17,692 research outputs found

    Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G

    Full text link
    By caching content at network edges close to the users, the content-centric networking (CCN) has been considered to enforce efficient content retrieval and distribution in the fifth generation (5G) networks. Due to the volume, velocity, and variety of data generated by various 5G users, an urgent and strategic issue is how to elevate the cognitive ability of the CCN to realize context-awareness, timely response, and traffic offloading for 5G applications. In this article, we envision that the fundamental work of designing a cognitive CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to associatively learn and control the states of edge devices (such as phones, vehicles, and base stations) and in-network resources (computing, networking, and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework for C-CCN in 5G, which can aggregate the idle computing resources of the neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive learning tasks. By leveraging artificial intelligence (AI) to jointly processing sensed environmental data, dealing with the massive content statistics, and enforcing the mobility control at network edges, the FEL makes it possible for mobile users to cognitively share their data over the C-CCN in 5G. To validate the feasibility of proposed framework, we design two FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network acceleration, 2) enhanced mobility management. Simultaneously, we present the simulations to show the FEL's efficiency on serving for the mobile users' delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201

    Mobile Edge Computing Empowers Internet of Things

    Full text link
    In this paper, we propose a Mobile Edge Internet of Things (MEIoT) architecture by leveraging the fiber-wireless access technology, the cloudlet concept, and the software defined networking framework. The MEIoT architecture brings computing and storage resources close to Internet of Things (IoT) devices in order to speed up IoT data sharing and analytics. Specifically, the IoT devices (belonging to the same user) are associated to a specific proxy Virtual Machine (VM) in the nearby cloudlet. The proxy VM stores and analyzes the IoT data (generated by its IoT devices) in real-time. Moreover, we introduce the semantic and social IoT technology in the context of MEIoT to solve the interoperability and inefficient access control problem in the IoT system. In addition, we propose two dynamic proxy VM migration methods to minimize the end-to-end delay between proxy VMs and their IoT devices and to minimize the total on-grid energy consumption of the cloudlets, respectively. Performance of the proposed methods are validated via extensive simulations

    Active architecture for pervasive contextual services

    Get PDF
    International Workshop on Middleware for Pervasive and Ad-hoc Computing MPAC 2003), ACM/IFIP/USENIX International Middleware Conference (Middleware 2003), Rio de Janeiro, Brazil This work was supported by the FP5 Gloss project IST2000-26070, with partners at Trinity College Dublin and Université Joseph Fourier, and by EPSRC grants GR/M78403/GR/M76225, Supporting Internet Computation in Arbitrary Geographical Locations, and GR/R45154, Bulk Storage of XML Documents.Pervasive services may be defined as services that are available "to any client (anytime, anywhere)". Here we focus on the software and network infrastructure required to support pervasive contextual services operating over a wide area. One of the key requirements is a matching service capable of as-similating and filtering information from various sources and determining matches relevant to those services. We consider some of the challenges in engineering a globally distributed matching service that is scalable, manageable, and able to evolve incrementally as usage patterns, data formats, services, network topologies and deployment technologies change. We outline an approach based on the use of a peer-to-peer architecture to distribute user events and data, and to support the deployment and evolution of the infrastructure itself.Peer reviewe

    Active architecture for pervasive contextual services

    Get PDF
    Pervasive services may be defined as services that are available to any client (anytime, anywhere). Here we focus on the software and network infrastructure required to support pervasive contextual services operating over a wide area. One of the key requirements is a matching service capable of assimilating and filtering information from various sources and determining matches relevant to those services. We consider some of the challenges in engineering a globally distributed matching service that is scalable, manageable, and able to evolve incrementally as usage patterns, data formats, services, network topologies and deployment technologies change. We outline an approach based on the use of a peer-to-peer architecture to distribute user events and data, and to support the deployment and evolution of the infrastructure itself

    Shortest Path Computation with No Information Leakage

    Get PDF
    Shortest path computation is one of the most common queries in location-based services (LBSs). Although particularly useful, such queries raise serious privacy concerns. Exposing to a (potentially untrusted) LBS the client's position and her destination may reveal personal information, such as social habits, health condition, shopping preferences, lifestyle choices, etc. The only existing method for privacy-preserving shortest path computation follows the obfuscation paradigm; it prevents the LBS from inferring the source and destination of the query with a probability higher than a threshold. This implies, however, that the LBS still deduces some information (albeit not exact) about the client's location and her destination. In this paper we aim at strong privacy, where the adversary learns nothing about the shortest path query. We achieve this via established private information retrieval techniques, which we treat as black-box building blocks. Experiments on real, large-scale road networks assess the practicality of our schemes.Comment: VLDB201
    corecore