.47

P1 93.80 96.90 97.10 96.00 96.60

P2 97.20 98.70 98.80 98.30 98.60

P3 99.00 99.40 99.70 99.10 99.70

P4 99.60 100.0 100.0 100.0 100.0

P5 97.40 98.30 98.00 97.80 98.70

P6 99.70 100.0 100.0 100.0 99.90

P7 98.10 99.30 99.60 99.20 99.60

P8 94.60 100.0 100.0 100.0 100.0

P9 86.80 97.30 99.10 99.20 99.30

P10 84.70 92.20 96.30 98.30 99.59

P11 90.90 97.60 98.20 97.20 100.0

P12 93.10 97.00 96.80 97.40 100.0

P13 99.80 100.0 100.0 100.0 100.0

P14 98.50 98.90 98.60 98.10 97.60

P15 98.00 99.40 99.00 99.30 98.60

Acc 93.79 97.49 98.34 98.51 99.09

on high noise conditions. High noise conditions may lead to confusion with harmonic

disturbance in a classifier model.

4.6.3 Confusion Matrix Analysis

A confusion matrix is used to visualise the in-depth classification performance

of the model. Extreme cases of 20dB SNR AWGN are analysed in this section. In

Fig. 4.6a, it can be noticed that class P0-Normal, P1-Sag, P2-Swell, P8-Notch and P10-

Sag+Harmonics are severely impacted in the confusion matrix with value < 80%. Slow

disturbance classes such as P1, P2, and P10 are mostly not detected well due to the

temporal attention mechanism which highlights a smaller part of the signals. Due to

that P1, P2, and P10 are slow disturbance classes, it shows that WT-TFA-LSTM does

not recognize well in fast disturbance class P8-Notch under noisy conditions. In addi-

tion, the introduction of SNR AWGN noises may easily be neutralised with the notching
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Figure 4.6: Confusion matrix at 20dB SNR AWGN test on (a) Model #B1: WT-TFA-

LSTM and (b) Model #B2: WT-SFA-LSTM.
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effect as its magnitude has decreased with high frequency. Hence, the confusion between

P14-Flicker+Sag and P15-Flicker+Swell are salient due to their similarity. The simi-

larity of class P8 with class P14 and P15 can be explained by the neutralised notching

effect, while the classifier performs poorly at slow disturbance classes. High noise levels

cause confusion in the class of flicker as flicker signal has the characteristic of random

oscillation. Other observations in the confusion matrix are that the confusion may occur

between classes P1 with P14, P2 with P15, and P10 with P9-Flicker. Class P0-Normal

is also confused mostly with class P8-Notch, P9-Flicker, and P10-Sag+harmonics due

to the high level of noise disrupting the normal class signal waveform.

4.6.4 Model Complexity Analysis and Benchmarking

WT-SFA-LSTM model tested with 20dB SNR AWGN is shown in Fig. 4.6b.

While this model performed very well on lower noise levels (30dB and above), the clas-

sification performances are still reduced on 20dB SNR conditions as shown in the confu-

sion matrix. It can be noticed that class P0-Normal, P9-Flicker, and P10 Sag+Harmonic

have most confusion(< 90%). It can be noticed that all of these classes are slow dis-

turbance classes, and are easily polluted by noise introduced. There is only a slight

difference between the normal class signals and slow disturbance class signals such as

sag or swell and flicker. A slightly higher noise introduced could easily disrupt the

signal into a different class. From the confusion matrix, class P9 and class P10 have

mutual confusion. This can be explained with random High noise introduced altered the

magnitude of the signals across the signals. On the other hand, P0 has high confusion

Table 4.9: Model complexity comparisons.

Model
Best 20dB Time per No. of Model

Acc epoch parameters size

Deep CNN [20] 90.56 32s 164464 0.657 MB

Deep LSTM [101] 88.48 68s 33936 0.136 MB

WT-LSTM 89.77 34s 206224 0.811 MB

WT-TFA-LSTM 79.49 34s 255120 1.002 MB

WT-SFA-LSTM 93.79 34s 221486 0.871 MB
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with class P10 as well. This shows that the high level of noise introduced resembles a

harmonics condition.

The complexity and model size for the proposed models are compared to the

state-of-the-art Deep CNN, and Deep LSTM models [101] as tabulated in Table 4.9. A

similar dataset is used in the training and testing of the models. From the comparison,

it can be noticed that the proposed WT-SFA-LSTM model has the highest classification

accuracy of 93.79% on the high noise 20dB SNR AWGN test. Compared to the Deep

CNN model shows that the WT-SFA-LSTM model performed better with an improved

accuracy of a 3% in noisy conditions. This increment performance requires only 32%

increment in the model size or 0.214MB which is significantly low. Although the model

size for the WT-SFA-LSTM model is much larger compared to that of the Deep LSTM

model, the training time required is halved. This shows that the WT-SFA-LSTM model

is a better choice for implementation if the computation resources are sufficient. Deep

LSTM would be the best choice for computing resource limitation, but the training time

is doubled compared to the other methods.

4.7 Chapter Summary

Multi-resolution attention mechanism with LSTM is proposed in this chapter for

automatic PQD detection and classification with increasing input resolution. In order

to obtain multi-resolution, WT is performed to decompose the signal into five bands,

By applying IWT, these five bands are converted back into time-series signals carrying

unique frequency information. Subsequently, this frequency information is fed into a

global attention mechanism for feature highlighting. As a result, the combination use of

a spatial arrangement of the reconstructed signals with GA performs better classification

performance with 50.71% as compared to the LSTM model with 18.99% when tested

with 20dB SNR AWGN. However, the proposed spatial MSD LSTM might be insensi-

tive to conditions with small-magnitude changes. On the other hand, multi-resolution

spatial attention LSTM (WT-SFA-LSTM) is also proposed to classify multi-period PQD

signals. Instead of using IWT, the decomposed wavelet coefficients are aligned into the

same length feature representation via a single layer of perceptron. Spatial attention

features between frequency components are highlighted with a spatial attention mecha-

nism before passing them into LSTM for higher-order feature extraction. Results show
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major improvement in the classification accuracy with 93.79% on WT-SFA-LSTM ver-

sus 79.49% on WT-TFA-LSTM, 89.77% on WT-LSTM, and 88.48% on deep LSTM.

WT-SFA-LSTM achieves major improvements in combined and slow disturbances. The

computation complexity analysis shows that the training time required on WT-SFA-

LSTM is halved compared to Deep LSTM. However, the model size of WT-SFA-LSTM

is 32% higher than state of the art Deep CNN model. The complexity of the model is

further optimized in the next chapter with the introduction of a transformer network

to replace LSTM.
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Chapter 5

Multi-resolution Convolutional

Transformer Network

5.1 Introduction

Distributed energy resources [135] such as renewable energy generators and ad-

vanced electronic controllers are widely applied in modern power networks to improve

power transmission and security. Due to the increase in network complexity, microgrid

[136, 137] is formed to improve the synchronization between the monitoring and control

of multiple distributed energy resources and loads. However, the monitoring of power

quality disturbances (PQD) becomes tedious when there are multiple intermittent re-

sources such as renewable energy sources and the introduction of plugged-in hybrid

electric vehicles or energy storage systems in the power grid [138]. The occurrence of

single or multiple disturbances at one instance is not easily picked up with human in-

tervention. Some common examples of PQDs include sag, swell, interrupt, harmonics,

transients, spike, notch, oscillatory transient, flicker, combined Sag with harmonics,

flicker with harmonics, and flicker with swell. Hence, real-time PQD identification and

classification are required to mitigate the PQ issues.

Deep learning is applied in the field of PQD detection and classification to achieve

automatic feature extraction and classification [20, 139]. Long Short-term Memory

(LSTM) network is studied extensively due to its ability in extracting information from

sequence-structured PQD signals [140]. Recently, the transformer network is introduced

as a superior architecture in the field of natural language processing [78] and automatic
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speech recognition [141]. Besides excellent performance in extracting sequential infor-

mation or long-term dependencies, the transformer network allows parallel processing,

which reduced the training time required significantly as compared to LSTM. Multi-

head attention mechanism (MHA) of the transformer network allows the highlighting

of multiple features from the series of inputs.

A novel multi-resolution attention network using a convolutional transformer is

proposed in this chapter to improve the PQD classification. A transformer network is

used in extracting salient sequential features, replacing the sequentially trained LSTM

network. The performance of the transformer network and LSTM are compared in

terms of their accuracy and computational cost. The combination use of multi-level

signal decomposition (MSD) with a transformer network is studied for classification

performance comparison. This chapter is organised as follows: Section 5.2 discusses

the background knowledge of transformer networks, as well as the new mechanism

proposed in this chapter. Section 5.3 layout the setups for the experiments carried out

in Section 5.4 and Section 5.5. Finally, Section 5.6 summarises the finding from this

chapter.

5.2 Multi-resolution Attention Using Convolutional Trans-

former

A hybrid model composing of multi-level signal decomposition with a layer of

convolutional kernel and transformer mechanism is proposed in Fig. 5.1. Details of the

components in the proposed architecture are explained in the following subsections.

5.2.1 Multi-resolution Signal Decomposition

Wavelet transform (WT) is used to transform the time-series signal into time-

frequency coefficients. MSD via discrete wavelet transform is used by performing wavelet

Figure 5.1: Proposed wavelet-based convolutional transformer hybrid model.
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decomposition multiple times along the lower frequency components. MSD increases

signal resolution into multiple time-frequency components representation, which allows

better detection of different types of PQDs. MSD allows the use of a single type of

mother wavelet in detecting disturbances occurring at different frequency ranges. As

proven in Chapter 4, the application of MSD can improve classification performance.

Daubechies with four filter coefficients or db4 mother wavelet are used for the decompo-

sition as db4 is good at detecting short and fast transient [142]. A higher decomposition

level of MSD, i.e., four decomposition levels allows the extraction of signal frequency

components into five different representations with unique frequency ranges. The use

of four levels is suggested by literature as it provides better classification performance

[63, 68]. Besides, four levels of MSD allow decomposition into five coefficients with

frequency ranges, 1600-3200Hz, 800-1599Hz, 400-799Hz, 200-399Hz, and 0-199Hz. This

separation is sufficient to differentiate between high-frequency disturbances and low-

frequency disturbances. Approximate coefficients represent the smoothed signal, while

detailed coefficients represent the detailed signal containing sharper edges or sharper

magnitude transition. As a result, fast and short transient disturbances are detected

as lower-level decomposition, i.e., level 1; whereas long and slow transient disturbances

can be detected at the level 4 approximate coefficient. The output of MSD can be noted

as M and the Ith level can then be mapped as:

M = [cAI , cDI , cDI−1, ..., cD1] (5.1)

where M ∈ RZ , Z = [zk]Kk=0, zk is the dimension of individual vector in M and K = I+1

5.2.2 temporal aligned Layer

A temporal aligned layer is introduced to align the different length output coef-

ficients of MSD. A functional block diagram of the temporal aligned layer is shown in

Fig. 5.2. A temporal aligned layer is a collection of multiple single perceptron layers

noted as [fk]Kk=0 : RZ 7→ RK×d, where the single perceptron layer is a mapping function

fk : Rzk 7→ Rd, and K represent the total number of output coefficients from MSD such

that K=I+1. In this experiment, I = 4-level of MSD is used for the total number of

coefficients output K=4+1=5. The temporal aligned MSD output, M̂ is obtained as

follows,

M̂ = [fk(Mk)]Kk=0 (5.2)

where M̂ ∈ RK×d and fixed embedding output d = 256 is used.
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Figure 5.2: Temporal aligned layer.

5.2.3 Temporal-spatial Embedding

The temporal-Spatial embedding layer is introduced by further extracting the

spatial relationship of the temporal-aligned MSD output using a layer of the 1D convo-

lutional kernel. A convolution layer with kernel size = 5, stride = 1, input dimension

K = 5, and output dimension = 16 is applied over the temporal aligned MSD out-

put. Spatial-temporal information of the K frequency bands is thus extracted. These

embedded temporal-spatial features are then fed into the transformer network for clas-

sification.

5.2.4 Efficient Superposition Embedding

Instead of applying a single perceptron layer over each of the frequency bands

as described in the temporal aligned layer, efficient superposition embedding is used

via an efficient embedding layer. Efficient embedding is achieved with an additional

layer of shared perceptron layer as shown in Fig. 5.3. This shared perceptron layer

significantly reduced the number of parameters required while giving the same output

dimension with added spatial information linking between frequency bands. The first

perceptron layer can be noted as [fk]Kk=0 : RZ 7→ RK×e, where the single perceptron

layer is a mapping function fk : Rzk 7→ Re, and K represent the total number of output

coefficients from MSD such that K = I + 1 = 5. Note that this is similar to the

temporal aligned layer except using a smaller value embedding parameter, e=64 in this

experiment. The second perceptron layer is shared among the K outputs from the first

embedding layer such that [sk]Kk=0 : RK×e 7→ RK×d. The mapping function for each of
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Figure 5.3: Efficient temporal aligned layer.

the output embedding can be described as sk : Re 7→ Rd. The efficient aligned MSD

output, M is obtained as follows,

M = [sk(M̂)]Kk=0 = [sk(fk(Mk))]Kk=0 (5.3)

where M ∈ RK×d and fixed embedding output d = 256 is used. Similar to Temporal-

spatial embedding as described in Section 5.2.3, the efficient aligned MSD output (M)

is then processed via 1D convolutional kernel to extract higher order of spatial-temporal

features.

5.2.5 Transformer Network

Transformer network was introduced by Vaswani et al. [143] which saves com-

putation time by allowing parallel computation. The transformer network follows an

encoder-decoder framework and is based solely on MHA. The input features are first

normalised, then projected into three vectors, query Q, key K, and value V [144]. Wq,

Wk, Wv representing the trainable parameters as depicted in Eq. (5.4).

Q,K, V = IWq, IWk, IWv. (5.4)

A single-head attention mechanism can be represented as,

Attn(Q,K, V ) = Softmax(
A√
dk

)V, (5.5)

where 1√
dk

is the scaling function to prevent gradient vanishing and exploding problem.

A = QKT is the dot product between Q and K. KT represents the transpose of K.
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Figure 5.4: Transformer encoder block.

MHA [144] can be achieved by multiple sets of trainable matrices, W
(i)
q , W

(i)
k , W

(i)
v as,

Q(i),K(i), V (i) = IW (i)
q , IW

(i)
k , IW (i)

v , (5.6)

Head(i) = Attn(Q(i),K(i), V (i)), (5.7)

MultiHead(Q,K, V ) = Concat(Head(1), ...,Head(n))WO, (5.8)

where i indexes the number of heads n and WO represents the trainable parameter

with size Rdk×d. In Fig. 5.4, the transformer encoder takes in input signals and embeds

them with positional embedding. Data normalisation is done before passing into the

MHA. Output data from the MHA is normalised and processed before outputting as an

encoded latent feature.

5.2.6 Pooling Multi-head Attention

Pooling multi-head attention (PMA) mechanism [145] is introduced as an alter-

native for averaging or max-pooling in aggregating feature vectors. MHA is applied on a

trainable set of k seed vectors, S ∈ Rk×d. Let transformer encoder output be Z ∈ Rn×d,

k seed vectors PMA can be represented as follows,

yk(Z) = MultiHead(S,Z, Z), (5.9)

The output of PMA is the predicted result of each class based on their time-series

pattern. To confine the M classes in probability, softmax is required as follows,

y =
eyk∑M

j=0 e
ykj

. (5.10)
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5.2.7 Batch Normalization Layer

A batch normalization layer is introduced to reduce the unwanted internal co-

variance shift, reduce vanishing or exploding gradients and regularize the network for

better generalization [146]. For a d-dimensional input, x = (x(1), x(2), ..., x(d)), batch

normalization can be described as

x̂
(k)
i =

x
(k)
i − µ

(k)
B√

(σ
(k)
B )2 + ϵ

, (5.11)

where m is the total size of the training set, and B represents the mini-batch size.

k ∈ [1, d], i ∈ [1,m], µ
(k)
B and σ

(k)
B are mean and standard deviation respectively. A

small constant, ϵ is added mainly for numerical stability. The output of the batch

normalization layer is depicted as

y
(k)
i = γ(k)x̂

(k)
i + β(k), (5.12)

where γ(k) and β(k) are trainable scaling and shifting parameters respectively.

5.3 Experiment Setup

All simulation experiments are carried out using AMD Ryzen 7 3800X 8-Core

Processor with Nvidia P6000 graphic processing unit. Pytorch framework is used for the

experiments. Similar settings are used in Chapter 4, the MSD in both experiments are

developed based on Daubechies 4 (db4) wavelet for the wavelet decomposition process.

Additive white Gaussian noise (AWGN) is introduced to test the network classification

performance. The main evaluation matrix used in the experiments is classification

accuracy.The classification accuracy of individual class Accn is the true positive, TPn

over the total test samples for m classes of PQD, Sj as,

Accn =
TPn∑m
j=0 Sj

. (5.13)

Two main experiments are carried out focusing on the performance of the trans-

former network. Experiment #1 is carried out mainly to analyse the performance of

the pure transformer network as compared to the LSTM network. In this experiment,

a single-layer transformer encoder is modelled. The transformer model is depicted as

in Fig. 5.4. The first part of this experiment is carried out using 18 classes of 10kHz
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Table 5.1: Class of power quality disturbances (Experiment #1).

Label Class Description Label Class Description

P0 Normal P9 Flicker

P1 Sag P10 Sag+Harmonics

P2 Swell P11 Swell+Harmonics

P3 Interrupt P12 Interrupt+Harmonics

P4 Impulse Transient P13 Harmonics+Notch

P5 Spike P14 Sag+Transient

P6 Harmonics P15 Swell+Transient

P7 Oscillatory Transient P16 Sag+Oscillatory Transient

P8 Notch P17 Swell+Oscillatory Transient

sampled a single-period PQDs as shown in Table 5.1. In this experiment, the input

dimension of the transformer encoder is the length of single-period waveform, which is

200. Four attention heads with 64 dimensions are used. The attention output is added

to the input signal before passing to the feedforward layer with an internal dimension of

128. the input and output dimensions of the feedforward layer are the same as the input

signal dimension of 200. The output of the feedforward layer is added and normalised as

the final transformer output. Finally, transformer encoder outputs are passed to a fully

connected layer which classifies the latent features into the total number of PQD classes.

The results of training with and without noise are analysed. To benchmark the model

with the available state-of-the-art, 16-classes PQDs dataset as shown in Table 5.2 were

used and analysed in the second part of this experiment. The setting of this second part

of the experiment is similar to the first part except for changing the input dimension to

640 for a 10-period 3200Hz sampled input signal.

The main proposed model is demonstrated in Experiment #2. This experiment is

carried out entirely on the dataset with 16 classes of 10-periods 3200Hz sampled PQDs.

The model used in this experiment is shown in Fig. 5.1. The first part of Experiment

#2 starts with extracting multi-resolution output from the input signal via MSD. A

total of five different frequency bands coefficients is harvested and passed through the

temporal-spatial embedding layer as mentioned in Section 5.2.3. As similar settings are

used for the the MSD process, the output from MSD process is always a feature matrix

with a dimension of 5× 256. The 1D convolutional kernel in the embedding layer is set

with input dimension 5, kernel size of 5, stride = 1, and output dimension = 16, giving
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Table 5.2: Class of power quality disturbances (Experiment #2).

Label Class Description Label Class Description

P0 Normal P8 Notch

P1 Sag P9 Flicker

P2 Swell P10 Sag+Harmonics

P3 Interrupt P11 Swell+Harmonics

P4 Impulse Transient P12 Interrupt+Harmonics

P5 Spike P13 Flicker+Harmonics

P6 Harmonics P14 Flicker+Sag

P7 Oscillatory Transient P15 Flicker+Swell

the output feature with dimension 16 × 252. This feature output is then passed into

the transformer encoder layer. Spatial feature attention is used. The input dimension

of the transformer encoder is set spatially with size 16. Eight attention heads with a

dimension size of two are used. The input and output of the feedforward layer are the

same as the input dimension of 16, with an internal dimension of 256. Pooling with

Multi-head attention or PMA is used. The outputs from the transformer encoder are

pooled from the dimension of 252 × 16 to 1 × 16 via PMA. The outputs of PMA are

then used for the classification process. The second part of Experiment #2 attempts

to reduce the computation resources by using Efficient superposition embedding. The

settings are similar to Experiment #2 first part except using superposition embedding

instead of a temporal-spatial embedding mechanism.

5.4 Experiment #1 - Transformer Encoder Network

This experiment is carried out based on the transformer encoder network. AWGN

is added to the simulated real-world noisy condition. The result of training with and

without noise are performed for comparison. SNR AWGN with 20-50dB are randomly

added into the training samples when training with noise. The model is then tested

with 20dB, 30dB, 40dB, 50dB, and noiseless testing samples. The first part of this

experiment is carried out using a single-period, 18-PQD classes dataset. While the
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second part in this Experiment #1 is tested with 10-periods, 16-PQD classes dataset,

which aligns with literature [20, 101].

5.4.1 Single-period PQD Analysis on Transformer Encoder Network

In this part of the experiment, noiseless data samples are used in training both

LSTM and transformer networks. The trained models are then tested with noiseless,

and 20dB, 30dB, 40dB AWGN, and the results are tabulated in Table 5.3. The pro-

posed transformer network attained an accuracy of 55.56% which is better than that of

the LSTM model with only 13.26% on the 20dB SNR test. The transformer network

proves better generalization capability against noisy conditions by attaining > 80%

Table 5.3: Noiseless training: Classification performance comparison between LSTM net-

work and Transformer network.

Model LSTM Transformer

Class

SNR
20dB 30dB 40dB noiseless 20dB 30dB 40dB noiseless

P0 0.00 0.00 1.33 99.83 9.38 76.62 99.74 99.95

P1 0.05 20.31 59.54 98.01 59.17 87.51 92.29 92.47

P2 0.05 11.27 54.57 98.46 76.60 94.20 96.61 96.81

P3 12.54 44.64 69.23 97.85 53.66 66.68 69.78 70.37

P4 0.00 5.50 70.32 97.33 40.28 80.44 86.90 87.58

P5 0.00 6.01 56.03 97.78 62.74 85.29 87.99 87.86

P6 0.20 31.51 84.21 99.41 79.93 97.99 99.41 99.59

P7 98.30 98.13 95.87 94.95 84.97 90.70 91.38 91.25

P8 0.39 18.28 53.50 96.83 48.41 75.67 78.55 78.45

P9 0.00 0.76 42.16 99.86 68.92 98.51 99.88 99.88

P10 3.70 60.84 91.68 96.20 80.91 88.84 89.75 90.00

P11 52.78 77.89 95.25 97.93 94.83 97.47 97.67 97.80

P12 26.74 60.65 84.23 90.70 63.91 72.83 74.44 74.35

P13 14.51 83.61 97.60 97.92 59.86 58.35 58.24 57.91

P14 13.09 57.18 92.89 94.34 65.71 74.34 74.70 74.51

P15 6.70 32.59 86.33 95.25 72.26 76.80 77.00 76.84

P16 69.36 73.09 80.28 81.25 80.72 80.65 80.74 80.91

P17 48.56 55.55 59.68 72.29 15.31 15.09 15.02 14.93

WAcc 13.26 31.84 58.36 96.42 55.56 81.39 87.71 87.84
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weighted accuracy (WAcc) on > 30dB SNR noise introduced. The WAcc of the LSTM

model on the other hand shows a significant impact on the high noise condition in-

troduced. It can also be noticed that the classification is biased towards class P7-

oscillatory transient, which has oscillating characteristics similar to that of high noise

conditions. The transformer network has an overall better classification performance

as compared to the LSTM network in this case. However, weaknesses are still present

in some of the PQD classes. These classes includes fast disturbance classes such as

P8-Notch, P13-Harmonics+Notch, P14 Sag+Transient, P15-Swell+Transient. Besides,

the poor-performing disturbance classes affected include slow disturbance classes such

as P3-Interrupt, P12 Interrupt+Harmonics, P17-Swell+Oscillatory Transient. For the

fast disturbance classes, most of the listed less performing classes have > 70% WAcc

except class P13. The analysis of the confusion matrix shows that class P13 is con-

fused with the single disturbance class P6-Harmonics. By looking at the miss-classified

data, it can be found that smaller magnitude notches or transients confuse the classifi-

cation network. As for the slow disturbance classes, class P3 and class P17 show poor

classification performance in confusion matrix analysis. Class P3 is confused with class

P12-Interrupt+Harmonics. Class P12 has both Interrupt (larger magnitude changes) and

Harmonics (smaller magnitude changes). When noise is introduced, the slight changes

in the magnitude of the interrupt signal cause P3 to become similar to P12. As for

class P17, it can be noticed that the confusion happens mostly between class P17 and

P16-Sag+Oscillatory Transient. These two classes are distinct from each other purely

based on magnitude difference. A small difference between the two classes is causing

confusion for the transformer network. This shows that the transformer classifier is lim-

ited to finding distinct features from magnitude differences. Slight magnitude changes

imposed gives a negative effect on the classification performance. Comparatively, LSTM

is highly sensitive to noisy data and the performance of the network is badly impacted

by the noise introduced.

This experiment continues with training the model using data samples randomly

added with 20-50dB SNR AWGN and the results are tabulated in Table 5.4. Drastic

improvements are shown on both LSTM and transformer models. The noisy conditions

introduced during the training phase exposed the models to the characteristics of the

noise. This allows the machine learning model to learn the noise-polluted features, thus

increasing the classification performance. The drastic improvement in the LSTM model

on ”seen noises” shows that the model is capable of learning extra features added to the
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Table 5.4: Noisy training: Classification performance comparison between LSTM network

and Transformer network.

Model LSTM Transformer

Class

SNR
20dB 30dB 40dB noiseless 20dB 30dB 40dB noiseless

P0 96.83 99.61 99.85 99.94 88.42 99.74 99.94 99.95

P1 85.92 94.32 96.42 96.87 78.44 90.77 91.74 91.77

P2 87.82 94.80 96.81 96.99 87.10 93.91 94.50 94.58

P3 70.96 85.55 90.66 91.89 53.96 58.69 58.76 58.90

P4 49.54 81.74 90.06 91.28 46.72 68.48 71.31 71.70

P5 66.05 95.24 97.33 97.46 44.82 52.31 53.41 53.88

P6 92.83 98.70 99.18 99.27 91.78 98.48 98.77 98.77

P7 91.47 92.10 91.73 91.85 86.55 89.38 89.42 89.53

P8 72.52 94.76 97.02 96.91 38.45 49.83 52.09 52.48

P9 91.59 97.60 98.09 98.19 93.15 99.34 99.87 99.93

P10 87.63 93.95 95.09 95.24 84.16 87.81 88.12 88.17

P11 96.30 97.19 97.34 97.39 95.91 97.41 97.61 97.62

P12 59.16 77.59 87.62 89.64 65.17 69.33 68.70 68.36

P13 81.53 93.79 96.01 96.25 49.81 46.82 46.49 46.49

P14 57.29 76.68 84.85 86.33 56.62 56.78 57.21 57.13

P15 68.39 86.05 90.72 91.47 70.66 72.57 71.94 72.02

P16 73.93 74.88 75.01 75.07 77.04 77.27 77.12 77.11

P17 42.86 48.92 49.80 49.95 19.96 20.38 20.06 20.10

WAcc 82.62 91.52 93.68 94.07 76.06 82.90 83.27 83.31

training datasets. While drastic improvement can be seen from transformer network

classification on 20dB SNR AWGN, the classification performance on 30dB onwards

is showing decreasing in classification performance. The poor-performing classes from

the previous subsection are still similar (training without noise conditions). This shows

that the transformer network can learn more generalised features even without manually

feeding in noisy conditions that might occur during the training phase. However, noisy

data fed into the training phase does improve the classification performance on the 20dB

test. Besides the previously discussed fast disturbances classes (P8, P13, P14, P15) as

discussed in the previous subsection, the performance of P4-Impulse transient, and P5-

Spike also showing weaker classification. The confusion matrix of different noise levels
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Table 5.5: Testing classification rate in (%) with three unknown noise performance com-

parison.

Model

Noise Train Without noise Train With noise

A B C A B C

LSTM 10.36 46.85 16.28 52.42 48.34 56.69

Transformer 40.84 60.27 41.64 56.55 53.17 57.96

on these two classes shows that there is more confusion with class P0, or signal without

disturbance. When noises are added to the training samples, the boundary between the

normal signal and the disturbance signal are blurred by the noise introduced. Training

with noise closes the gap between disturbance and non-disturbance waveforms due to the

overlapping of noises on the magnitude of the disturbance signals. While the transformer

network is proved to be insensitive towards signals with similar magnitude, these results

strengthen the proof of the statement. Meanwhile, the slow disturbance class (P3, P12,

P16, P17) problems still exist as discussed in the previous subsection. The transformer

encoder network is limited to finding distinct features from magnitude differences that

persist during training with noise conditions.

The experiment is then continued by testing both models with unknown noises.

Three unknown noises which are not previously exposed to the models are introduced

into the test samples. Noise #A is a 15 dB SNR AWGN, Noise #B is a 20-25 dB SNR of

positive-uniformly distributed random noise, and Noise #C is 15-30 dB SNR uniformly

distributed random noise. The performance of the model trained with and without

noise are tabulated in Table 5.5. Training without noise results in low classification

accuracy for the LSTM model. On the other hand, the transformer network is still

able to achieve > 40% accuracy for noise #A, #B and #C. When 20-50 dB AWGN

are introduced during the training phase, the classification performance of both models

increases. However, it can be noticed that LSTM failed to achieve a similar performance

level of 82.62% even on noise #B and noise#C having similar noise levels. This shows

that the LSTM model only works best for ”seen conditions”. Transformer on the other

hand shows more generalised performance on both trained with and without noise tests.

However, the classification performance is still limited due to the transformer not being

able to classify signals with changes in magnitude.
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5.4.2 Multi-period PQD Analysis on Transformer Encoder Network

This part of the experiment analyses the transformer model trained and tested

using 16-classes PQD dataset as shown in Table 5.2. 10-period 16 classes PQD signals

sampled at 3200Hz are used. The use of remodelled models and datasets from literature

[20, 101] allows benchmarking of the proposed model. The LSTM model and transformer

encoder model are trained using the 16-classes PQDs randomly added with 20-50 dB

SNR AWGN. The classification performance comparisons of LSTM and Transformer

model are tabulated in Table 5.6.

As compared to the previous result in Section 5.4.1, the performance of model

classificaiton can be improved using 10-period input data. Although there are differ-

ences between the classes of PQDs inserted into the training mechanism, having more

data generally increases the information content per input for processing. As a result,

the average classification accuracy has increased to > 85% for all the condition tests.

Table 5.6: Performance comparison of Deep LSTM with the Transformer Encoder model

tested with 20-50dB AWGN and noiseless conditions.

(a) Deep LSTM.

Class

SNR
20dB 30dB 40dB 50dB noiseless

P0 85.40 99.80 99.60 99.70 99.63

P1 93.30 97.00 96.60 96.80 96.80

P2 97.20 97.10 98.40 98.60 97.90

P3 98.20 99.70 99.90 99.90 100.0

P4 99.90 100.0 100.0 100.0 100.0

P5 98.90 99.50 99.30 99.30 99.90

P6 98.60 99.60 99.30 99.70 99.50

P7 97.80 99.80 99.10 99.50 99.80

P8 66.70 95.90 100.0 100.0 100.0

P9 94.50 99.20 99.90 99.90 99.70

P10 56.50 74.80 85.80 88.40 90.53

P11 83.30 96.30 98.00 97.00 99.49

P12 74.00 93.00 95.80 96.50 98.87

P13 89.50 100.0 100.0 100.0 100.0

P14 94.10 97.50 96.60 97.00 96.20

P15 87.80 97.00 96.90 98.20 98.10

Acc 88.48 96.64 97.83 98.16 98.54

(b) Transformer Encoder.

Class

SNR
20dB 30dB 40dB 50dB noiseless

P0 71.30 89.50 94.90 97.90 98.03

P1 93.70 96.20 96.40 94.70 95.60

P2 95.90 98.00 98.50 98.60 98.90

P3 99.00 99.50 99.30 99.10 99.70

P4 99.90 100.0 100.0 100.0 100.0

P5 96.60 97.20 97.00 96.20 97.90

P6 99.90 100.0 100.0 100.0 100.0

P7 98.50 99.30 98.60 98.70 98.60

P8 100.0 100.0 100.0 100.0 100.0

P9 83.00 92.70 95.40 94.20 94.30

P10 62.40 93.40 96.40 97.40 99.08

P11 80.20 96.30 98.10 97.20 100.0

P12 83.80 95.50 96.80 97.40 100.0

P13 100.0 100.0 100.0 100.0 100.0

P14 98.90 98.90 99.50 99.30 98.70

P15 99.80 99.40 99.30 99.30 99.20

Acc 91.43 97.24 98.14 98.13 98.74
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By looking into the 16-classes dataset, most of the multiple disturbance classes (P10

to P15) are the combination of slow disturbance classes. In addition, the single distur-

bance classes can still be tested with the single disturbance classes. Hence, the model

performance on slow and fast disturbances can be evaluated using 10-period input data.

Results in Table 5.6 show that the transformer encoder has better overall clas-

sification performance compared to the LSTM model. The classification performance

of the Deep LSTM network is notably weak on class P10-Sag+Harmonics regardless of

the level of noise introduced. The confusion matrix shows that the confusion has oc-

curred with class P0-Normal. Harmonics in class P10 and P11-Swell+Harmonics might

contribute to the average magnitude of the signal, which brings the P10 or P11 average

magnitude close to the average magnitude of a normal signal. This shows that the

LSTM model struggles to identify the characteristics of harmonics, especially within

P10. When high noise of 20dB SNR AWGN was used, fast disturbance class P8-Notch

was also affected. This can be caused by the additive effect of AWGN noise introduced

which neutralised small notching characteristics. Besides, multiple disturbance classes

such as P12-Interrupt+Harmonics, P13-Flicker+Harmonics, P14-Flicker+Sag and P15-

Flicker+Swell are also having lower classification accuracy on high noise 20dB. Although

there is more information available in each 10-period data sample, the effect of noise on

the overall magnitude of the entire signal is also stronger and thus causing the misclas-

sification.

5.5 Experiment #2Multi-resolution Attention Using Con-

volutional Transformer

In this experiment, multi-resolution analysis is performed. MSD is introduced

using multiple levels of the discrete wavelet transform. Several feature processing efforts

are made to the MSD features before feeding into the transformer encoder for higher-

order feature extraction and classification. The first part of this experiment analyses

the performance of the proposed wavelet-based convolutional transformer network as

shown in Fig. 5.1. The detailed classification performance analysis of the proposed

model is performed using a confusion matrix. The analysis is done by comparing it

to the Deep CNN model [20]. The second part of this experiment continues with the

proposed efficient embedding mechanism which significantly reduces the model size of

80



the proposed method. The model complexity analysis is computed for comparison

between the proposed models with the state-of-the-art methods.

5.5.1 Classification Performance Comparisons of WT-ConvT Versus

Deep CNN

The proposed wavelet-based convolutional transformer (WT-ConvT) is compared

with Deep CNN [20] to demonstrate the strength of the model in classifying PQDs

under 20-50dB SNR AWGN and noiseless conditions. It is noticed in Table 5.7 that

WT-ConvT attained higher classification accuracy of 94.11% tested with 20dB AWGN.

Deep CNN on the other hand only acquire classification accuracy of 90.56%. It can also

be noticed in Table 5.7a that WT-ConvT perform slightly poorly for P0-Normal, P9-

Flicker, and P10-Sag+Harmonics. All these classes are from slow disturbance classes,

which occurred at a lower frequency. Comparatively, it can be noticed that the Deep

Table 5.7: Performance comparison of WT-ConvT with the Deep CNN model tested with

20-50dB AWGN and noiseless conditions.

(a) WT-ConvT.

Class

SNR
20dB 30dB 40dB 50dB noiseless

P0 67.10 85.00 97.60 99.30 99.44

P1 94.80 97.30 96.80 96.40 97.20

P2 95.30 98.10 99.20 98.80 98.80

P3 99.60 99.80 99.80 100.0 99.80

P4 100.0 100.0 100.0 100.0 100.0

P5 97.90 98.70 98.60 98.60 98.80

P6 99.80 100.0 99.90 100.0 99.90

P7 97.40 98.90 99.10 99.00 98.80

P8 91.60 100.0 100.0 100.0 100.0

P9 86.00 97.90 99.80 99.70 99.70

P10 91.60 92.30 92.70 90.30 92.87

P11 94.70 97.60 98.20 97.20 100.0

P12 94.90 97.00 96.80 97.40 100.0

P13 99.60 100.0 100.0 100.0 100.0

P14 98.00 98.90 98.70 98.50 98.60

P15 97.50 98.00 98.10 98.30 97.70

Acc 94.11 97.47 98.46 98.34 98.86

(b) Deep CNN [20].

Class

SNR
20dB 30dB 40dB 50dB noiseless

P0 86.00 96.30 99.30 100.0 100.0

P1 93.80 98.30 98.40 97.80 98.10

P2 97.80 97.60 98.70 98.90 98.80

P3 100.0 99.80 99.80 100.0 100.0

P4 100.0 100.0 100.0 100.0 100.0

P5 95.80 98.70 98.70 99.10 99.20

P6 99.40 99.90 100.0 100.0 100.0

P7 100.0 100.0 100.0 99.90 100.0

P8 39.80 89.10 100.0 100.0 100.0

P9 95.50 100.0 100.0 100.0 100.0

P10 82.10 91.80 96.40 97.00 99.59

P11 88.70 97.50 98.20 97.20 100.0

P12 91.00 96.40 96.50 96.60 99.59

P13 88.50 100.0 100.0 100.0 100.0

P14 92.90 98.40 99.20 98.40 98.90

P15 97.70 99.20 98.30 99.20 98.90

Acc 90.56 97.69 98.97 99.01 99.57
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CNN model contains more classes that acquire less than 90% accuracy. These classes

include four slow disturbance classes (P0, P10, P11, P13) and one fast disturbance

class P8. As a result, the proposed WT-ConvT has better classification performance,

especially in identifying fast disturbance.

A confusion matrix is a visualization summary of prediction results on a clas-

sification problem. Fig. 5.5a shows the confusion matrix of the Deep CNN method

tested on 20dB SNR AWGN. From the matrix, class P0-normal is confused with class

P10-sag+harmonics. This effect can be explained with a higher level of additive noise

which increases the overall signal power and covers the sag effect, while high noise also

added to harmonics effects. The deep CNN method also performed badly in classifying

P8-Notch when the signal is under 20dB SNR condition. Class P8-Notch, a fast tran-

sient disturbance is confused with class P14-flicker+sag, and class P15-Flicker+swell

which are both slow disturbance classes. While the small notching effect can be easily

covered by the additive noise, this notching effect is also contributing to the changes in

the average magnitude of the signal, thus producing confusion with class P14 and P15.

As for analysis, a notch is categorised as a fast transient disturbance, while flicker with

sag or swell are slow disturbances that can only be detected from multiple periods of

signals. This confusion shows that Deep CNN performance can be seriously impacted

with higher noise levels, where the confusion can be across different frequency signals.

WT-ConvT model uses MSD to decompose the input signal into multiple fre-

quency components. It allows lower and higher frequency components to be separated

from the time-series data. As a result, Fig. 5.5b shows that the WT-ConvT model

suffers less impact from P8-Notch due to wavelet component could help in splitting

the low and high-frequency noise to improve the generalization of feature extraction.

The confusion matrix shows that the proposed WT-ConvT has higher confusion on two

slow disturbance classes. Similar to Deep CNN, Class P0-normal is confused with Class

P10-sag+harmonics. There is also a slight confusion that happened on class P9-flicker,

where class P9 can be classified wrongly as class P10. This confusion can be caused

by uneven noise added to the flicker signal, where the slightly lower magnitude of the

flicker signal is classified wrongly as sag class, and the noise introduced is identified

as harmonics. Both of these results show that the proposed WT-ConvT can still be

improved in its performance in detecting a slow disturbance. However, the proposed

WT-ConvT performed better on fast disturbance classification as compared to the Deep

CNN method.
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Figure 5.5: Confusion matrix at 20dB SNR AWGN test on (a) Deep CNN and (b) WT-

ConvT.
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5.5.2 Efficient Embedding Multi-resolution Attention Using Convolu-

tional Transformer and Complexity Analysis

A weight superposition mechanism is introduced to enhance the performance of

the proposed WT-ConvT network while reducing the model size. Instead of embedding

each of the DWT bands individually, a weight superposition is introduced. The weight-

sharing mechanism of this method reduces the model size significantly while maintaining

the performance of the network. In this experiment, the performance comparison of the

proposed efficient wavelet-based convolutional transformer (EWT-ConvT) with WT-

ConvT is carried out to analyse the advantage of using efficient embedding.

The classification performance of the proposed EWT-ConvT is compared with

WT-ConvT as shown in Table 5.8. It can be noticed that both WT-ConvT and EWT-

ConvT models have similar overall performance. The classification performance on

P0-Normal, P9-Flicker, and P10-Sag+Harmonics are poorer. Both models are more

Table 5.8: Performance comparison of WT-ConvT with the EWT-ConvT model tested

with 20-50dB AWGN and noiseless conditions.

(a) WT-ConvT.

Class

SNR
20dB 30dB 40dB 50dB noiseless

P0 67.10 85.00 97.60 99.30 99.44

P1 94.80 97.30 96.80 96.40 97.20

P2 95.30 98.10 99.20 98.80 98.80

P3 99.60 99.80 99.80 100.0 99.80

P4 100.0 100.0 100.0 100.0 100.0

P5 97.90 98.70 98.60 98.60 98.80

P6 99.80 100.0 99.90 100.0 99.90

P7 97.40 98.90 99.10 99.00 98.80

P8 91.60 100.0 100.0 100.0 100.0

P9 86.00 97.90 99.80 99.70 99.70

P10 91.60 92.30 92.70 90.30 92.87

P11 94.70 97.60 98.20 97.20 100.0

P12 94.90 97.00 96.80 97.40 100.0

P13 99.60 100.0 100.0 100.0 100.0

P14 98.00 98.90 98.70 98.50 98.60

P15 97.50 98.00 98.10 98.30 97.70

Acc 94.11 97.47 98.46 98.34 98.86

(b) EWT-ConvT.

Class

SNR
20dB 30dB 40dB 50dB noiseless

P0 68.40 82.80 93.80 98.10 97.84

P1 94.50 96.70 96.60 96.10 97.10

P2 98.30 99.10 99.10 99.30 99.50

P3 99.10 99.20 99.70 99.10 99.50

P4 100.0 100.0 100.0 100.0 100.0

P5 96.20 97.70 97.50 96.50 98.10

P6 100.0 100.0 100.0 100.0 99.90

P7 99.70 99.20 99.60 99.60 99.40

P8 97.20 100.0 100.0 100.0 100.0

P9 82.20 97.20 99.60 99.60 99.30

P10 90.20 93.40 93.40 92.80 95.62

P11 93.80 97.60 98.20 97.20 100.0

P12 94.60 97.00 96.80 97.40 100.0

P13 100.0 100.0 100.0 100.0 100.0

P14 99.20 99.50 99.50 99.40 99.20

P15 97.30 96.70 95.90 97.50 96.80

Acc 94.42 97.26 98.11 98.29 98.89
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sensitive to disturbance signals which cause lower classification accuracy on high noise

class P0. This comparison also shows that both WT-ConvT and EWT-ConvT are

having similar performance, with the EWT-ConvT model having far fewer parameters.

The confusion matrix of the EWT-ConvT on 20dB SNR AWGN is shown in

Fig. 5.6. Similar to the confusion matrix of WT-ConvT, there are a few slow distur-

bances that have lower classification performance. The confusion on class P0-Normal

being classified as class P10-Sag+Harmonics is caused by a higher level of additive

noise changing the overall signal power and adding to the effects of the harmonics. Sim-

ilarly, the confusion of class P9-Flicker as class P10 is also presents in this EWT-ConvT

model. This confusion can be caused by uneven noise added to the flicker signal, where

the slightly lower magnitude of the flicker signal is classified wrongly as sag class, and

the noise introduced is identified as harmonics. It can be noticed that classes P10 is

mainly confused with class P0 and P9, where all of the classes are slow disturbance

classes. The effect of noise levels shows that the proposed model can still be improved

in detecting slow disturbance classes.
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Figure 5.6: Confusion matrix for EWT-ConvT with efficient superposition embedding at

20dB SNR AWGN test.
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Table 5.9: Model complexity comparisons.

Model
20dB 30dB 40dB 50dB noiseless Time per No. of Model

epoch parameters size

Deep LSTM [101] 88.48 96.64 97.83 98.16 98.54 68s 33936 0.136 MB

Deep CNN [20] 90.56 97.69 98.97 99.01 99.57 32s 164464 0.657 MB

WT-SFA-LSTM 93.79 97.49 98.34 98.51 99.09 34s 221486 0.871 MB

WT-ConvT 94.11 97.47 98.46 98.34 98.86 32s 182970 0.728 MB

EWT-ConvT 94.42 97.26 98.11 98.29 98.89 32s 70778 0.290 MB

The complexity of the proposed EWT-ConvT, WT-ConvT, WT-SFA-LSTM,

Deep CNN[20], and Deep LSTM [101] are compared as demonstrated in Table 5.9.

The best 20dB accuracy, training time per epoch of the training on 76.8k samples, the

number of parameters and model size are recorded and compared. The deep LSTM

method achieved a good classification accuracy of 88.48% on high noise conditions with

the lowest number of parameters. However, the time required to train an epoch of sam-

ples is doubled compared to the other models. Deep CNN shows better performance

of 90.56% classification accuracy on 20dB SNR condition with only 32 seconds training

time per epoch and with an adequate model size of 0.657 MegaBytes. Our proposed

WT-SFA-LSTM model achieved a better classification accuracy of 93.79%. However,

the training time per epoch, and the number of parameters used or model size are at

the highest of 0.871 Megabytes. To improve the model complexity and enable faster

training, WT-ConvT is proposed. This model achieved the highest classification accu-

racy of 94.11% and with fewer parameters compared to the WT-SFA-LSTM method.

However, the model size of WT-ConvT is slightly larger than that of the Deep CNN

method. EWT-ConvT is thus proposed. An efficient weight superposition mechanism is

introduced to compress the model size of WT-ConvT into 60% fewer parameters. The

model size of 0.290 Megabytes is positioned at 43.03% of the Deep CNN method and

38.68% of the WT-ConvT model. While having significantly reduced parameters, the

classification performance of EWT-ConvT is slightly better with 94.42%. Most of the

characteristics of WT-ConvT are kept with a slight improvement on the EWT-ConvT

model.
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5.5.3 Analysis on Batch Normalization

The studies of batch normalization (BN) layer are carried out on both WT-ConvT

and EWT-ConvT models. The performance of both of the models without the BN

layer is tabulated in Table 5.10. Similar classification performance is observed in WT-

ConvT without the BN layer as shown in Table 5.10a. This can be due to only low-level

representation embedding being used before the transformer network in the WT-ConvT

model. This is not the case in the EWT-ConvT model. The efficient superposition

embedding mechanism in the EWT-ConvT model involves sharing of trainable weights.

This weight superposition allows the network to use the same set of parameters to

learn representation from each of the input bands. Besides the benefits of using fewer

parameters, these shared weights also give a generalised representation of all the input

bands. However, as this shared weight involves more forward passes during the training

process, vanishing or exploding gradients are more prone to happen. The results in

Table 5.10: Performance comparison of WT-ConvT and EWT-ConvT without batch

normalization layer tested with 20-50dB AWGN and noiseless conditions.

(a) WT-ConvT without batch normalization.

Class

SNR
20dB 30dB 40dB 50dB noiseless

P0 73.40 82.10 92.40 97.80 98.97

P1 93.00 96.60 97.10 96.40 97.10

P2 94.90 96.50 98.60 98.50 98.40

P3 99.30 98.90 99.30 99.20 99.00

P4 100.0 100.0 100.0 100.0 100.0

P5 97.70 98.50 97.70 98.20 98.30

P6 99.40 99.80 99.70 100.0 99.90

P7 98.80 99.50 99.40 99.40 99.40

P8 96.20 100.0 100.0 100.0 100.0

P9 85.50 98.50 99.90 99.90 99.90

P10 87.30 95.00 95.60 93.60 95.11

P11 92.90 97.60 98.20 97.20 100.0

P12 95.90 97.00 96.80 97.40 100.0

P13 99.10 100.0 100.0 100.0 100.0

P14 96.90 98.00 98.00 98.00 97.60

P15 94.20 96.20 95.00 97.40 95.00

Acc 94.03 97.14 97.98 98.31 98.67

(b) EWT-ConvT without batch normalization.

Class

SNR
20dB 30dB 40dB 50dB noiseless

P0 68.10 90.10 98.00 99.50 99.72

P1 94.10 97.50 97.70 95.50 97.10

P2 97.50 97.90 98.90 98.70 98.40

P3 97.50 97.40 97.20 96.30 98.10

P4 100.0 100.0 100.0 100.0 100.0

P5 97.40 98.70 98.10 97.70 98.20

P6 99.70 100.0 99.90 100.0 100.0

P7 96.80 98.30 98.40 97.40 97.10

P8 86.50 100.0 100.0 100.0 100.0

P9 86.60 98.30 99.90 99.90 99.80

P10 80.20 89.00 92.10 92.20 94.09

P11 91.50 97.50 98.20 97.20 100.0

P12 94.80 96.90 96.80 97.40 100.0

P13 97.00 100.0 100.0 100.0 100.0

P14 97.60 98.90 99.10 99.20 98.90

P15 94.80 97.50 97.10 98.40 98.30

Acc 92.51 97.38 98.21 98.09 98.74
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Table 5.10b show lower classification accuracy on high noise 20dB SNR AWGN test,

with only 92.51% without BN layer as compared to 94.42% with BN layer as shown in

previous section Table 5.8b.

In adition, the decrease in classification performance in the EWT-ConvT model

without the BN is mainly caused by class P8-Notch and P10-Sag+Harmonics as shown

in Fig. 5.7 the. The decrease in classification accuracy on class P8 suggests that the

model without BN layer is facing difficulty in detecting fast transients in high noise

conditions. Where class P8, a fast transient disturbance is confused with slow distur-

bance classes, class P14-Sag+Flicker and P15-Swell+Flicker. On the other hand, the

decreased accuracy in class P10 shows decreased performance in classifying slow dis-

turbance classes. Without a BN layer, a weight distribution issue may happen, which

causes a decrease in performance. The BN layer is thus proved to be important for the

EWT-ConvT model which has weight sharing mechanism.
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Figure 5.7: Confusion matrix for EWT-ConvT without BN layer at 20dB SNR AWGN

test.
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5.6 Chapter Summary

A transformer network is proposed in this chapter to improve the training mech-

anism of deep learning networks with parallel processing capability. It contains multi-

head attention in a transformer allowing multiple feature embedding for better sequen-

tial information extraction. As a result, the transformer encoder network can achieve

76.06% and 55.56% when the model is trained with and without noise respectively us-

ing a single-period data sample. This result shows better noise immunity compared to

the LSTM model with 82.62% and 13.26% when tested with 20dB SNR AWGN. The

transformer model also shows similar generalization characteristics when compared to

GA-LSTM. These models are then tested using a benchmarking dataset with a multi-

period waveform. Results show that both the transformer and LSTM model achieve

better performance with longer sequence input. Transformer leads the performance with

91.43% versus 88.48%, showing higher generalization capability. To further increase the

resolution of the input signal, MSD is applied to decompose the signal into multiple

bands. Hence, a hybrid model of the WT-ConvT network is proposed to improve the

performance of PQD classification. In the WT-ConvT network, MSD coefficients are fed

into a temporal-spatial embedding layer, which consists of a temporal aligned layer and

a layer of the 1D convolutional kernel. It is used to align coefficients in equal lengths

for feature embedding. Subsequently, the embedded features are passed to the trans-

former encoder to extract higher-level latent representation. Finally, these higher-level

latent representations can be aggregated using the MHA pooling mechanism for PQD

classification. As a result, WT-ConvT can highlight the salient difference between fast

transient and slow disturbance with 94.11% as compared to the benchmark Deep CNN

with 90.56%. Efficient embedding mechanisms are introduced to better optimize the

model using the weight superposition algorithm. The optimized EWT-ConvT achieves

a similar classification performance of 94.42% with a 61.31% reduction in model size

when compared to WT-ConvT. EWT-ConvT with 0.290 MB model size and the high-

est classification accuracy stands out as the best-performing model when compared to

WT-ConvT, WT-SFA-LSTM, Deep CNN, and Deep LSTM models. The importance

of having batch normalization in models involving complex weight sharing is also high-

lighted to prevent vanishing or exploding gradient on weights, and regularise the network

for better generalization.
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Chapter 6

Real-time Embedded System

Implementation with Power

Quality Classification

6.1 Introduction

Energy monitoring and control are of paramount importance in ensuring the

quality of power supplies. Proper management and control efforts become more im-

portant with the blooming integration of microgrids, especially with renewable energy

resources (RER), which are environmentally friendly with additional benefits of low op-

erating cost [147]. The intermittency nature of RERs can bring a negative impact on

the grid with improper handling [148]. Besides from RERs, a microgrid also consists

of other distributed energy resources, multiple types of large loads, and large storage

systems which include electric vehicles [149]. The increased amount and type of loads

onto the power systems increased the complexity of the power systems, which brings a

negative impact on the power quality [150]. This poses serious challenges towards the re-

cent advanced technologies which use sensitive electronic components that require pure

sinusoidal power supplies for proper operations. The increased integration of RERs,

and grid-tied storage systems such as electric vehicles and fuel cell technologies demand

synchronised multiple point monitoring systems [151]. A scalable, real-time monitor-

ing system is thus required. Due to their feasibility and cost-effectiveness, embedded

systems have emerged as the optimal option for scaled deployment [151]. For instance,
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smart meters data are used for power quality disturbances (PQD) classification in [112].

The use of field-programmable gate arrays (FPGA) is widely studied in [152, 153].

Real-time classification of PQD is important in the field of power management

and control. This is due to the increased complexity of the power grid with an increas-

ing number of advanced power electronics connected [154]. Real-time monitoring of the

power systems helps in improving the intermittency issue presence in renewable energy

microgrids by allowing energy scheduling [155]. Real-time classification of PQD is re-

quired for immediate mitigation action [156]. For instance, the control of MG islanding

is required when faults occurred. Real-time classification of PQD is one of the critical

features required to monitor the reliability of the entire power system. The real-time

monitoring and control of a smart grid controller is also critical to ensure continuous

and reliable supplies of electricity across the entire grid. The ability to identify PQD

occurring in the power systems allows preventive maintenance to be taken before a ma-

jor breakdown of the critical systems. The ability to detect and classify types of PQD

in real time is thus an important feature to ensure the reliability of the entire power

system.

A real-world PQD classification is proposed and examined in this chapter using

the setup of the Raspberry Pi embedded system. In Section 6.2, The overview of the

proposed hardware-software integration is described. Laboratory experiments and the

setup is discussed in Section 6.3. In Section 6.4, The data acquisition and pre-processing

of the data before feeding into the classification model are described. Classification

performance of the proposed models and literature models are compared in Section 6.5.

The hardware performance is discussed in Section 6.6. Finally, a conclusion of hardware

development for PQD classification is drawn in Section 6.7.

6.2 Proposed Hardware Implementation

The proposed embedded systems for real-world implementation of the proposed

machine learning model is depicted in Fig. 6.1. The main components included in this

setup include a microcontroller, Raspberry Pi 4B (RPi), Waveshare AD-HAT ADS1263

Analog-to-Digital converter (ADC), and a current transformer. The proposed embed-

ded system can be applied in a junction box or before the specific load. The operating

voltage of the subject being measured as shown in Fig. 6.1 is a single-phase load with
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Figure 6.1: Proposed hardware implementation (embedded system).

240VAC. The voltage or current transformer used should step down the voltage or cur-

rent to ±2.5VDC before inputting into RPi with an operating range of 5VDC. Figure

6.2 demonstrates the hardware-software linkage for PQD detection and classification.

The implementation of real-time detection and classification of PQDs mainly involves

three steps, data acquisition, signal pre-processing, and model inferencing with a clas-

sification model. The real-world current or signal waveform is acquired using a current

transformer or voltage transformer. The analogous signal is sampled via ADC which

converts analog signals to digital signals. This conversion is essential for digital signal

processing. The sampled data is pre-processed before passing it into the model for clas-

sification. The pre-processing process includes down-sampling the sampled signal into

3.2kHz, magnitude normalization to −1 to +1 range. This process is done to ensure

fixed data size and range are input for the classification model. Data shifting is also

included in the proposed model, where the phase of the signal collected is always started

at zero.

The proposed efficient wavelet-based convolutional transformer (EWT-ConvT)

is taken as the classification model due to its smaller size of the model and faster

inferencing. EWT-ConvT takes in the processed data from the signal pre-processing

Figure 6.2: Hardware-software integration.
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Table 6.1: Class of power quality disturbances.

Label Class Description Label Class Description

P0 Normal P8 Notch

P1 Sag P9 Flicker

P2 Swell P10 Sag+Harmonics

P3 Interrupt P11 Swell+Harmonics

P4 Impulse Transient P12 Interrupt+Harmonics

P5 Spike P13 Flicker+Harmonics

P6 Harmonics P14 Flicker+Sag

P7 Oscillatory Transient P15 Flicker+Swell

step. EWT-ConvT model is depicted as shown in Fig. 6.3. The signal is first transformed

into a wavelet domain using 4-level multi-level signal decomposition. A temporal aligned

layer and efficient superposition embedding mechanism is used to embed the wavelet

coefficients into a temporal embedding matrix. 1D convolution is then applied over the

temporal embedding matrix, giving spatial characteristics among the extracted bands.

The embedded temporal-spatial feature output is then fed into the transformer network

for the classification process via a multi-head attention mechanism. This proposed

network is trained using AMD Ryzen 7 3800X 8-core Processor with Nvidia P6000

graphic processing unit. In Table 6.1, a total of 16 classes of PQD are simulated using

mathematical equations [82, 96] for the training process.

Figure 6.3: Proposed efficient wavelet-based convolutional transformer (EWT-ConvT)

model.
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Figure 6.4: Lab Hardware setup implementation for the proposed classification model.

6.3 Laboratory Hardware and Experiment Setup

The validation of the proposed hardware setup and ML models are conducted

using the laboratory setups as shown in Fig. 6.4. Two types of loads are used, 300 Watt

single-phase split phase induction motor, and a resistive inductive (RL) load with 221.2

Ohm resistance and 116.2 milli Henry Inductance connected in series. The proposed

real-time system setup consists of Raspberry Pi 4B, ADC, and a current transformer.

The components required to carry out this laboratory experiment include single phase

induction motor, resistor and inductor banks, an independent power supply unit, a fuse

box for protection, a solid state relay (SSR) for fast switching, and a battery-powered

Arduino micro-controller for relay mode switching control. Power disturbances are

simulated by switching the mentioned loads using a solid-state relay. A total of three

case studies are investigated under real-world lab simulations. The details of the case

studies are listed as follows.

(a) (Case #A): Voltage sag is among the most problematic PQD other than im-

proper grounding [157]. The simulation of a short circuit fault that causes a

voltage sag event is simulated in this event by using an RL load and a split phase

induction motor. A sag condition is simulated by turning off the RL load for 80

milliseconds within 200 milliseconds time frame, which is equivalent to 4 out of

10 periods of sag for a 50Hz 10-period signal sample.

(b) (Case #B): Disconnection of large load or large capacitor banks causes voltage
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swell [158]. Disturbance class swell is simulated using a non-linear RL load and

a split-phase induction motor. Different from a Sag condition, only the induction

motor is turned on at all times. A swell condition is simulated by switching on

the RL load for 80 milliseconds, which is equivalent to 4 out of 10 periods of swell

for a 50Hz 10-period signal sample.

(c) (Case #C): Short interruptions are caused by triggering of protection devices

after a fault event [159]. The simulation on an interrupt signal is done by switching

only the RL load. RL load is switched off for 80 milliseconds to generate the

interrupt condition. This is equivalent to 4 out of 10 periods of interrupt signal

for a 50Hz 10-period signal sample.

The analysis of the real-world hardware-software integration is carried out in a

laboratory environment. The hardware is set up as demonstrated in Fig. 6.4. Three

types of disturbances are simulated using the lab equipment, P1-Sag, P2-Swell, and P3-

Interrupt. Data collection and model inferencing are performed using RPi. Two main

analyses are performed. In Section 6.5, the classification performance of the proposed

EWT-ConvT is analysed. Several comparisons are conducted to evaluate the models

such as the proposed WT-SFA-LSTM, WT-ConvT, EWT-ConvT, Deep LSTM [101]

and Deep CNN [20] in terms of accuracy and computational performance using RPi

embedded system.

6.4 Data Acquisition and Pre-processing

The simulation of the disturbance signal is collected using a current transformer.

The real-world analogous current waveform is first scaled down and converted into a

voltage signal using an appropriate burden resistor. As RPi only takes in positive

voltage, a biasing voltage divider is used. The current sensor output is fed into the

middle of the biasing voltage divider before feeding into ADC. Signal sampling using

ADS1263 ADC can be up to 38kHz, however, high sampling requires more computation

resources and may result in data loss when the computation resources are insufficient.

Besides, the sampling rate of ADS1263 ADC is fluctuating between 5-20% from the

defined sampling rate. For example, the sampling rate set at 4800Hz fluctuates between

4000-4800Hz. To solve the mentioned issue, a sufficiently low sampling rate of 7200Hz
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Real world lab-simulated PQDs waveforms. (a) Sag, (b) Swell, (c) Interrupt,

(d) Phase-aligned Sag, (e) Phase-aligned Swell, (f) Phase-aligned Interrupt.

is used, thus reducing computation requirements. The sampled signal is then down-

sampled into exact 3200Hz by re-sampling the collected data using the interpolation

technique [160]. Each collected data sample consists of 10 periods and is sampled at

3200Hz which is equivalent to 640 data points.

Shift variance is one of the issues faced by wavelet transform and neural network

[100, 161]. Shift variance is examined in this experiment. A simple data augmentation

or phase alignment is performed by aligning zero starting of the signal. This data

augmentation is done by snipping data before first rising zero crossing and appending the

snippet to the back of the signal. This data augmentation is applied to align the signal

with zero starting while retaining common features to avoid shift variance issues. The

collected disturbances data are displayed in Fig. 6.5a, Fig. 6.5b, and Fig. 6.5c without

any phase alignment. This situation causes the inconsistency of signal initialization.

On the other hand, the respective aligned signals are displayed in Fig. 6.5d, Fig. 6.5e,

and Fig. 6.5f to standardize the common rising edge at zero crossing to get rid of phase

shifting issue.
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6.5 Real-time PQD Evaluation and Performance Analysis

A total of 900 samples (300 samples for each type) of disturbances are collected in

this lab. The classification performance of the proposed EWT-ConvT and other models

are tabulated in Table 6.2. The effect of shift variance is examined in this experiment.

The result in Table 6.2 shows that the Deep CNN model scored higher average clas-

sification accuracy of 52.67% without a phase-aligned mechanism. However, the Deep

CNN model performed badly for swell and interrupt classes, which is 49.67% and 9%

respectively although it has a high classification rate for sag case with 99.33% classifi-

cation on class P1-Sag, It can also be noted that the classification performance on class

P3-Interrupt is extremely low due to the dissimilarity of interrupt signal generated in

lab condition as compared to the signal generated using mathematical equations. The

interrupt produced in lab condition has an inductance effect from the RL load. The

inductor resists the change of current, forming the decreasing slope of current when the

power is switched off. This result shows that the Deep CNN model is not generalised

enough when there are some changes and differences in the signal waveform compared

to the training condition. When the phase-aligned mechanism is introduced, the Deep

CNN model shows an insignificant change in classification performance, with 98.33%,

44.00%, and 9.33% on P1, P2, and P3 respectively. This shows that the Deep CNN

model is shift-invariant. Apart from the Deep CNN model, other models contain shift-

variant characteristics, and it can be solved by applying a phase-aligned mechanism to

correct the signal synchronization issue. While achieving shift-invariant has its advan-

tage of minimising pre-processing step and preventing data augmentation, higher-order

Table 6.2: Classification performance on laboratory simulated real-world data.

Models
Without Phase-Aligned With Phase-Aligned

P1 P2 P3 Ave P1 P2 P3 Ave

Deep CNN 99.33 49.67 9.00 52.67 98.33 44.00 9.33 50.56

Deep LSTM 30.33 21.00 48.00 33.11 98.33 65.67 52.33 72.11

WT-SFA-LSTM 34.00 6.00 42.33 27.44 78.00 41.67 77.33 65.67

WT-ConvT 34.67 7.67 45.00 29.11 91.33 46.67 83.33 73.78

EWT-ConvT 56.67 8.33 62.33 42.44 99.00 48.33 77.67 75.00
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feature representation might be required for significant feature extraction.

After introducing a phase-aligned mechanism for the input pre-processing, the

performance of all the models are comparable to Deep CNN model as shown in Table 6.2.

This shows that the models possess a shift-variant characteristic. A phase-aligned mech-

anism is required at the signal pre-processing stage when using these models. Among the

models, the proposed EWT-ConvT scored the highest average accuracy of 75.00%. This

is followed by the proposed WT-ConvT model, with 73.78%. The proposed WT-ConvT

and EWT-ConvT models are thus verified in terms of performance with real-world data.

It can be noticed that the Deep LSTM model acquired high accuracy of 72.11%. Com-

paring WT-ConvT models with the Deep LSTM model shows that the Deep LSTM

model performs better on class P2-Sag, however, the classification performance on class

P3 is comparatively weaker. Wavelet transform and spatial feature attention from the

WT-SFA-LSTM model improved the performance on class P3. However, the WT-SFA-

LSTM model does not perform well in real-time scenarios to detect P1 and P2 signals.

The confusion analysis of the models is tabulated in Table 6.3. Deep CNN

model in Table 6.3a shows a similar pattern with and without a phase-aligned mecha-

nism. Class P1 achieved high classification accuracy with over 99.33% accuracy. The

wrongly classified cases are confused with class P14-Flicker+Sag. This can be due to

the sampling which produced a slight flicker effect on the sampled signal. The classifi-

cation accuracy on class P2-Swell is however having higher confusion of 168/300 with

class P-15 Flicker+Swell. There are two possible reasons for the less performance. The

first reason can be caused by less quality signal sampled which shows a slight flicker

effect as shown in Fig. 6.5e. The second reason for that can be caused by the model

being too sensitive towards the slight flicker effect. This effect can be solved with a

better sampling technique which is discussed in the later section. The classification

performance of P3-Interrupt is however seriously impacted and has major confusion of

173/300 on P1, 95/300 on P14 and even 3/300 on class P0-Normal. The interrupt signal

used for training does not have a similar micro-pattern, causing confusion for the Deep

CNN model. This modified waveform can be formed with combined characteristics of

different electronic components. This confusion shows that the Deep CNN model is not

generalised enough to identify a slightly modified signal pattern that it has not seen

before during the training phase.

Both LSTM models in Table 6.3b and Table 6.3c produce high confusion on

signal without zero-aligned phase shift pre-processing. This shows that the models
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Table 6.3: Confusion analysis on four models.

(a) Deep CNN.

Phase Aligned Without With

Classes P1 P2 P3 P1 P2 P3

P0 0 0 3 0 0 3

P1 298 0 177 295 0 173

P2 0 149 0 0 132 0

P3 0 0 27 0 0 28

P4 0 0 0 0 0 0

P5 0 0 0 0 0 0

P6 0 0 0 0 0 0

P7 0 0 0 0 0 1

P8 0 0 0 0 0 0

P9 0 0 0 0 0 0

P10 0 0 0 0 0 0

P11 0 0 0 0 0 0

P12 0 0 0 0 0 0

P13 0 0 0 0 0 0

P14 2 0 93 5 0 95

P15 0 151 0 0 168 0

Acc (%) 99.33 49.67 9.00 98.33 44.00 9.33

Ave Acc (%) 52.67 50.56

(b) Deep LSTM.

Phase Aligned Without With

Classes P1 P2 P3 P1 P2 P3

P0 0 0 0 0 0 1

P1 91 0 38 295 0 129

P2 0 63 0 0 197 0

P3 0 0 144 0 0 157

P4 0 0 0 0 0 0

P5 64 0 37 1 0 4

P6 0 56 0 0 2 0

P7 0 0 2 0 0 0

P8 0 0 0 0 0 0

P9 0 0 0 0 0 0

P10 0 0 0 0 0 0

P11 0 0 0 0 0 0

P12 0 0 0 0 0 0

P13 1 10 0 0 1 0

P14 144 106 79 4 3 9

P15 0 65 0 0 97 0

Acc (%) 30.33 21.00 48.00 98.33 65.67 52.33

Ave Acc (%) 33.11 72.11

(c) WT-SFA-LSTM.

Phase Aligned Without With

Classes P1 P2 P3 P1 P2 P3

P0 0 0 0 0 0 0

P1 102 61 38 234 43 22

P2 1 18 3 0 125 0

P3 30 37 127 3 6 232

P4 0 0 0 0 0 0

P5 0 0 0 0 0 0

P6 0 0 0 0 0 0

P7 2 0 12 0 0 1

P8 2 5 7 0 6 7

P9 0 0 0 0 0 0

P10 0 0 0 0 0 0

P11 0 0 0 0 0 0

P12 0 0 0 0 0 0

P13 0 0 0 0 0 0

P14 158 176 112 63 92 38

P15 5 3 1 0 28 0

Acc (%) 34.00 6.00 42.33 78.00 41.67 77.33

Ave Acc (%) 27.44 65.67

(d) EWT-ConvT.

Phase Aligned Without With

Classes P1 P2 P3 P1 P2 P3

P0 0 0 0 0 0 0

P1 170 99 108 297 19 61

P2 0 25 5 0 145 6

P3 130 149 187 3 5 233

P4 0 0 0 0 0 0

P5 0 0 0 0 0 0

P6 0 0 0 0 0 0

P7 0 2 0 0 1 0

P8 0 0 0 0 0 0

P9 0 0 0 0 0 0

P10 0 0 0 0 0 0

P11 0 0 0 0 0 0

P12 0 0 0 0 0 0

P13 0 0 0 0 0 0

P14 0 18 0 0 107 0

P15 0 7 0 0 23 0

Acc (%) 56.67 8.33 62.33 99.00 48.33 77.67

Ave Acc (%) 42.44 75.00
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are impacted by shift-variant characteristics. Shift variants can be solved by using

phase-aligned data augmentation. Besides, the phase-shift problem can also be solved

by giving shifted signals during the training phase. Both models showed significant

improvement with phase-aligned pre-processing introduced. The deep LSTM model

shows good classification performance on class P1 with 98.33% accuracy. Similar to the

Deep CNN model, there is confusion between class P2 with class P15. However, Deep

LSTM is showing less confusion of only 97/300 confusion in class P15. This shows that

the Deep LSTM model is better at identifying small magnitude differences in the flicker

signal. The classification on class P3 is also better compared to the Deep CNN method

with 52.33% accuracy. Major confusion of 129/300 occurred with P1-Sag. This can be

due to unseen noise conditions as described before, but Deep LSTM is showing more

generalization capability compared to the DCNN method. WT-SFA-LSTM method

on the other hand showing weaker performance compared to Deep LSTM. Confusion

occurred in class P1 with class P14, where 63/300 signals are misclassified as class P14.

Besides that, Class P2 are also having 92/300 signals misclassified as P14, 43/300 as P1

and 28/300 as P15. This shows that WT-SFA-LSTM is extremely sensitive to smaller

magnitude change which causes major confusion to class P14 with the flicker effect. The

classification performance in class P3 is however better with high 77.33% accuracy. The

high sensitivity on magnitude changes allowed this model to detect interrupt classes

with ease.

The classification performance of the EWT-ConvT model is tabulated in Ta-

ble 6.3d. Similar to LSTM models, EWT-ConvT is also a shift-variant model that

requires the aid of pre-process phase alignment. EWT-ConvT model attained the high-

est average classification accuracy of 75.00% among all the models compared. While

having a good classification of 99.00% on class P1, EWT-ConvT is also having the high-

est classification accuracy of 77.67% on class P3. The classification performance of class

P2 is however having high confusion of 107/300 with class P14. This confusion again

shows that the models have high sensitivity towards the flicker effect caused by the low-

quality signal collected. A better sampling technique should be applied to overcome

this issue.
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6.6 Computation Performance Analysis of Proposed Mod-

els on Embedded System

With the increasingly powerful embedded system being introduced, a real-time

classification based on the embedded system can be executed. The advantage of deploy-

ing real-time classification models using embedded systems includes comparatively low

cost versus dedicated PC, feasibility, and scalability. RPi 4B is used in the proposed

system as it allows real-time inferencing with its powerful Quad-core Cortex-A72 (ARM

v8 64-bit SoC 1.5GHz). Multithreading is used to allow parallel processing between data

grabbing, model inferencing, and output data saving. Inferencing using proposed models

and literature models are performed and the computation performances are recorded in

Table 6.4. In this experiment, the current waveform of the test subject is sampled into

RPi with the aid of a current transformer and ADC. For every 0.2 seconds (equivalent

to 10 periods of a 50Hz signal), the data is pre-processed and fed into the classification

model. Real-time inferencing can be achieved if the proposed model can finish the clas-

sification process using less time as compared to the input sample. For instance, the

proposed classification model should complete its classification process before the next

sample is ready, which is <200ms with our setup.

In Table 6.4, it can be noticed that the Deep CNN model with parallel processing

architecture used 85.12ms to classify a single data input. The parallel computation of

Deep CNN allows fast inference and can achieve real-time classification. The compu-

tation resources required for the model is 0.66 Megabytes, which is considerably small.

However, the average classification performance in the laboratory test is only 50.56%.

The deep LSTM model on the other hand uses an average of 262.06ms to classify a

Table 6.4: Model performance on RPi.

Models Inference Time (ms) Model Size (MB) Best Acc (%)

Deep CNN 85.12 0.66 50.56

Deep LSTM 262.06 0.14 72.11

WT-SFA-LSTM 13.00 0.87 65.67

WT-ConvT 86.82 0.73 73.78

EWT-ConvT 75.51 0.29 75.00
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single input sample. Although the Deep LSTM model can achieve a high classification

accuracy of 72.11% with a small 0.14 MB resource requirement, it failed to meet the

requirement of <200ms for real-time classification. The sequential processing of LSTM

slows down the inferencing process. WT-SFA-LSTM is proposed to improve the input

resolution and increase computation efficiency. WT-SFA-LSTM is the fastest model

which takes only 13.00 ms to classify a single input. This model however comes with

a slightly larger model size of 0.87 MB, and with lower average classification classifica-

tion accuracy of 65.67%. WT-ConvT is proposed with increased resolution by wavelet

transform, and the advantage of parallel processing via multihead attention mechanism

within transformer architecture. Results show that WT-ConvT can perform real-time

classification with 86.82ms per sample classification. The average classification accuracy

of 73.78% also outperforms other methods. The model size of WT-ConvT is however

slightly larger compared to the Deep CNN method. EWT-ConvT is proposed to opti-

mize the predecessor WT-ConvT in terms of model size and performance. The weight

superposition introduced reduces the number of parameters required and thus increases

the model efficiency. EWT-ConvT can achieve real-time classification with only 75.51ms

per sample classification. The model size of EWT-ConvT is also significantly reduced

from its predecessor, with only 0.29 MB. The classification performance of EWT-ConvT

tops the other model with 75.00% accuracy.

There are some hardware limitations found during the experiment. The current

transformer has a clip-on non-intrusive design. This design allows easy installation of

it onto any wire of the instrument. However, the user must ensure proper clipping of

the instrument such that both sides of the split iron core of the sensor are in tight

contact. Loose contact between the iron core results in high noise waveform which

does not favor the inferencing requirement. Besides that, The communication between

ADS1263 ADC and RPi uses Serial Peripheral Interface and c programming language.

ADS1263 can sample up to 38 kHz signal when the sampling script is run. However,

when the inferencing model is run in parallel, data loss might occur. The data loss

that occurred might affect the sample collected, which changes its shape to become a

non-sinusoidal waveform. This might cause complete failure of any of the classification

models applied. The solution for that is to lower the sampling rate to either 4800Hz

or 7200Hz which significantly reduces the computation load. Running the sampling

using another separate microcontroller and sending the complete data sample instead
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of live feed to the microcontroller running inferencing is also a way to avoid this problem

besides getting a more powerful microcontroller such as Nvidia Jetson.

6.7 Chapter Summary

Hardware-software integration using the embedded system Raspberry Pi 4B

(RPi) is implemented to perform real-world PQD classification. A total of three PQD

scenarios are simulated under laboratory conditions. These include a voltage sag event

caused by short-circuit faults, a swell event triggered by the disconnection of large loads,

and an interruption caused by a fault event that is recovered with protection devices.

The PQD signal is captured using a non-intrusive current transformer sensor, followed

by analog-to-digital conversion using ADS1263 ADC. The digital signals received in RPi

are pre-processed before passing into the proposed EWT-ConvT model for classification.

Signal downsampling, signal normalization and phase correction are performed in the

pre-processing stage. EWT-ConvT achieves the highest average classification accuracy

of 75.00% on the lab-simulated data. Besides, the EWT-ConvT model is proven to be

able to perform real-time PQD classification with 75.51 ms inference time on a 200ms

sample. EWT-ConvT also stands out as the smallest model to achieve real-time classi-

fication with a model size of 0.29 MB. Analysis of classification results shows a negative

impact from the sampling process that caused flickering characteristics. This issue can

be improved by proper handling of the clip-on non-intrusive current transformer. The

computation power of RPi is also degraded due to the high-speed sampling process. For

future work, signal sampling optimisation should be performed. A dedicated DSP is

also suggested for the sampling process. Alternatively, a more powerful microcontroller

such as Nvidia Jetson which comes with CUDA cores can also be considered for better

performance.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The advancement of smart grid systems is essential to optimize resource usage

as the growth of power networks is exponentially increased. The complexity of the

power grid increased drastically with the blooming of renewable energy generations and

the mature adoption of electric vehicles. To maintain the stable functionality of the

power system, an active monitoring and control scheme is highly needed to carry out

instant mitigation action on any occurring faults. This process is usually performed

with the use of advanced metering infrastructure which collects and monitors the real-

time power quality. The identification of PQD signifies the fault that occurred on

the systems. Most of the studies focus on PQD classification in simulations and on

historical data. However, due to the advancement in integrated circuits especially with

the increased computation performance, complex operations can now be performed on

smaller computation units. In addition, the increasing maturity in the field of machine

learning enables the implementation of classification models with better efficiency and

smaller model size. An increasing number of monitoring nodes improve the pinpoint

of the exact fault location which allows better management and control of the power

system. Hence, a real-time implementation of PQD classification with a fast detection

rate is required in localizing the disturbance in power signal quality for a reliable power

network.

The study on the classification of PQD can be categorised into three main

methods, knowledge-based method, model-based method, and hybrid method. The
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knowledge-based system is used traditionally which requires the involvement of profes-

sional knowledge for manual feature extraction. Model-based method automates the

feature selection process but requires large training set to achieve generalisation. The

hybrid model combines the advantages of knowledge-based and model-based methods

by having more control over the feature extraction process with the use of signal trans-

formation tools. However, the two-step process increases the complexity of the model

design. Real-time classification of PQD is crucial to carry out instant mitigation actions

to reduce downtime of the power system. However, Limited studies are found deploying

the PQD classifier into dedicated hardware, especially onto a dedicated embedded sys-

tem. Hence, this research work focused on designing an automatic PQD classification

model that can be implemented into an embedded system for real-time implementation.

The complexity of using hand-crafted features in the classification of PQDs in-

volves the complex development of the model. To automate the classification process,

Model-based classification models are introduced. However, the model-based classifi-

cation model requires a huge amount of training data to achieve better generalization.

The global attention mechanism is thus proposed in Chapter 3 to improve the LSTM

model with a more generalised PQD classification. Global attention is used to extract

significant features representing the input signal. The use of attention is proved to

have similar features extracted when tested with noisy and noiseless conditions. The

classification performance is compared between the global attention Long Short-term

memory network (GA-LSTM) and LSTM model by testing both networks with addi-

tive white Gaussian noise with different signal-to-noise ratios. Results show GA-LSTM

achieve better performance with 66.67% and 51.33% when the network is trained with

and without noise respectively. Although LSTM without attention mechanism scored

higher accuracy of 84.87% when trained with noise, however, the low accuracy of 18.99%

when the network is trained without noise signifies the network only performed on seen

condition. When both networks are tested using noises that were not previously seen,

GA-LSTM gives better classification performance on both trains with and without noise

experiments. This result shows that the attention mechanism helps improve the gen-

eralization capability of the LSTM classifier. However, it is noted that the GA-LSTM

model is insensitive to short-time impulse and small-magnitude changes.

Time-series input is limited to single-dimensional analysis. The use of signal

transformation enables signal analysis in different domains. Multi-resolution signal de-

composition (MSD) using wavelet transform is thus introduced to increase the signal
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resolution into multiple frequency bands. A hybrid model using MSD and LSTM is

introduced in Chapter 4 to improve the classification performance of the LSTM model.

Four levels of decomposition are performed using Daubechies 4 wavelet to increase the

signal resolution into 5 frequency ranges. Discrete wavelet transform (DWT) is per-

formed on the low pass output of each decomposition level. Time-series analysis is

performed using a single-period signal waveform. Global attention and band attention

mechanisms are studied, and the results suggest the use of global attention for time-series

signals is better compared to band-attention mechanisms with better noise performance.

The introduction of MSD and global attention mechanism on LSTM improves the clas-

sification performance of the LSTM model from 18.99% to 50.71% when tested with

high noise 20dB SNR AWGN. On the other hand, multi-resolution spatial attention

LSTM (WT-SFA-LSTM) is proposed to classify multi-period PQD signals. Instead of

using inverse wavelet transform, the decomposed wavelet coefficients are aligned into

same-length feature representation before passing into LSTM for higher-order feature

extraction and classification. Results show major improvement of the proposed WT-

SFA-LSTM with 93.79% when benchmarking deep LSTM and Deep CNN models with

88.48% and 90.56% accuracy respectively. A total of two experiments are set up in this

chapter. Results show better performance with the use of wavelet coefficients instead

of performing an inverse wavelet transform on the signal back into a time-series signal.

This is achieved with the introduction of the feature aligns layer. Besides that, the

WT-SFA-LSTM model is proved to have lower computation complexity with the halved

training time requirement as compared to the Deep LSTM model. However, the model

size of the WT-SFA-LSTM model is comparatively larger than the state-of-the-art Deep

CNN model.

Transformer architecture is proposed in Chapter 5 to improve the LSTM model

with parallel processing capability. Instead of using a global attention mechanism, the

multi-head attention within the transformer network allows multiple features embedding

with better extraction of the sequential features. As a result, the transformer encoder

network shows better classification performance of 76.06% and 55.56% when the model

is trained with and without noise respectively on single-period data. This result shows

better noise immunity as compared to the LSTM model with 82.62% and 13.62% when

tested with 20dB SNR AWGN. The transformer encoder network shows similar gen-

eralization characteristics when compared to GA-LSTM as discussed previously. The

benchmarking result with the literature model using multi-period signal input shows
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that the transformer encoder network has a better classification performance of 91.43%

as compared to 88.48% on the Deep LSTM model. Further optimization of the model

is performed by introducing MSD to increase input resolution. A Hybrid model of

a wavelet-based convolutional transformer network (WT-ConvT) is thus proposed to

improve classification performance. The temporal-spatial embedding layer is proposed

to extract temporal and spatial features from the MSD coefficients. This embedding

layer is achieved with a temporal aligned layer for feature alignment and a layer of the

1D convolution kernel. Subsequently, the extracted features are passed into the trans-

former encoder layer to extract higher-level latent representation. Finally, the latent

representations are aggregated by a multi-head attention pooling mechanism for PQD

classification. Results show significant improvement when tested with 20dB high noise

AWGN, with 94.11% as compared to the Deep CNN model with 90.56%. WT-ConvT is

further improved by optimizing the temporal aligned layer with an efficient embedding

layer with a weight superposition algorithm. The efficient embedding WT-ConvT model

(EWT-ConvT) reduces 61.31% of the model size while having similar classification per-

formance with 94.42% classification accuracy when tested with 20dB SNR AWGN. The

optimization performed in this chapter contributed to our best-performing classification

model, EWT-ConvT with the highest classification accuracy of 94.42% with the lowest

model size of 0.29 MB when compared with literature models.

Real-time classification of PQD is important in reducing downtime of power

systems. A real-world implementation of the proposed automatic PQD classification

is proposed in Chapter 6 using an embedded system. This proposed system consists

of Raspberry Pi 4B as a microcontroller, an analog-to-digital converter, and a current

transformer for data acquisition. A total of three case scenarios are simulated under lab

conditions. These include the short-circuit faults causing voltage sag, disconnection of

large loads which causes voltage swell, and short interruption with protection devices

which causes an interruption. The result shows that our proposed EWT-ConvT achieves

the highest classification performance with an average accuracy of 75%. EWT-ConvT

achieves real-time classification by taking 75.51ms to classify a 200ms input sample. the

proposed model has a great result with the smallest model size of 0.29MB. There is also

a limitation found on the RPi use, where a high sampling rate causes data loss on the

signal sampled. The problem can be minimized with the use of a lower sampling rate.
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7.2 Future Work

For future work, the time location of the original input signal is augmented

with the signal pre-processing phase-aligned mechanism used in Chapter 6. A better

alternative to DWT, dual-tree complex wavelet transform (DTCWT) is proposed by

Kingsbury et al. to achieve shift invariant [162]. DTCWT provides better directional

selectivity with a limited increase in computation. Besides, multi-level DTCWT can

achieve shift invariance by removing the downsampling in the MSD process. Besides

changing the MSD DWT to MSD DTCWT, further research can be performed by feeding

shifted training samples into the proposed EWT-ConvT. The integration of the CNN

layer before the transformer is one of the current trends to increase the performance

because of the advantage of the Deep CNN model [20] having shift invariant properties.

On the other hand, the proposed model can be further improved by using better

optimization techniques. The new two-phase optimization strategy such as Stochastic

diagonal Approximate Greatest Descent (SDAGD) can be used to improve the training

process with faster convergence and prevent vanishing gradient problems [163]. SDAGD

adopted the concept of a control system with two stages of control [164]. The search

iteration is defined at the boundary of the local search region when a minimum point is

absent, and the Newton method is used to find the optimum solution when the minimum

point is present in the search region [165].

The hardware implementation of the proposed automated classification of PQD

can still be improved in many ways. A direct improvement that can be found in our

proposed method is the use of a dedicated waveform sampling controller. Real-time

signal grabbing requires a lot of computation resources for the IO. A low-level IO pro-

gramming can be used to optimise the computation resources used for the sampling

process. Besides, the use of a dedicated digital signal processor (DSP) can free up the

computation resources on the main processor for the machine learning algorithm. Re-

cently, more powerful low-cost microprocessors are introduced. These include a thumb

size Espressive (ESP) microcontroller and RockPi micro-controllers which support the

implementation of AI algorithms. Research can be done with real-time implementa-

tions on these platforms. Other than that, FPGA can be used to design the dedicated

processor required for the sampling as well as ML processing. Mass production on

application-specific integrated circuits (ASIC) consisting of DSP and ML processors

will surely reduce the implementation cost and complexity.
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This research can be extended with more real-world case studies. This can be

done by using a laboratory PQD simulator such as Megger Power Quality Simulator

for transient, harmonics, and phase-shift issues. In addition, the harvest of real-world

PQD data can lead to a better training mechanism in the machine learning model.

The power quality disturbance detection and classification algorithm can be used in

high-power industries. The aluminium smelting process is an energy-intensive industry

demand for liable power supplies [166]. Besides ensuring stable power supplies via

constant power monitoring on the supplies side, automatic power quality disturbance

detection and classification can be further applied to the direct current network for the

smelting and refining process. The constant monitoring of the individual anode allows

monitoring of the cell conditions of the smelter [167, 168].
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