4 research outputs found

    Efficient Downlink Channel Estimation Scheme Based on Block-Structured Compressive Sensing for TDD Massive MU-MIMO Systems

    Get PDF
    In this letter, an efficient channel estimation approach based on the emerging block-structured compressive sensing is proposed for the downlink massive multiuser (MU) MIMO system. By exploiting the block sparsity of channel matrix and channel reciprocity in TDD mode, the auxiliary information based block subspace pursuit (ABSP) algorithm is proposed to recover the downlink channels, where the path delays acquired from uplink training is utilized as the auxiliary information. Unlike traditional approaches where the channel estimation overhead is proportional to the number of BS antennas, the proposed approach could provide an accurate channel estimation approaching the performance bound while reduce the pilot overhead by nearly one-third

    Weighted Compressive Sensing Based Uplink Channel Estimation for TDD Massive MIMO Sytems

    Get PDF
    In this paper, the channel estimation problem for the uplink massive multi-input multi-output (MIMO) system is considered. Motivated by the observations that the channels in massive MIMO systems may exhibit sparsity and the channel support changes slowly over time, we propose one efficient channel estimation method under the framework of compressive sensing. By exploiting the channel impulse response (CIR) estimated from the previous OFDM symbol, we firstly estimate the probabilities that the elements in the current CIR are nonzero. Then, we propose the probability-weighted subspace pursuit (PWSP) algorithm exploiting these probability information to efficiently reconstruct the uplink massive MIMO channel. Moreover, noting that the massive MIMO systems also share a common support within one channel matrix due to the shared local scatterers in the physical propagation environment, an antenna collaborating method is exploited for the proposed method to further enhance the channel estimation performance. Simulation results show that compared to the existing compressive sensing methods, the proposed methods could achieve higher spectral efficiency as well as more reliable performance over time-varying channel

    Grant-Free Massive MTC-Enabled Massive MIMO: A Compressive Sensing Approach

    Full text link
    A key challenge of massive MTC (mMTC), is the joint detection of device activity and decoding of data. The sparse characteristics of mMTC makes compressed sensing (CS) approaches a promising solution to the device detection problem. However, utilizing CS-based approaches for device detection along with channel estimation, and using the acquired estimates for coherent data transmission is suboptimal, especially when the goal is to convey only a few bits of data. First, we focus on the coherent transmission and demonstrate that it is possible to obtain more accurate channel state information by combining conventional estimators with CS-based techniques. Moreover, we illustrate that even simple power control techniques can enhance the device detection performance in mMTC setups. Second, we devise a new non-coherent transmission scheme for mMTC and specifically for grant-free random access. We design an algorithm that jointly detects device activity along with embedded information bits. The approach leverages elements from the approximate message passing (AMP) algorithm, and exploits the structured sparsity introduced by the non-coherent transmission scheme. Our analysis reveals that the proposed approach has superior performance compared to application of the original AMP approach.Comment: Submitted to IEEE Transactions on Communication
    corecore