
Scalability of Distributed Version Control Systems

Michael J. Murphy John Markus Bjørndalen Otto J. Anshus

November 2017

Abstract
Distributed version control systems are popular for storing source code, but
they are notoriously ill suited for storing large binary files.

We report on the results from a set of experiments designed to
characterize the behavior of some widely used distributed version control
systems with respect to scaling. The experiments measured commit times
and repository sizes when storing single files of increasing size, and when
storing increasing numbers of single-kilobyte files.

The goal is to build a distributed storage system with characteristics
similar to version control but for much larger data sets. An early prototype
of such a system, Distributed Media Versioning (DMV), is briefly described
and compared with Git, Mercurial, and the Git-based backup tool Bup.

We find that processing large files without splitting them into smaller
parts will limit maximum file size to what can fit in RAM. Storing millions
of small files will result in inefficient use of disk space. And storing
files with hash-based file and directory names will result in high-latency
write operations, due to having to switch between directories rather than
performing a sequential write.

The next-phase strategy for DMV will be to break files into chunks by
content for de-duplication, then re-aggregating the chunks into append-only
log files for low-latency write operations and efficient use of disk space.

1 Introduction
The CAP-theorem [9] states that a distributed system cannot be completely consistent
(C), available (A), and tolerant of network partitions (P) all at the same time. When
communication between nodes breaks down and they cannot all acknowledge an
operation, the system is faced with ”the partition decision: block the operation and thus
decrease availability, or proceed and thus risk inconsistency.” [3]

Much research is focused on consistency. However, distributed version control
systems focus on availability.

A distributed version control system (DVCS) is a small-scale distributed system,
where nodes are autonomous. Rather than a set of nodes that is connected by default,
a DVCS’s repositories are self-contained and offline by default. A DVCS allows writes to
local data at any time, and only connects to other repositories intermittently to exchange
updates at the user’s command. Concurrent updates are not only allowed but embraced

This paper was presented at the NIK-2017 conference; see http://www.nik.no/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munin - Open Research Archive

https://core.ac.uk/display/392172793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


as different branches of development. A DVCS can track many different branches at the
same time, and conflicting branches can be combined and resolved by the user in a merge
operation.

Version control systems are historically designed primarily to store program source
code [19], plain text files in the range of tens of kilobytes. Checking in larger binary files
such as images, sound, or video affects performance. Actions that require copying data in
and out of the system slow from hundredths of a second to full seconds or minutes. And
since a DVCS keeps every version of every file in every repository forever, the disk space
needs only increase.

This has lead to a conventional wisdom that binary files should never be stored in
version control, inspiring blog posts with titles such as ”Don’t ever commit binary files
to Git! Or what to do if you do” [23], even as the modern software development practice
of continuous delivery was commanding teams to ”keep absolutely everything in version
control.” [12, p.33]

This paper evaluates the behavior of current version control systems when storing
larger binary files, with the goal of building a scalable, highly-available, distributed
storage system with versioning for media files such as images, audio, and video.

2 Related Works
The primary inspirations for DMV are Git [5] and Mercurial [15]. Both store the version
history of a filesystem in a content-addressed graph structure that naturally de-duplicates
unchanged files and allows efficient synchronization between replicas. This natural de-
duplication works for identical files, but for de-duplication within versions of files, Git
and Mercurial rely on diff algorithms, which are designed for text, not large binary files.

There are existing projects to extend Git with special handling for larger binary files,
such as Git-annex [11], Git-media [4], and Git Large File Storage (Git LFS) [10]. All
three store the large files outside of the repository, possibly on a cloud server, storing only
a pointer within the repository itself. They side-step the issue of de-duplicating within
binary files by going out and finding more storage.

Boar [7] and Bup [16] are open-source backup systems based on version control that
do de-duplication within binary files and store the files within the repository itself. They
use a rolling hash algorithm to break the files into chunks by content, and then store the
chunks in the content-addressed graph. These tools are limited in scope, however. Both
are primarily focused on a backup workflow, both keep the assumption that the repository
resides on one filesystem, and both have limited distribution capabilities.

Another de-duplicating backup system is Apple’s Time Machine [6]. Time Machine
uses filesystem hardlinks for de-duplication of unchanged files, rather than content-
addressing. Time Machine’s functionality can be mimicked by using Rsync with the
--link-dest option [13].

Rsync [22] is also the origin of the rolling hash algorithm that DMV and Bup use to
break files into chunks by content.

Other projects that employ content addressing on large data sets include Dat [14],
an open-source project for publishing and sharing scientific data sets for research, and
IPFS [2], an open-source project to create a global content-addressed filesystem. Both
focus on publishing data on the open internet.

Camlistore [8] and Eyo [20] are systems for storing private data, specifically personal
media collections. Both eschew traditional filesystems for databases to store various
media types and their metadata. Eyo in particular leans on the insight that in media



files, the metadata is more likely to change than the image/audio/video data. It separates
metadata from data, which allows efficient storage and syncing of metadata. However, it
requires that the software be able to parse many different media formats, and it requires
client software to be rewritten to open the separate metadata and data streams.

DMV hopes to expand the distributed version control concept into a generalized,
highly-available, distributed storage system for large data sets. It uses the rolling hash
approach of Boar and Bup, but hopes to avoid their limitations. Unlike Dat and IPFS it
will focus on private data on a private ad-hoc networks. And unlike Camlistore and Eyo,
it does not tie itself to any particular media formats.

3 Distributed Media Versioning
Git stores data in a directed acyclic graph (DAG) data structure [21]. Each version of
each file is hashed with the cryptographic SHA-1 digest, becoming a blob (binary large
object), which is stored in an object store with the SHA-1 hash as its ID. Directory states
are stored by creating a list of hash IDs for each file in the directory. This list is called
a tree object, and it is also hashed and stored by its SHA-1 hash ID. It is called a tree
because tree objects can also refer to other trees, representing subdirectories. Commit
objects contain the hash ID of the tree object that represents the directory state at the time
of commit, plus metadata such as the author and commit message. It too is hashed and
stored by ID. These objects form a graph with directed links from one object to another
and no circular references (cycles), a directed acyclic graph. It is the content-addressing
that makes cycles impossible. An object can only refer to another object by hash, so it
must refer to an existing object whose hash is known. And objects cannot be updated
without changing their hash. Therefore, it is impossible to create a circular reference.

This DAG data structure has several interesting properties for distributed data storage.
The content-addressing naturally de-duplicates identical objects, since identical objects
will have the same hash ID. This results in a natural data compression. The append-
only nature of the DAG allows replicas to make independent updates without disturbing
the existing history. Then, when transferring updates from one replica to another, only
new objects need to be transferred. Concurrent updates will result in multiple branches
of history, but references from child commit to parent commit establish a happens-before
relationship and give a chain of causality. Data integrity can also be verified by re-hashing
each object and comparing to its ID, protecting against tampering and bit rot. Updates
can also be made atomic by waiting to update branch head references until after all new
objects are written to the object store.

The efficiency of de-duplication depends on how well identical pieces of data map to
identical objects. In Git, the redundant objects are the files and directories that do not
change between commits. However, small changes to a file will result in a new object
that is very similar to the previous one, and the two could be compressed further. Git
compresses this redundant data between files by aggregating objects into archives called
pack files. Inside pack files, Git stores similar objects as a series of deltas against a base
revision [5, Section 10.4]. This secondary compression requires reading objects again,
comparing them, and calculating deltas. Also, if the algorithm is implemented with an
assumption that objects are small enough to fit into RAM, attempting to process large
files could result in an out-of-memory error. This extra effort could be avoided by more
fine-grained mapping of data to objects, so that repeated sections within files become their
own objects that can be reused.

With better mapping, the DAG would de-duplicate redundant chunks of files the



master

Commit a7162b2
Change greeting

Commit af5b5fa
Initial commit

Tree
9cfa574

Commit 178bf76
Overwrite part of data.bin

Tree
8a2e031

Tree
5da23fd

Chunked Blob
69a63de

data.bin

Blob
16e1eef

hello.txt

Chunked Blob
cab3c1f

data.bin hello.txtdata.bin

Blob
05c8417

hello.txt

Blob
d9451f7

0000000000

Blob
59f918c

000001088a

Blob
b83f849

0000000000000001088a

Figure 1: A simple DMV DAG with three
commits

Blob

Tree

 file

 subdirectory

Chunked Blob

 file

Commit

 directory state

 parent commit

Ref

 current commit

 chunk

 chunk

Figure 2: DMV
DAG Object Types

way that it already de-duplicates whole files. It could also ensure that all objects are
a reasonable size that can fit into RAM for processing. This sub-file granularity and de-
duplication is one of the core ideas behind our new data storage system, Distributed Media
Versioning (DMV).

The core idea is relatively simple — store data in a Git-like DAG, but make the
following changes:

1. Store data at a finer granularity than the file
2. Allow nodes to store only a portion of the DAG as a whole

Doing so allows a data set to be replicated or sharded across many nodes according to
the capacity of nodes and the needs of local users. The focus is on data locality: tracking
what data is where, presenting that information to the user, and making it easy to transfer
data to other nodes as desired. The goal is to create a new abstraction, of many devices,
one data item in varying states of synchronization.

DMV’s DAG is based on Git’s, but it adds a new object type, the chunked blob, which
represents a blob that has been broken into several smaller chunks. An example DMV
DAG is shown in Figure 1, and the relationships between object types are shown in
Figure 2.

Files are split into chunks using the Rsync rolling hash algorithm algorithm [22].
This splits the files into chunks by content rather than position, so that identical chunks
within files (and especially different versions of the same file) will be found and stored as
identical objects, regardless of their position within the file. This way, identical chunks
will be naturally de-duplicated by the DAG, and only the changed portions of files need
to be stored as new objects.

DMV will also distribute the repository itself. Repositories will have the option of
only storing a portion of the data set or a portion of its history, in order to save space. A
DMV repository will start with the assumption that it does not hold all objects in the data
set. The goal is to allow DMV to run on devices with widely varying available resources,
from servers to mobile devices.



We have written a DMV prototype. The current early prototype can store and retrieve
data locally, but the distributed features are not yet implemented.

The DMV prototype was developed with Rust stable versions 1.15 and 1.16 on Debian
Linux 8.6 (”Jessie”). The current DMV prototype stands at 7592 lines of Rust code (6565
excluding comments). Source code is available at http://dmv.sleepymurph.com/ .

4 Experiments
Methodology
We conducted two major experiments. In order to measure the effect of file size on
performance, we committed a single file of increasing size to a each target version control
system (VCS), and measured commit time and repository size. And to measure the effect
of numbers of files, we committed increasing number of small (1 KiB) files to each target
VCS, again measuring commit time and repository size.

We ran each experiment with four different VCSs: Git, Mercurial, Bup, and the DMV
prototype. We chose Git because it is the most popular DVCS in use today [1] and the
main inspiration for DMV. We chose the Mercurial and Bup because they are both related
to Git but each store data differently. Git and DMV both store objects in an object store
directory as a file named for its hash ID. Git has a separate garbage collection step that
takes object files and aggregates them into pack files [5, Section 10.7]. Mercurial stores
revisions of each file as a base revision followed by a series of deltas [15, Chapter 4], much
like older systems such as RCS, CVS, and Subversion [19]. Bup uses Git’s exact data
model and pack file format. However, Bup breaks files into chunks using a rolling hash,
reusing Git’s tree object as a chunked blob index1. Unlike Git, Bup writes to the pack file
format directly, without Git’s separate commit and pack steps, and without bothering to
calculate deltas [17]. As a control, we also ran the experiments with a dummy VCS that
simply copied the files to a hidden directory.

For each experiment, the procedure for a single trial was as follows:

1. Create an empty repository of the target VCS in a temporary directory.
2. Generate target data to store, either a single file of the target size, or the target

number of 1 KiB files.
3. Commit the target data to the repository, measuring wall-clock time to commit.
4. Verify that the first commit exists in the repository, and if there was any kind of

error, run the repository’s integrity check operation.
5. Measure the total repository size.
6. Overwrite a fraction (1/1024) of each target file.
7. (Number-of-files experiment only) Run the VCS’s status command that lists what

files have changed, and measure the wall-clock time that it takes to complete.
8. Commit again, measuring wall-clock time to commit.
9. Verify that the second commit exists in the repository, and if there was any kind of

error, run the repository’s integrity check operation.
10. Measure the total repository size again.
11. (File-size experiment only, Git only) Run Git’s garbage collector (git fsck) to pack

objects, then measure total repository size again.
12. Delete temporary directory and all trial files.

1Git can read a repository written by Bup, but it will see the large file as a directory full of smaller chunk
files.

http://dmv.sleepymurph.com/


In order to maximize the range of file sizes tried, we increased file sizes exponentially
by powers of two, from 1 B up to 128 GiB. We also added an additional between step at
1.5 times the base size at each order of magnitude. For example, on the megabyte scale,
the file sizes are 1 MiB, 1.5 MiB, 2 MiB, 3 MiB, 4 MiB, 6 MiB, 8 MiB, 12 MiB, and so
on.

Similarly, we increased numbers of files exponentially by powers of ten from one file
to ten million files, adding additional steps at 2.5, 5, and 7.5 times the base number at each
order of magnitude. For example, at the hundreds and thousands scales, the file quantities
are 100, 250, 500, 750, 1000, 2500, 5000, 7500, 10000, and so on.

Input data files consisted of pseudorandom bytes taken from the operating system’s
pseudorandom number generator (/dev/urandom on Linux).

Experiment Platform
We ran the trials on four dedicated computers with no other load. Each was a typical
office desktop with a 3.16 GHz 64-bit dual-core processor and 8 GiB of RAM, running
Debian version 8.6 (”Jessie”). Each computer had one normal SATA hard disk (spinning
platter, not solid-state), and trials were conducted on a dedicated 197 GiB LVM partition
formatted with the ext4 filesystem. All came from the same manufacturer with the same
specifications and were, for practical purposes, identical.

We ran every trial four times, once on each of the experiment computers, and took
the mean and standard deviation of each time and disk space measurement. However,
because the experiment computers are practically identical, there was little variation.

Software versions used where Git 2.1.4, Mercurial 3.1.2, Bup debian/0.25-1. The
DMV prototype was compiled from version c9baf3a in the DMV source Git repository.
The dummy copy VCS simply used the cp utility bundled with Debian, GNU cp version
8.23.

5 Results
File Size Limits: RAM, Time, Disk Space
In the experiments, both Git and Mercurial had file size limits that were related to the size
of RAM. Mercurial refused to commit a file 2 GiB or larger. It exited with an error code
and printed an error message saying ”up to 6442 MB of RAM may be required to manage
this file.” This is because Mercurial stores file revisions as deltas against a base revision,
so it has to do its delta calculation up front. It loads each revision of the file into memory
to do the calculations, plus it allocates memory to write the output. As a result, Mercurial
needs to be able to fit the file into memory three times over in order to commit it. We
saw that in each case, the commit was not stored, and the repository was left unchanged.
Mercurial commits are atomic.

Git’s commit operation appeared to fail with files 12 GiB and larger. It exited with an
error code and printed an error message saying ”fatal: Out of memory, malloc failed
(tried to allocate 12884901889 bytes).” However, the commit was be written to the
repository, and git’s fsck operation reported no errors. So the commit operation completes
successfully, even though an error is reported.

With files 24 GiB and larger, Git’s fsck operation itself failed. In each case, the fsck

command exited with an error code and give a similar ”fatal ... malloc” error. However,
the 24 GiB file could still be checked out from the repository without error. So we
continued the trials assuming that these were also false alarms.



Table 1: Observations as file size increases

Size Observation

1.5 GiB Largest successful commit with Mercurial
1.5 GiB Git commit successful, but garbage collection fails to compress

2 GiB Mercurial commit rejected
8 GiB Largest successful commit with Git

12 GiB Git false-alarm errors begin, but commit still intact
16 GiB Largest successful Git fsck command
24 GiB Git false-alarm errors begin during fsck, but commit still intact
64 GiB Largest successful DMV commit
96 GiB DMV timeout after 5.5 h
96 GiB Last successful commit with Bup (and Git, ignoring false-alarm errors)

128 GiB All fail due to size of test partition

Git’s delta compression takes place in a separate garbage collection step. For Git,
we ran the garbage collector at the end of each trial and measured repository size before
and after garbage collection. We measured total size, which included input data. With
file sizes up to and including 1 GiB, the garbage collection resulted in a reduction in
repository size from approximately three times the input data size (the input file and two
separately stored revisions) to approximately twice the input data size (the input file, the
base revision, and a negligible delta). At 1.5 GiB and above, the repository size remained
approximately three times the input data size after garbage collection. So Git’s garbage
collection was silently failing with larger files. This indicates that Git’s delta compression
also requires that the file be able to fit into disk space three times over.

The DMV prototype was able to store a file up to 64 GiB in size, but time became a
limiting factor as file size increased. We set an arbitrary five and a half hour timeout for
commits in our experiment script. At 96 GiB, the DMV commit operation hit this limit
and was terminated.

The largest file size committed in the trials was 96 GiB. This was a limitation of the
experiment environment, not a limit of the systems under test. The experiments were
performed on a 197 GiB partition. The next trial size 128 GiB is too large to fit two copies
on the partition. And so every system tested ran out of disk space while trying to commit
the 128 GiB file, because each system saves a copy of the file during commit.

Bup was able to store a 96 GiB file with no errors in just under two hours. Git
could also store such a large file, but one must ignore the false-alarm ”fatal” errors being
reported by the user interface.

These findings are summarized in Table 1.

Commit Times for Increasing File Sizes
Figure 3 shows the wall-clock time required for the initial commit, adding a single file of
the given size to a fresh repository. Over all, the trend is clear and unsurprising: commit
time increases with file size. It increases linearly for Git, Mercurial, and Bup. DMV’s
commit times increase in a more parabolic fashion, similar to how it and Git respond
to increasing numbers of files. This is because DMV breaks the large files into many
smaller objects, trading the large file problem for the many file problem. Files up to
8 MiB were committed in under 1 s for all systems. So one should be able to keep a small
number images or short audio files in version control and still have reasonable interactive



response times.

File Quantity Limits: Inodes, Disk Space
Git, Mercurial, DMV, and the copy operation all failed when trying to store 7.5 million
files or more, reporting that the disk was full. However, the disk was not actually out of
space. It was out of inodes.

Unix filesystems, ext4 included, store file and directory metadata in a data structure
called an inode, which reside in a fixed-length table [18]. When all of the inodes in the
table are allocated, the filesystem cannot store any more files or directories. The number
of inodes is tunable at filesystem creation by passing a bytes-per-inode parameter (-i) to
mke2fs. However, our experiment partitions used the default setting, giving the 197 GiB
partitions 13107200 inodes.

All systems tested except for Bup store a new copy of the input data, with one stored
file per input file. So committing 7.5 million input files would create an additional 7.5
million stored files, for a total of 15 million inodes, almost 2 million more than the 13.1
million on the filesystem.

Bup avoided the inode limit because it writes directly into Git’s pack file format. It
aggregates objects and conserves inodes. Bup trials could continue until the input data
itself exhausted the system’s inodes while attempting to generate 25 million input files.

Bup also made more efficient use of disk space. The input files were 1 KiB, while
the filesystem’s block size was the default 4 KiB. Therefore, the input data set used four
times the amount of disk space as it needed. Because Git, Mercurial, DMV, and the copy
control all made one new file for each input file, the commit used another 4 KiB for each
file, for a total of approximately eight times the disk space used. The total size measured
in the Bup experiments, including input data, was 5.374 times the size of the input data
at 5 million files. And since the input files themselves account for just over 4 times the
theoretical size, we can see that Bup is storing the data in a form that is much closer to its
theoretical size, taking just under 1.374 times the space.

Commit Times for Increasing Numbers of Files
Figure 4 shows the time required for the initial commit, storing all files into a fresh empty
repository. Here we see the commit times for Git and DMV increasing quadratically with
the number of files, while Mercurial, Bup, and the copy increase linearly. This is due to
the way that each system stores objects. Git and DMV store objects with directory and
files names taken from the object’s SHA-1 hash ID, so they are effectively random. These
randomized writes jump from directory to directory. So rather than updating a single
directory with multiple new files, the write operate must jump to another directory and
open it for appending. This slows both Git and DMV down significantly as the number
of objects increases. Mercurial stores data in files named after the original input files, so
they can be written in the order that they are read, without all the jumping back and forth
between directories. Bup also breaks large files into chunks, but it aggregates objects into
pack files. So in addition to conserving inodes, Bup’s writes are sequential appends to a
single file. Disks and filesystems are optimized for this kind of sequential write, and so
Bup had the fastest commit times of all systems tested.



Figure 3: Wall-clock time to
commit one large file to a fresh

repository

0m

60m

120m

180m

240m

300m

32GiB 64GiB 96GiB

T
im

e
 t

o
 c

o
m

m
it

File size

Git
Mercurial

Bup
DMV
Copy

Figure 4: Wall-clock time to
commit many 1KiB files to a

fresh repository

0m

60m

120m

180m

240m

300m

2M 4M 6M 8M 10M

T
im

e
 t

o
 c

o
m

m
it

Number of files

Git
Mercurial

Bup
DMV
Copy

6 Discussion
Reading Whole Files into RAM Limits File Size to RAM
Both Git and Mercurial will at some point load an entire file into memory in order to
compare it to another version. This limits the maximum file size that the system can work
with to what can fit into RAM. In Mercurial’s case, the error message that appears when
attempting to commit a 2 GiB file warns that 6 GiB will be required to manage it. And
because it has to calculate deltas in order to store a file at all, Mercurial simply cannot
work with any file that it can’t fit into memory three times over. This is why Mercurial
could not store files larger than 1.5 GiB in the file-size experiments.

Because Git’s delta calculation happens behind-the-scenes in a secondary phase, it can
still manage to commit files larger than available RAM, but it prints errors as the other
operations fail. The two-phase approach also requires extra disk space and processing
power. If a large file is changed, then both revisions will be written in full, taking twice
the disk space. Then a separate operation will have to reread both blobs in full to calculate
deltas and pack the objects.

These limits could be circumvented by increasing RAM, or by implementing the diff
algorithms in a streaming fashion that does not load the whole file at once.

Both DMV and Bup avoid these pitfalls by operating with a finer granularity than
the file, using a rolling hash to divide files into chunks by their content. It is the
chunks and their indexes that must fit into memory, not the entire file. And then since
chunks are only a few kilobytes and chunk indexes are hierarchical, file size becomes
practically unlimited. Dividing into chunks by rolling hash also makes delta compression
unnecessary, because identical chunks in different files or file revisions will naturally de-
duplicate. From there, it is the method of object storage that becomes the bottleneck.

Naming Files by Hash Leads to Inefficient Writes
The way DMV’s commit time increased super-linearly with file size is due to the way it
breaks the large file into chunks and stores objects as individual files on the filesystem. It
turns the problem of storing one large file into the problem of storing many small files.
And so its performance characteristic is closer to that of storing many files. And both Git’s
and DMV’s commit times increased super-linearly with the number of files increases,
due to their randomized directory and file names. Mercurial’s many-files commit times
were faster, with many files written sequentially, without jumping between directories.



Bup’s appends to pack files where faster still, though the speed gains over Mercurial were
marginal.

Storing Many Small Files Leads to Inefficient Use of Disk Space
Git, Mercurial, DMV, and the copy control all create one file in their object stores for each
input file. So they all used up the filesystem’s available inodes when storing millions of
files. Bup, with its aggregated storage, did not. Storing many small files also makes less
efficient use of disk space when the file sizes are smaller than the filesystem’s block size.
With immutable stored objects and an append-only history, the usage pattern of version
control does not require room for objects to grow. Therefore it makes sense to aggregate
objects together into larger files.

7 Conclusion
We have performed experiments to probe the scalability limits of Git, Mercurial, Bup, and
our DMV prototype. We have shown that the maximum size of file that Git and Mercurial
can store is limited by the amount of available memory in the system. We conclude
that this is because those systems calculate deltas of files to de-duplicate data, and their
implementations load the entire file into memory in order to do so. Better diff algorithm
implementations could work around this problem. However, a rolling hash algorithm can
also work around this problem by finding duplicate content at a finer granularity than the
file. Using those chunks as objects would make use of the DAG’s natural de-duplication
of identical objects, and make the secondary compression less necessary.

We have also rediscovered the limits of the Unix filesystem for storing many small
files. We saw that writing files smaller than the filesystem block size incurs storage
overhead, that splitting files among too many subdirectories takes inodes that are needed
to store files, and that jumping between directories when writing files incurs write-speed
penalties.

We have shown that a VCS that stores objects as individual files on the filesystem will
encounter these limitations as they try to scale in terms of number of files. A VCS that
also breaks files into chunks will turn the problem of storing large files into the problem
of storing many files, again encountering these limitations. However, the limitations can
be avoided by aggregating objects into archives as Bup does.

8 Future Work
The most vital future step for DMV is to implement the planned network features, to
move DMV from the local case to the distributed case. We would also incorporate the
performance insights from these experiments and switch DMV to an aggregating storage
format. An important disk-space optimization would be to create a virtual copy-on-
write filesystem that is a view into a tree in the DMV repository. A virtual filesystem
could be used as the working directory, eliminating the wasted disk space of having a
second writable copy of all files, and it would eliminate the copying of those files back
into the immutable data store on commit. It would also be interesting to perform these
experiments on other filesystems and disk hardware to see how they behave. It would
be particularly interesting to see if solid state drives experience the same slowdown with
randomized writes. We would also like to measure the compression of files when broken
up by rolling hash and stored in a DAG, using a sampling of real-world data in common
image, audio, and video formats.



References
[1] BARUA, A., THOMAS, S. W., and HASSAN, A. E. “What are developers talking

about? An analysis of topics and trends in Stack Overflow”. In: Empirical Software
Engineering 19.3 (2014), pp. 619–654. ISSN: 1573-7616. DOI: 10.1007/s10664-
012-9231-y. URL: http://dx.doi.org/10.1007/s10664-012-9231-y.

[2] BENET, J. et al. IPFS: The Interplanetary Filesystem. GitHub. 2014. URL: https:
//github.com/ipfs/ipfs.

[3] BREWER, E. “CAP twelve years later: How the ‘rules’ have changed”. In:
Computer 45.2 (Feb. 2012), pp. 23–29. ISSN: 0018-9162. DOI: 10.1109/MC.
2012.37.

[4] CHACON, S., LEBEDEV, A., et al. git-media. URL: https : / / github . com /
alebedev/git-media.

[5] CHACON, S. and STRAUB, B. Pro Git. 2nd. Berkely, CA, USA: Apress, 2014.
ISBN: 1484200772, 9781484200773. URL: https://git-scm.com/book/en/v2
(visited on Apr. 27, 2017).

[6] CISLER, P. et al. System for electronic backup. US Patent App. 11/499,848. 2008.
URL: https://www.google.com/patents/US20080034004.

[7] EKBERG, M. et al. Boar. URL: http://www.boarvcs.org/.

[8] FITZPATRICK, B. et al. Camlistore is your personal storage system for life. URL:
https://camlistore.org/.

[9] FOX, A. and BREWER, E. A. “Harvest, yield, and scalable tolerant systems”. In:
Proceedings of the Seventh Workshop on Hot Topics in Operating Systems. 1999,
pp. 174–178. DOI: 10.1109/HOTOS.1999.798396.

[10] GITHUB, INC. Git Large File Storage. 2015. URL: https://git-lfs.github.
com/.

[11] HESS, J. et al. git-annex. 2015. URL: http://git-annex.branchable.com/.

[12] HUMBLE, J. and FARLEY, D. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation (Adobe Reader). Pearson
Education, 2010.

[13] JAKL, M. Time Machine for every Unix out there. Blog. Nov. 2007. URL: https:
//blog.interlinked.org/tutorials/rsync_time_machine.html (visited
on May 12, 2017).

[14] OGDEN, M., BUUS, M., MCKELVEY, K., et al. Dat Data. URL: http://dat-
data.com/.

[15] O’SULLIVAN, B. Mercurial: The Definitive Guide. O’Reilly Media, Inc., 2009.
ISBN: 0596800673, 9780596800673. URL: http://hgbook.red-bean.com/.

[16] PENNARUN, A., BROWNING, R., et al. Bup, it backs things up. URL: https://
bup.github.io/ (visited on Apr. 26, 2017).

[17] PENNARUN, A., BROWNING, R., et al. The Crazy Hacker’s Crazy Guide to Bup
Craziness. “DESIGN” document in Bup source code. URL: https://github.
com/bup/bup/blob/master/DESIGN (visited on Apr. 26, 2017).

http://dx.doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1007/s10664-012-9231-y
https://github.com/ipfs/ipfs
https://github.com/ipfs/ipfs
http://dx.doi.org/10.1109/MC.2012.37
http://dx.doi.org/10.1109/MC.2012.37
https://github.com/alebedev/git-media
https://github.com/alebedev/git-media
https://git-scm.com/book/en/v2
https://www.google.com/patents/US20080034004
http://www.boarvcs.org/
https://camlistore.org/
http://dx.doi.org/10.1109/HOTOS.1999.798396
https://git-lfs.github.com/
https://git-lfs.github.com/
http://git-annex.branchable.com/
https://blog.interlinked.org/tutorials/rsync_time_machine.html
https://blog.interlinked.org/tutorials/rsync_time_machine.html
http://dat-data.com/
http://dat-data.com/
http://hgbook.red-bean.com/
https://bup.github.io/
https://bup.github.io/
https://github.com/bup/bup/blob/master/DESIGN
https://github.com/bup/bup/blob/master/DESIGN


[18] RITCHIE, O. M. and THOMPSON, K. “The UNIX time-sharing system”. In: The
Bell System Technical Journal 57.6 (1978), pp. 1905–1929. ISSN: 0005-8580. DOI:
10.1002/j.1538-7305.1978.tb02136.x.

[19] RUPARELIA, N. B. “The History of Version Control”. In: SIGSOFT Softw. Eng.
Notes 35.1 (Jan. 2010), pp. 5–9. ISSN: 0163-5948. DOI: 10 . 1145 / 1668862 .
1668876. URL: http://doi.acm.org/10.1145/1668862.1668876.

[20] STRAUSS, J. et al. “Eyo: Device-transparent Personal Storage”. In: Proceedings
of the 2011 USENIX Conference on USENIX Annual Technical Conference.
USENIXATC’11. Portland, OR: USENIX Association, 2011, pp. 35–35. URL:
http://dl.acm.org/citation.cfm?id=2002181.2002216.

[21] TORVALDS, L. Git - the stupid content tracker. Git source code README
file. From the initial commit of Git’s source code into Git itself (revision
e83c516). Apr. 8, 2005. URL: https : / / github . com / git / git / blob /

e83c5163316f89bfbde7d9ab23ca2e25604af290/README (visited on Apr. 25,
2017).

[22] TRIDGELL, A. and MACKERRAS, P. The rsync algorithm. Tech. rep. Australian
National University, 1996. URL: http://hdl.handle.net/1885/40765 (visited
on May 12, 2017).

[23] WINSLOW, R. Don’t ever commit binary files to Git! Or what to do if you do. The
Blog of Robin. June 11, 2013. URL: https://robinwinslow.uk/2013/06/11/
dont-ever-commit-binary-files-to-git/ (visited on May 11, 2017).

http://dx.doi.org/10.1002/j.1538-7305.1978.tb02136.x
http://dx.doi.org/10.1145/1668862.1668876
http://dx.doi.org/10.1145/1668862.1668876
http://doi.acm.org/10.1145/1668862.1668876
http://dl.acm.org/citation.cfm?id=2002181.2002216
https://github.com/git/git/blob/e83c5163316f89bfbde7d9ab23ca2e25604af290/README
https://github.com/git/git/blob/e83c5163316f89bfbde7d9ab23ca2e25604af290/README
http://hdl.handle.net/1885/40765
https://robinwinslow.uk/2013/06/11/dont-ever-commit-binary-files-to-git/
https://robinwinslow.uk/2013/06/11/dont-ever-commit-binary-files-to-git/

	1 Introduction
	2 Related Works
	3 Distributed Media Versioning
	4 Experiments
	Methodology
	Experiment Platform

	5 Results
	File Size Limits: RAM, Time, Disk Space
	Commit Times for Increasing File Sizes
	File Quantity Limits: Inodes, Disk Space
	Commit Times for Increasing Numbers of Files

	6 Discussion
	Reading Whole Files into RAM Limits File Size to RAM
	Naming Files by Hash Leads to Inefficient Writes
	Storing Many Small Files Leads to Inefficient Use of Disk Space

	7 Conclusion
	8 Future Work

