4,173 research outputs found

    Resource-Efficient Replication and Migration of Virtual Machines.

    Full text link
    Continuous replication and live migration of Virtual Machines (VMs) are two vital tools in a virtualized environment, but they are resource-expensive. Continuously replicating a VM's checkpointed state to a backup host maintains high-availability (HA) of the VM despite host failures, but checkpoint replication can generate significant network traffic. Each replicated VM also incurs a 100% memory overhead, since the backup unproductively reserves the same amount of memory to hold the redundant VM state. Live migration, though being widely used for load-balancing, power-saving, etc., can also generate excessive network traffic, by transferring VM state iteratively. In addition, it can incur a long completion time and degrade application performance. This thesis explores ways to replicate VMs for HA using resources efficiently, and to migrate VMs fast, with minimal execution disruption and using resources efficiently. First, we investigate the tradeoffs in using different compression methods to reduce the network traffic of checkpoint replication in a HA system. We evaluate gzip, delta and similarity compressions based on metrics that are specifically important in a HA system, and then suggest guidelines for their selection. Next, we propose HydraVM, a storage-based HA approach that eliminates the unproductive memory reservation made in backup hosts. HydraVM maintains a recent image of a protected VM in a shared storage by taking and consolidating incremental VM checkpoints. When a failure occurs, HydraVM quickly resumes the execution of a failed VM by loading a small amount of essential VM state from the storage. As the VM executes, the VM state not yet loaded is supplied on-demand. Finally, we propose application-assisted live migration, which skips transfer of VM memory that need not be migrated to execute running applications at the destination. We develop a generic framework for the proposed approach, and then use the framework to build JAVMM, a system that migrates VMs running Java applications skipping transfer of garbage in Java memory. Our evaluation results show that compared to Xen live migration, which is agnostic of running applications, JAVMM can reduce the completion time, network traffic and application downtime caused by Java VM migration, all by up to over 90%.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111575/1/karenhou_1.pd

    Doctor of Philosophy

    Get PDF
    dissertationIn the past few years, we have seen a tremendous increase in digital data being generated. By 2011, storage vendors had shipped 905 PB of purpose-built backup appliances. By 2013, the number of objects stored in Amazon S3 had reached 2 trillion. Facebook had stored 20 PB of photos by 2010. All of these require an efficient storage solution. To improve space efficiency, compression and deduplication are being widely used. Compression works by identifying repeated strings and replacing them with more compact encodings while deduplication partitions data into fixed-size or variable-size chunks and removes duplicate blocks. While we have seen great improvements in space efficiency from these two approaches, there are still some limitations. First, traditional compressors are limited in their ability to detect redundancy across a large range since they search for redundant data in a fine-grain level (string level). For deduplication, metadata embedded in an input file changes more frequently, and this introduces more unnecessary unique chunks, leading to poor deduplication. Cloud storage systems suffer from unpredictable and inefficient performance because of interference among different types of workloads. This dissertation proposes techniques to improve the effectiveness of traditional compressors and deduplication in improving space efficiency, and a new IO scheduling algorithm to improve performance predictability and efficiency for cloud storage systems. The common idea is to utilize similarity. To improve the effectiveness of compression and deduplication, similarity in content is used to transform an input file into a compression- or deduplication-friendly format. We propose Migratory Compression, a generic data transformation that identifies similar data in a coarse-grain level (block level) and then groups similar blocks together. It can be used as a preprocessing stage for any traditional compressor. We find metadata have a huge impact in reducing the benefit of deduplication. To isolate the impact from metadata, we propose to separate metadata from data. Three approaches are presented for use cases with different constrains. For the commonly used tar format, we propose Migratory Tar: a data transformation and also a new tar format that deduplicates better. We also present a case study where we use deduplication to reduce storage consumption for storing disk images, while at the same time achieving high performance in image deployment. Finally, we apply the same principle of utilizing similarity in IO scheduling to prevent interference between random and sequential workloads, leading to efficient, consistent, and predictable performance for sequential workloads and a high disk utilization

    A survey and classification of storage deduplication systems

    Get PDF
    The automatic elimination of duplicate data in a storage system commonly known as deduplication is increasingly accepted as an effective technique to reduce storage costs. Thus, it has been applied to different storage types, including archives and backups, primary storage, within solid state disks, and even to random access memory. Although the general approach to deduplication is shared by all storage types, each poses specific challenges and leads to different trade-offs and solutions. This diversity is often misunderstood, thus underestimating the relevance of new research and development. The first contribution of this paper is a classification of deduplication systems according to six criteria that correspond to key design decisions: granularity, locality, timing, indexing, technique, and scope. This classification identifies and describes the different approaches used for each of them. As a second contribution, we describe which combinations of these design decisions have been proposed and found more useful for challenges in each storage type. Finally, outstanding research challenges and unexplored design points are identified and discussed.This work is funded by the European Regional Development Fund (EDRF) through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the Fundacao para a Ciencia e a Tecnologia (FCT; Portuguese Foundation for Science and Technology) within project RED FCOMP-01-0124-FEDER-010156 and the FCT by PhD scholarship SFRH-BD-71372-2010

    ON OPTIMIZATIONS OF VIRTUAL MACHINE LIVE STORAGE MIGRATION FOR THE CLOUD

    Get PDF
    Virtual Machine (VM) live storage migration is widely performed in the data cen- ters of the Cloud, for the purposes of load balance, reliability, availability, hardware maintenance and system upgrade. It entails moving all the state information of the VM being migrated, including memory state, network state and storage state, from one physical server to another within the same data center or across different data centers. To minimize its performance impact, this migration process is required to be transparent to applications running within the migrating VM, meaning that ap- plications will keep running inside the VM as if there were no migration operations at all. In this dissertation, a thorough literature review is conducted to provide a big picture of the VM live storage migration process, its problems and existing solutions. After an in-depth examination, we observe that a severe IO interference between the VM IO threads and migration IO threads exists and causes both types of the IO threads to suffer from performance degradation. This interference stems from the fact that both types of IO threads share the same critical IO path by reading from and writing to the same shared storage system. Owing to IO resource contention and requests interference between the two different types of IO requests, not only will the IO request queue lengthens in the storage system, but the time-consuming disk seek operations will also become more frequent. Based on this fundamental observation, this dissertation research presents three related but orthogonal solutions that tackle the IO interference problem in order to improve the VM live storage migration performance. First, we introduce the Workload-Aware IO Outsourcing scheme, called WAIO, to improve the VM live storage migration efficiency. Second, we address this problem by proposing a novel scheme, called SnapMig, to improve the VM live storage migration efficiency and eliminate its performance impact on user applications at the source server by effectively leveraging the existing VM snapshots in the backup servers. Third, we propose the IOFollow scheme to improve both the VM performance and migration performance simultaneously. Finally, we outline the direction for the future research work. Advisor: Hong Jian

    Scalability of Distributed Version Control Systems

    Get PDF
    Source at https://ojs.bibsys.no/index.php/NIK/article/view/434.Distributed version control systems are popular for storing source code, but they are notoriously ill suited for storing large binary files. We report on the results from a set of experiments designed to characterize the behavior of some widely used distributed version control systems with respect to scaling. The experiments measured commit times and repository sizes when storing single files of increasing size, and when storing increasing numbers of single-kilobyte files. The goal is to build a distributed storage system with characteristics similar to version control but for much larger data sets. An early prototype of such a system, Distributed Media Versioning (DMV), is briefly described and compared with Git, Mercurial, and the Git-based backup tool Bup. We find that processing large files without splitting them into smaller parts will limit maximum file size to what can fit in RAM. Storing millions of small files will result in inefficient use of disk space. And storing files with hash-based file and directory names will result in high-latency write operations, due to having to switch between directories rather than performing a sequential write. The next-phase strategy for DMV will be to break files into chunks by content for de-duplication, then re-aggregating the chunks into append-only log files for low-latency write operations and efficient use of disk space

    Scalability of Distributed Version Control Systems

    Get PDF
    Distributed version control systems are popular for storing source code, but they are notoriously ill suited for storing large binary files. We report on the results from a set of experiments designed to characterize the behavior of some widely used distributed version control systems with respect to scaling. The experiments measured commit times and repository sizes when storing single files of increasing size, and when storing increasing numbers of single-kilobyte files. The goal is to build a distributed storage system with characteristics similar to version control but for much larger data sets. An early prototype of such a system, Distributed Media Versioning (DMV), is briefly described and compared with Git, Mercurial, and the Git-based backup tool Bup. We find that processing large files without splitting them into smaller parts will limit maximum file size to what can fit in RAM. Storing millions of small files will result in inefficient use of disk space. And storing files with hash-based file and directory names will result in high-latency write operations, due to having to switch between directories rather than performing a sequential write. The next-phase strategy for DMV will be to break files into chunks by content for de-duplication, then re-aggregating the chunks into append-only log files for low-latency write operations and efficient use of disk space

    Feasibility of backing up server information in a distributed storage using client workstations hard drives

    Get PDF
    As a consequence of nowadays large hard disk capacities, we can frequently find many networks in corporate environment with a considerable amount of unused hard disk storage space dispersed among all its computers. In an immediate future, the purpose of this unused space is unclearly defined and represents a waste of resource. Several studies suggest and evaluate numerous ways to take advantages of workstation unused hard disk space in a network. However, there are no evidences of studies that consider disk-based backup, distributed storage, and the unused workstation storage aiming at backing up server information in small business network. Determining whether it is possible to utilize these resources for backing up server information certainly can help small businesses to obtain a greater return of investment in their networks. In this paper, I present a case study in where I found out that under specific conditions there are resources that a backup system can utilize to back up server information by using workstation\u27s unused hard disk spaces without significantly affecting normal operation of that network
    corecore