212 research outputs found

    Virtual reality based creation of concept model designs for CAD systems

    Get PDF
    This work introduces a novel method to overcome most of the drawbacks in traditional methods for creating design models. The main innovation is the use of virtual tools to simulate the natural physical environment in which freeform. Design models are created by experienced designers. Namely, the model is created in a virtual environment by carving a work piece with tools that simulate NC milling cutters. Algorithms have been developed to support the approach, in which the design model is created in a Virtual Reality (VR) environment and selection and manipulation of tools can be performed in the virtual space. The desianer\u27s hand movements generate the tool trajectories and they are obtained by recording the position and orientation of a hand mounted motion tracker. Swept volumes of virtual tools are generated from the geometry of the tool and its trajectories. Then Boolean operations are performed on the swept volumes and the initial virtual stock (work piece) to create the design model. Algorithms have been developed as a part of this work to integrate the VR environment with a commercial CAD/CAM system in order to demonstrate the practical applications of the research results. The integrated system provides a much more efficient and easy-to-implement process of freeform model creation than employed in current CAD/CAM software. It could prove to be the prototype for the next-generation CAD/CAM system

    Automated Digital Machining for Parallel Processors

    Get PDF
    When a process engineer creates a tool path a number of fixed decisions are made that inevitably produce sub-optimal results. This is because it is impossible to process all of the tradeoffs before generating the tool path. The research presents a methodology to support a process engineers attempt to generate optimal tool paths by performing automated digital machining and analysis. This methodology automatically generates and evaluates tool paths based on parallel processing of digital part models and generalized cutting geometry. Digital part models are created by voxelizing STL files and the resulting digital part surfaces are obtained based on casting rays into the part model. Tool paths are generated based on a general path template and updated based on generalized tool geometry and part surface information. The material removed by the generalized cutter as it follows the path is used to obtain path metrics. The paths are evaluated based on the path metrics of material removal rate, machining time, and amount of scallop. This methodology is a parallel processing accelerated framework suitable for generating tool paths in parallel enabling the process engineer to rank and select the best tool path for the job

    An analytical model taking feed rate effect into consideration for scallop height calculation in milling with torus-end cutter

    Get PDF
    International audienceFeed rate effect on scallop height in complex surface milling by torus-end mill is rarely studied. In a previous paper, an analytical predictive model of scallop height based on transverse step over distance has been established. However, this model doesnโ€™t take feed rate effect into consideration. In the present work an analytical expression of scallop height, including feed rate effect, is detailed in order to quantify feed rate effect and thus to estimate more precisely the surface quality. Then, an experimental validation is conducted, comparing the presented model predictions with experimental results. Actually, the share of the scallop height due to feed effect is highly dependent on the machining configuration. However, most of time, the feed effect on total scallop height values is far from being negligible

    Integrated process planning for a hybrid manufacturing system

    Get PDF
    A hybrid manufacturing system integrated CNC machining and laser-aided layered deposition and achieves the benefits of both processes. In this dissertation, an integrated process planning framework which aims to automate the hybrid manufacturing process is investigated. Critical components of the process planning, including 3D spatial decomposition of the CAD model, improvement of the toolpath generation pattern, repairing strategies using a hybrid manufacturing system, etc., are discussed --Abstract, page iv

    ์˜คํ”„์…‹ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์˜ ์ž๊ฐ€ ๊ต์ฐจ ๊ฒ€์ถœ ๋ฐ ์ œ๊ฑฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ๊น€๋ช…์ˆ˜.Offset curves and surfaces have many applications in computer-aided design and manufacturing, but the self-intersections and redundancies must be trimmed away for their practical use. We present a new method for offset curve and surface trimming that detects the self-intersections and eliminates the redundant parts of an offset curve and surface that are closer than the offset distance to the original curve and surface. We first propose an offset trimming method based on constructing geometric constraint equations. We formulate the constraint equations of the self-intersections of an offset curve and surface in the parameter domain of the original curve and surface. Numerical computations based on the regularity and intrinsic properties of the given input curve and surface is carried out to compute the solution of the constraint equations. The method deals with numerical instability around near-singular regions of an offset surface by using osculating tori that can be constructed in a highly stable way, i.e., by offsetting the osculating torii of the given input regular surface. We reveal the branching structure and the terminal points from the complete self-intersection curves of the offset surface. From the observation that the trimming method based on the multivariate equation solving is computationally expensive, we also propose an acceleration technique to trim an offset curve and surface. The alternative method constructs a bounding volume hierarchy specially designed to enclose the offset curve and surface and detects the self-collision of the bounding volumes instead. In the case of an offset surface, the thickness of the bounding volumes is indirectly determined based on the maximum deviations of the positions and the normals between the given input surface patches and their osculating tori. For further acceleration, the bounding volumes are pruned as much as possible during self-collision detection using various geometric constraints imposed on the offset surface. We demonstrate the effectiveness of the new trimming method using several non-trivial test examples of offset trimming. Lastly, we investigate the problem of computing the Voronoi diagram of a freeform surface using the offset trimming technique for surfaces. By trimming the offset surface with a gradually changing offset radius, we compute the boundary of the Voronoi cells that appear in the concave side of the given input surface. In particular, we interpret the singular and branching points of the self-intersection curves of the trimmed offset surfaces in terms of the boundary elements of the Voronoi diagram.์˜คํ”„์…‹ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์€ computer-aided design (CAD)์™€ computer-aided manufacturing (CAM)์—์„œ ๋„๋ฆฌ ์ด์šฉ๋˜๋Š” ์—ฐ์‚ฐ๋“ค ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ํ•˜์ง€๋งŒ ์‹ค์šฉ์ ์ธ ํ™œ์šฉ์„ ์œ„ํ•ด์„œ๋Š” ์˜คํ”„์…‹ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์—์„œ ์ƒ๊ธฐ๋Š” ์ž๊ฐ€ ๊ต์ฐจ๋ฅผ ์ฐพ๊ณ  ์ด๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์˜คํ”„์…‹ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์—์„œ ์›๋ž˜์˜ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์— ๊ฐ€๊นŒ์šด ๋ถˆํ•„์š”ํ•œ ์˜์—ญ์„ ์ œ๊ฑฐํ•˜์—ฌ์•ผํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์˜คํ”„์…‹ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์—์„œ ์ƒ๊ธฐ๋Š” ์ž๊ฐ€ ๊ต์ฐจ๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ์˜คํ”„์…‹ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์—์„œ ์ƒ๊ธฐ๋Š” ๋ถˆํ•„์š”ํ•œ ์˜์—ญ์„ ์ œ๊ฑฐํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์šฐ์„  ์˜คํ”„์…‹ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์˜ ์ž๊ฐ€ ๊ต์ฐจ์ ๋“ค๊ณผ ๊ทธ ๊ต์ฐจ์ ๋“ค์ด ๊ธฐ์ธํ•œ ์›๋ž˜ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์˜ ์ ๋“ค์ด ์ด๋ฃจ๋Š” ํ‰๋ฉด ์ด๋“ฑ๋ณ€ ์‚ผ๊ฐํ˜• ๊ด€๊ณ„๋กœ๋ถ€ํ„ฐ ์˜คํ”„์…‹ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์˜ ์ž๊ฐ€ ๊ต์ฐจ์ ์˜ ์ œ์•ฝ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๋ฐฉ์ •์‹๋“ค์„ ์„ธ์šด๋‹ค. ์ด ์ œ์•ฝ์‹๋“ค์€ ์›๋ž˜ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์˜ ๋ณ€์ˆ˜ ๊ณต๊ฐ„์—์„œ ํ‘œํ˜„๋˜๋ฉฐ, ์ด ๋ฐฉ์ •์‹๋“ค์˜ ํ•ด๋Š” ๋‹ค๋ณ€์ˆ˜ ๋ฐฉ์ •์‹์˜ ํ•ด๋ฅผ ๊ตฌํ•˜๋Š” solver๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ตฌํ•œ๋‹ค. ์˜คํ”„์…‹ ๊ณก๋ฉด์˜ ๊ฒฝ์šฐ, ์›๋ž˜ ๊ณก๋ฉด์˜ ์ฃผ๊ณก๋ฅ  ์ค‘ ํ•˜๋‚˜๊ฐ€ ์˜คํ”„์…‹ ๋ฐ˜์ง€๋ฆ„์˜ ์—ญ์ˆ˜์™€ ๊ฐ™์„ ๋•Œ ์˜คํ”„์…‹ ๊ณก๋ฉด์˜ ๋ฒ•์„ ์ด ์ •์˜๊ฐ€ ๋˜์ง€ ์•Š๋Š” ํŠน์ด์ ์ด ์ƒ๊ธฐ๋Š”๋ฐ, ์˜คํ”„์…‹ ๊ณก๋ฉด์˜ ์ž๊ฐ€ ๊ต์ฐจ ๊ณก์„ ์ด ์ด ๋ถ€๊ทผ์„ ์ง€๋‚  ๋•Œ๋Š” ์ž๊ฐ€ ๊ต์ฐจ ๊ณก์„ ์˜ ๊ณ„์‚ฐ์ด ๋ถˆ์•ˆ์ •ํ•ด์ง„๋‹ค. ๋”ฐ๋ผ์„œ ์ž๊ฐ€ ๊ต์ฐจ ๊ณก์„ ์ด ์˜คํ”„์…‹ ๊ณก๋ฉด์˜ ํŠน์ด์  ๋ถ€๊ทผ์„ ์ง€๋‚  ๋•Œ๋Š” ์˜คํ”„์…‹ ๊ณก๋ฉด์„ ์ ‘์ด‰ ํ† ๋Ÿฌ์Šค๋กœ ์น˜ํ™˜ํ•˜์—ฌ ๋” ์•ˆ์ •๋œ ๋ฐฉ๋ฒ•์œผ๋กœ ์ž๊ฐ€ ๊ต์ฐจ ๊ณก์„ ์„ ๊ตฌํ•œ๋‹ค. ๊ณ„์‚ฐ๋œ ์˜คํ”„์…‹ ๊ณก๋ฉด์˜ ์ž๊ฐ€ ๊ต์ฐจ ๊ณก์„ ์œผ๋กœ๋ถ€ํ„ฐ ๊ต์ฐจ ๊ณก์„ ์˜ xyzxyz-๊ณต๊ฐ„์—์„œ์˜ ๋ง๋‹จ ์ , ๊ฐ€์ง€ ๊ตฌ์กฐ ๋“ฑ์„ ๋ฐํžŒ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋˜ํ•œ ๋ฐ”์šด๋”ฉ ๋ณผ๋ฅจ ๊ธฐ๋ฐ˜์˜ ์˜คํ”„์…‹ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์˜ ์ž๊ฐ€ ๊ต์ฐจ ๊ณก์„  ๊ฒ€์ถœ์„ ๊ฐ€์†ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋ฐ”์šด๋”ฉ ๋ณผ๋ฅจ์€ ๊ธฐ์ € ๊ณก์„  ๋ฐ ๊ณก๋ฉด์„ ๋‹จ์ˆœํ•œ ๊ธฐํ•˜๋กœ ๊ฐ์‹ธ๊ณ  ๊ธฐํ•˜ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ ๊ฐ€์†ํ™”์— ๊ธฐ์—ฌํ•œ๋‹ค. ์˜คํ”„์…‹ ๊ณก๋ฉด์˜ ์ž๊ฐ€ ๊ต์ฐจ ๊ณก์„ ์„ ๊ตฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋ณธ ๋…ผ๋ฌธ์€ ์˜คํ”„์…‹ ๊ณก๋ฉด์˜ ๋ฐ”์šด๋”ฉ ๋ณผ๋ฅจ ๊ตฌ์กฐ๋ฅผ ๊ธฐ์ € ๊ณก๋ฉด์˜ ๋ฐ”์šด๋”ฉ ๋ณผ๋ฅจ๊ณผ ๊ธฐ์ € ๊ณก๋ฉด์˜ ๋ฒ•์„  ๊ณก๋ฉด์˜ ๋ฐ”์šด๋”ฉ ๋ณผ๋ฅจ์˜ ๊ตฌ์กฐ๋กœ๋ถ€ํ„ฐ ๊ณ„์‚ฐํ•˜๋ฉฐ ์ด๋•Œ ๊ฐ ๋ฐ”์šด๋”ฉ ๋ณผ๋ฅจ์˜ ๋‘๊ป˜๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค. ๋˜ํ•œ, ๋ฐ”์šด๋”ฉ ๋ณผ๋ฅจ ์ค‘์—์„œ ์‹ค์ œ ์˜คํ”„์…‹ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์˜ ์ž๊ฐ€ ๊ต์ฐจ์— ๊ธฐ์—ฌํ•˜์ง€ ์•Š๋Š” ๋ถ€๋ถ„์„ ๊นŠ์€ ์žฌ๊ท€ ์ „์— ์ฐพ์•„์„œ ์ œ๊ฑฐํ•˜๋Š” ์—ฌ๋Ÿฌ ์กฐ๊ฑด๋“ค์„ ๋‚˜์—ดํ•œ๋‹ค. ํ•œํŽธ, ์ž๊ฐ€ ๊ต์ฐจ๊ฐ€ ์ œ๊ฑฐ๋œ ์˜คํ”„์…‹ ๊ณก์„  ๋ฐ ๊ณก๋ฉด์€ ๊ธฐ์ € ๊ณก์„  ๋ฐ ๊ณก๋ฉด์˜ ๋ณด๋กœ๋…ธ์ด ๊ตฌ์กฐ์™€ ๊นŠ์€ ๊ด€๋ จ์ด ์žˆ๋Š” ๊ฒƒ์ด ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ž์œ  ๊ณก๋ฉด์˜ ์—ฐ์†๋œ ์˜คํ”„์…‹ ๊ณก๋ฉด๋“ค๋กœ๋ถ€ํ„ฐ ์ž์œ  ๊ณก๋ฉด์˜ ๋ณด๋กœ๋…ธ์ด ๊ตฌ์กฐ๋ฅผ ์œ ์ถ”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ, ์˜คํ”„์…‹ ๊ณก๋ฉด์˜ ์ž๊ฐ€ ๊ต์ฐจ ๊ณก์„  ์ƒ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฐ€์ง€ ์ ์ด๋‚˜ ๋ง๋‹จ ์ ๊ณผ ๊ฐ™์€ ํŠน์ด์ ๋“ค์ด ์ž์œ  ๊ณก๋ฉด์˜ ๋ณด๋กœ๋…ธ์ด ๊ตฌ์กฐ์—์„œ ์–ด๋–ป๊ฒŒ ํ•ด์„๋˜๋Š”์ง€ ์ œ์‹œํ•œ๋‹ค.1. Introduction 1 1.1 Background and Motivation 1 1.2 Research Objectives and Approach 7 1.3 Contributions and Thesis Organization 11 2. Preliminaries 14 2.1 Curve and Surface Representation 14 2.1.1 Bezier Representation 14 2.1.2 B-spline Representation 17 2.2 Differential Geometry of Curves and Surfaces 19 2.2.1 Differential Geometry of Curves 19 2.2.2 Differential Geometry of Surfaces 21 3. Previous Work 23 3.1 Offset Curves 24 3.2 Offset Surfaces 27 3.3 Offset Curves on Surfaces 29 4. Trimming Offset Curve Self-intersections 32 4.1 Experimental Results 35 5. Trimming Offset Surface Self-intersections 38 5.1 Constraint Equations for Offset Self-Intersections 38 5.1.1 Coplanarity Constraint 39 5.1.2 Equi-angle Constraint 40 5.2 Removing Trivial Solutions 40 5.3 Removing Normal Flips 41 5.4 Multivariate Solver for Constraints 43 5.A Derivation of f(u,v) 46 5.B Relationship between f(u,v) and Curvatures 47 5.3 Trimming Offset Surfaces 50 5.4 Experimental Results 53 5.5 Summary 57 6. Acceleration of trimming offset curves and surfaces 62 6.1 Motivation 62 6.2 Basic Approach 67 6.3 Trimming an Offset Curve using the BVH 70 6.4 Trimming an Offset Surface using the BVH 75 6.4.1 Offset Surface BVH 75 6.4.2 Finding Self-intersections in Offset Surface Using BVH 87 6.4.3 Tracing Self-intersection Curves 98 6.5 Experimental Results 100 6.6 Summary 106 7. Application of Trimming Offset Surfaces: 3D Voronoi Diagram 107 7.1 Background 107 7.2 Approach 110 7.3 Experimental Results 112 7.4 Summary 114 8. Conclusion 119 Bibliography iDocto

    Geometry and tool motion planning for curvature adapted CNC machining

    Get PDF
    CNC machining is the leading subtractive manufacturing technology. Although it is in use since decades, it is far from fully solved and still a rich source for challenging problems in geometric computing. We demonstrate this at hand of 5-axis machining of freeform surfaces, where the degrees of freedom in selecting and moving the cutting tool allow one to adapt the tool motion optimally to the surface to be produced. We aim at a high-quality surface finish, thereby reducing the need for hard-to-control post-machining processes such as grinding and polishing. Our work is based on a careful geometric analysis of curvature-adapted machining via so-called second order line contact between tool and target surface. On the geometric side, this leads to a new continuous transition between โ€œdualโ€ classical results in surface theory concerning osculating circles of surface curves and oscu- lating cones of tangentially circumscribed developable surfaces. Practically, it serves as an effective basis for tool motion planning. Unlike previous approaches to curvature-adapted machining, we solve locally optimal tool positioning and motion planning within a single optimization framework and achieve curvature adaptation even for convex surfaces. This is possible with a toroidal cutter that contains a negatively curved cutting area. The effectiveness of our approach is verified at hand of digital models, simulations and machined parts, including a comparison to results generated with commercial software

    Curve-guided 5-axis CNC flank milling of free-form surfaces using custom-shaped tools

    Get PDF
    A new method for 5-axis flank milling of free-form surfaces is proposed. Existing flank milling path-planning methods typically use on-market milling tools whose shape is cylindrical or conical, and is therefore not well-suited for meeting fine tolerances for manufacturing of benchmark free-form surfaces like turbine blades, gears, or blisks. In contrast, our optimization-based framework incorporates the shape of the tool into the optimization cycle and looks not only for the milling paths, but also for the shape of the tool itself. Given a free-form reference surface and a guiding path that roughly indicates the motion of the milling tool, tangential movability of quadruplets of spheres centered along a straight line is analyzed to indicate possible shapes and their motions. This results in G1G^1 Hermite data in the space of rigid body motions that are interpolated and further optimized, both in terms of the motion and the shape of the milling tool itself. We demonstrate our algorithm on synthetic free-form surfaces and industrial benchmark datasets, showing that the use of custom-shaped tools is capable of meeting fine industrial tolerances and outperforms the use of classical, on-market tools.RYC-2017-2264
    • โ€ฆ
    corecore